
MS-A0503 First course in probability and

statistics

2A Expected value and transformations

Jukka Kohonen

Deparment of mathematics and systems analysis
Aalto SCI

Academic year 2020–2021
Period III



Contents

Expected value of a discrete random variable

Realized average ≈ expected value (Law of Large Numbers)

Expectation of a continuous random variable

Expectation of a transformed variable

Expectation of sums of RV

Further examples



Expected value

The expected value (or expectation or mean) of a discrete random
number X is

E(X ) =
∑
x

xP(X = x) =
∑
x

x f (x)

where the sum is taken over the possible values of X .

Or: It is the probability-weighted average of the possible values.

Example (Die result)
The expected value of one die rolled is

E(X ) = (1× 1

6
) + (2× 1

6
) · · ·+ (6× 1

6
) = 3.5.

What does E(X ) tell about the random variable?
(The name is misleading. It is not really a value that is “expected” to
occur, because the die result is never 3.5.)



Expected value vs. long-term average

Let us play n rounds of a game, where each round gives a random
payoff of X . With density f (x) = P(X = x).

Suppose that the payoff x occurs approximately n f (x) times.

• Then our total payoff is approximately∑
x

x n f (x).

• Then our average-per-round payoff is approximately

1

n

∑
x

x n f (x) =
∑
x

x f (x) = E(X ).

But is the thing true that we supposed?



Example: 1000 coin tosses

Relative frequency of heads, as
number of tosses grows

Relative frequencies of heads
and tails after 1000 tosses.

n <- 1000

x <- sample(c(0,1),n,replace=TRUE)

plot(cumsum(x)/(1:n),type="l")

plot(table(x))

http://www.r-project.org/

http://www.random.org/

http://www.r-project.org/
http://www.random.org/


Another example: 1000 rolls of a die

Relative frequency of sixes as
number of rolls grows

Relative frequencies of each
value, after 1000 rolls

n <- 1000

x <- sample(1:6,n,replace=TRUE)

plot(cumsum(x==6)/(1:n),type="l")

plot(table(x))

http://www.r-project.org/

http://www.random.org/

http://www.r-project.org/
http://www.random.org/
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Variables: Realized average is near the expected value

Proposition (Law of large numbers (LLN))
If X1,X2,X3, . . . are independent random numbers, and each has the
same distribution as random number X , then the event

1

n

n∑
i=1

Xi = E(X )± 0.001

is true with probability that approaches 1, as n grows.

This is the fundamental theorem of stochastics. Basically, it says the
randomness of the average gradually disappears as n grows.

• The average 1
n

∑n
i=1 Xi is a random number

• The expectation E(X ) is a deterministic, single number

• In place of 0.001, you can put any number ε > 0.

Does it hold if the Xi are dependent (e.g. consecutive rainfalls)?
Not necessarily, but yes if the dependence is weak enough (ergodicity).



Events: Realized frequency is near the probability

Proposition
If X1,X2, . . . are independent random variables distributed like X , then
for any set B of possible values, the relative frequency of B in the
sequence (X1, . . . ,Xn) fulfills

#{i ∈ {1, 2, . . . , n} : Xi ∈ B}
n

= P(X ∈ B)± 0.001

with a probability approaching 1 as n grows.

• Example: Because density at x is f (x) = P(X = x):

#{i : Xi=x}
n

≈ f (x)

• Example: Because CDF at x is F (x) = P(X ≤ x):

#{i : Xi≤x}
n

≈ F (x)



Frequency vs. probability: Proof

The relative frequency of B in the sequence can be written as

1

n

n∑
i=1

Ii , where Ii =

{
1, if Xi ∈ B,

0, otherwise.

Ii is the indicator variable for the event {Xi ∈ B}.

The random numbers I1, I2, . . . are independent, and each has the
same distribution as the first one I1. (Why?)

By the law of large numbers, as n→∞,

1

n

n∑
i=1

Ii ≈ E(I1) = 0× P(I1 = 0) + 1× P(I1 = 1) = P(X ∈ B).



Example: Empirical probabilities of dice

Trying to estimate P(X ≤ 2), where X is a die result. This
experiment is easy to repeat very many times, at least in simulation
(random numbers in {1,2,3,4,5,6} generated by computer).

n est. probability time

100 0.38000000 0.00 s
10000 0.33260000 0.00 s
1e+06 0.33351000 0.02 s
1e+08 0.33332494 1.55 s
1e+10 0.33333081 159.33 s

Here we know the true probability, so we see how the correct
decimals increase (error decreases).

In reality we usually don’t know the true probability, so we would
like to estimate how big the error is. More about that later when
we have more tools.



Empirical study of a probability
We can now empirically study the probability of an event, if we can
repeat a similar experiment many times independently.

Question: Did we find the Holy Grail of probability calculus? We
do not need cumbersome formulas, but for any event we just try
many times and observe the relative frequency?

Partially true, but

• we need a method of performing the experiment many times
(in reality or in a simulation)

• real-life repetitions could be difficult, expensive, dangerous

• simulation might (systematically) deviate from reality

• for large precision we need many repetitions: in fact, the error
of our probability estimate is proportional to 1/

√
n, so to get

one more decimal place we need . . . how many repetitions?

To add one more decimal place, we must cut the error to one
tenth, requiring 100× as many repetitions.



Using relative frequencies as empirical probabilities
Still the fact, that relative frequencies in long sequences are fairly
good estimates of probability, is the basis of much of modern
statistics.

• sampling: we pick n persons from a population randomly; k of
them have diabetes; guess that proportion k/n might be valid
in the population

• clinical trial: we try a treatment n times, it works k times, we
assume the same holds in future treatments

• an (empirical) histogram estimates a probability distribution

• Monte Carlo simulations in physics etc.: Simulate a process
on computer millions of times and measure relative frequency.
(Constructing the simulation might be the difficult part.)

• Monte Carlo integration: define a region in space, generate
random points, see how often they land in the region →
estimate the area of the region!



Example: 1000 coins

By LLN, relative frequency of heads in the random sequence
(X1, . . . ,Xn) is

#{i ≤ n : Xi = “heads”}
n

≈ 1

2

Relative frequency of heads as n
grows

Relative frequencies of heads
and tails in 1000 tosses



Example: 1000 dice

By LLN, relative frequency of sixes in random sequence
(X1, . . . ,Xn) is

#{i ≤ n : Xi = 6}
n

≈ 1

6

Relative frequency of sixes as n
grows

Relative frequencies of all six
possible results in 1000 rolls



Example: Total payoff from dice

Suppose that on ith round, you get Xi euros if the result is Xi .
Expected payoff from one round is E(Xi ) = 3.5 EUR.

By LLN, the total payoff
from n rounds is
approximately

n∑
i=1

Xi =

(
1

n

n∑
i=1

Xi

)
n ≈ 3.5n.

The red curve shows what
actually happened (in one
experiment).



Expected value vs. average: Summary

We have “average long-time” interpretations of both expected
value and probability.

E(X ) ≈ 1

n

n∑
i=1

Xi ,

P(X = x) ≈ #{i ≤ n : Xi = x}
n

,

where X1,X2, . . . are independent and identically distributed.

What if we do not have independent repetitions available?

• X = next-year sales from a given startup company

• X = next-year fire damages (if any) for a given house

Then E(X ) still has some meaning, but “long-time average” might
be difficult to realize.



Example. “Black swan”

Consider the random variable distributed as

k 0 1000000

P(X = k) 0.999999 0.000001

It has expected value

E(X ) = 0× 0.999999 + 1000000× 0.000001

= 1.

Now E(X ) = 1 tells something about the distribution, but not all.

If you generate independent random numbers from this distribution, the
probability that the first 10 000 numbers are all zeros, is
0.99999910000 ≈ 99%. After this observation, you might not expect
anything else than zeros, but then. . .

http://www.fooledbyrandomness.com/

http://www.fooledbyrandomness.com/


More about rolling rice

Zacariach Labby: Weldon’s dice, automated
https://www.youtube.com/watch?v=95EErdouO2w

https:

//link.springer.com/article/10.1007/s00144-009-0036-8

Prof. Samuli Siltanen:
Samun tiedepläjäys: arpakuutio ja todennäköisyyden olemus
https://www.youtube.com/watch?v=rkJv4BveY4g

(in Finnish)

Tuomas Kukko & Risto Heikkinen:
Kimblen noppa ei ole täysin satunnainen
http://statistition.com/?p=440 (in Finnish)

https://www.youtube.com/watch?v=95EErdouO2w
https://link.springer.com/article/10.1007/s00144-009-0036-8
https://link.springer.com/article/10.1007/s00144-009-0036-8
https://www.youtube.com/watch?v=rkJv4BveY4g
http://statistition.com/?p=440
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Discretization of a continuous random variable

From a continuous variable X , we could make a new discrete variable

bX ck = b10kXc
10k

by truncating to k decimals. For example
b1.52793c3 = 1.527.

E(bX ck) =
∞∑

i=−∞

i

10k
P
(
bX ck =

i

10k

)

=
∞∑

i=−∞

i

10k
P
(

i

10k
≤ X <

i + 1

10k

)

=
∞∑

i=−∞

i

10k

∫ i+1

10k

i

10k

f (x)dx =

∫ ∞
−∞
bxck f (x)dx .

Because bX ck → X as the precision k →∞, let use define

E(X ) = lim
k→∞

E(bX ck) = lim
k→∞

∫ ∞
−∞
bxck f (x)dx =

∫ ∞
−∞

x f (x)dx .



Expected value of a continuous random variable
Expectation of a continuous X is defined as

E(X ) =

∫ ∞
−∞

x f (x)dx .

In a continuous sense, it is the density-weighted average of the
possible values.

Example (Metro waiting time)

If the waiting time X is uniformly distributed in [0, 10], it has
density

f (x) =

{
1
10 , x ∈ (0, 10),

0, otherwise,

and then the expectation is

E(X ) =

∫ ∞
−∞

x f (x)dx =

∫ 10

0
x

1

10
dx = 5.



Continuous expectation — Examples

Example (If density is a polynomial)

Suppose that the repairing time X of a printer, in hours, is a
continuous r.v. with density f (x) = 2x , when 0 < x < 1.

Thus X is always in the interval [0, 1], but more probably at the
higher end (where density is greater).

Calculate the expected value of X . (poll)

E(X ) =

∫ ∞
−∞

x f (x)dx =

∫ 1

0
x 2x dx =

∫ 1

0
2x2dx = 2/3.



Continous expectation — Examples

Example (If density is exponential)

Insects hit the windscreen randomly. The time between two hits is
X , which has exponential distribution with rate parameter λ = 1
(insects per minute). The density is

f (x) = e−x

for x > 0, and zero elsewhere.
Now the expected time between hits is (poll)

E(X ) =

∫ ∞
−∞

x f (x)dx =

∫ ∞
0

x e−xdx = 1.

(For calculating the integral, you need integration by parts.)

Long-run interpretation. How long does it take until your
windscreen has collected 50 insects? By LLN, probably
approximately 50 minutes (long-run average 1 insect per minute).



Expected value of random variable: Summary

Discrete

• Eg. uniform in {1, . . . , 6},
binomial distribution,
geometric distribution

P(X ∈ A) =
∑
i∈A

f (i)

E(X ) =
∑
x

x f (x)

Continuous

• Eg. uniform in interval
[0, 10], normal distribution,
exponential distribution

P(X ∈ A) =

∫
A
f (x) dx

E(X ) =

∫ ∞
−∞

x f (x)dx
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Example: Square of a discrete r.v. (directly)

Problem (Recall last lecture’s square tile machine)

Calculate E(X 2), when X has distribution

k 0 1 2

P(X = k) 0.2 0.5 0.3

Solution
Y = X 2 is discrete, with possible values {0, 1, 4} and distribution

k 0 1 4

P(Y = k) 0.2 0.5 0.3

Thus

E(X 2) = E(Y ) = 0× 0.2 + 1× 0.5 + 4× 0.3 = 1.7.



Example: Cube of a continuous r.v. (directly)
Machine making cubes with side uniformly distributed in [0, 10].

Problem
Calculate E(X 3), when X has uniform distribution in [0, 10].

Solution
Define Y = X 3. It takes values t ∈ [0, 1000]. For those values,

FY (t) = P(Y ≤ t) = P(X 3 ≤ t) = P(X ≤ t1/3) =
t1/3

10
.

and then we have density fY (t) = t−2/3

30 , thus

E(X 3) = E(Y ) =

∫ 1000

0
t
t−2/3

30
dt =

1

30

∫ 1000

0
t1/3dt

=
1

30
×

[
3

4
t4/3

]1000
0

=
10004/3

40
= 250.



Expectation of a transformed r.v. (Transformation
formula)

If g is a function from the possible values of X into real numbers,
then g(X ) is a random number; for each outcome s, this number
becomes g(X (s)).

Fact

• For a discrete random variable,

E(g(X )) =
∑
x

g(x) f (x).

• For a continuous random variable,

E(g(X )) =

∫ ∞
−∞

g(x) f (x)dx .



Example: Square of a discrete r.v. (transformation
formula)

Problem
Calculate E(X 2), when X has distribution

k 0 1 2

P(X = k) 0.2 0.5 0.3

Solution
Apply the transformation formula with g(k) = k2,

E(X 2) =
∑
k

k2f (k) = 02 × 0.2 + 12 × 0.5 + 22 × 0.3 = 1.7.



Example: Cube of a continuous r.v. (transformation
formula)

Problem
Calculate E(X 3), when X has uniform distribution in [0, 10].

Solution
Apply the transformation formula with g(t) = t3,

E(X 3) =

∫ ∞
−∞

t3 f (t)dt =

∫ 10

0
t3

1

10
dt =

1

10

[
1

4
t4

]10
0

= 250.

This was much easier than with the direct method a few slides
back.



Some easy transformations: Shifting and scaling
Lowercase letters are constants. Uppercase letters are random variables.

Fact

(i) E(a) = a.

(ii) E(bX ) = bE(X ).

(iii) E(a + bX ) = a + bE(X ).

Proof.
(i) is obvious from definition of expectation.
(ii) If X is discrete, applying transformation g(x) = bx ,

E(bX ) =
∑
x

(bx)f (x) = b
∑
x

xf (x) = bE(X ).

If X is continuous, similar proof (integrals instead of sums).
(iii) similarly by transformation g(x) = x + a (whiteboard).



Expectation from a multivariate function

Fact

• For discrete random variables X and Y that have joint density
f (x , y),

E(g(X ,Y )) =
∑
x

∑
y

g(x , y) f (x , y).

• For continuous random variables X and Y that have joint
density f (x , y),

E(g(X ,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x , y) f (x , y)dxdy .



Expectation from a multivariate function

Example (Box with two discrete dimensions)

A machine is making boxes whose bottom is a square with side X ,
and height is H. Thus the volume is g(X ,H) = X 2H.

The bottom side is 10 or 20, and height is 3 or 5, with joint density

H = 3 H = 5

X = 10 0.4 0.3
X = 20 0.2 0.1

Expected value of volume is then

E(g(X ,H)) = g(10, 3)f (10, 3) + g(10, 5)f (10, 5)

+ g(20, 3)f (20, 3) + g(20, 5)f (20, 5)

= (300× 0.4) + (500× 0.3) + (1200× 0.2) + (2000× 0.1)

= 710.



Contents

Expected value of a discrete random variable

Realized average ≈ expected value (Law of Large Numbers)

Expectation of a continuous random variable

Expectation of a transformed variable

Expectation of sums of RV

Further examples



Sum of two random variables

Fact
E(X + Y ) = E(X ) + E(Y ).

Proof (discrete case).

Applying the multivariate transformation g(x , y) = x + y :

E(X + Y ) =
∑
x

∑
y

(x + y) f (x , y)

=
∑
x

∑
y

x f (x , y) +
∑
x

∑
y

y f (x , y)

=
∑
x

x

(∑
y

f (x , y)

)
+
∑
y

y

(∑
x

f (x , y)

)
=
∑
x

x fX (x) +
∑
y

y fY (y)

= E(X ) + E(Y ).



Sum of several random variables

For expectation of a longer sum, we can just apply
E(X + Y ) = E(X ) + E(Y ) many times.

For a three-term sum X + Y + Z , observe that X + Y is itself a
random variable, we can call it U.

E(X + Y + Z ) = E(U + Z )

= E(U) + E(Z )

= E(X + Y ) + E(Z )

= E(X ) + E(Y ) + E(Z ).

By the same method, we see that for any sum

E(X1 + . . .+ Xn) = E(X1) + . . .+ E(Xn).

So we can just take the expectations from each term separately.
Together with scaling, this is known as linearity of expectation.



Example: Binomial distribution

Suppose we have n independent indicator variables I1, . . . , In, each
indicating the success (1) or failure (0) of a random trial, with
success probability P(Ii = 1) = p and failure probability q = 1− p.
Then X =

∑n
i=1 Ii , the number of successes, has binomial

distribution.
How to calculate E(X )? You could try directly with

∑
x xf (x), but

it is difficult. Instead, take the expectation from each term
separately.

E(X ) = E(I1 + I2 + . . .+ In)

= E(I1) + E(I2) + . . .+ E (In)

= p + p + . . . p

= np.

E.g. n = 100 trials, p = 0.20 success probability =⇒ expected
value np = 20 successes.



You cannot move operations freely

We saw that some (“linear”) operations can be “moved out” from
inside the expectation, and vice versa:

• multiplication by a constant, E(bX ) = b E(X ),

• addition of a constant, E(X + a) = E(X ) + a,

• addition of two random variables, E(X + Y ) = E(X ) + E(Y ).

This is not generally true for any operation you wish!

Example

The cube-making machine, with X uniform in [0, 10]. We
calculated that E(X 3) = 250.

However, (E(X ))3 = 53 = 125 6= E(X 3).

(Cube of expected value is not expected value of cube.)



Summary

The expected value E(X ) is an approximation of the average of a
large number of independent random numbers that are distributed
the same as X .

Discrete

E(X ) =
∑
x

x f (x)

E(g(X )) =
∑
x

g(x) f (x)

Continuous

E(X ) =

∫ ∞
−∞

x f (x)dx

E(g(X )) =

∫ ∞
−∞

g(x) f (x)dx

E

(
a +

n∑
i=1

biXi

)
= a +

n∑
i=1

biE(Xi )
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Further example. St. Petersburg paradox
A casino offers a gamble where you toss a coin repeatedly until
heads. You gain

• 2 EUR, if heads occurs on 1st toss

• 4 EUR, if heads occurs on 2nd toss

• 8 EUR, if heads occurs on 3rd toss

• . . . 2i EUR if heads occurs on ith toss . . .

How much are you willing to pay, to play this game?

The payoff is a random number g(T ) = 2T , where game length T
has discrete (geometric) distribution with density
fT (k) = (1/2)k , k = 1, 2, 3, . . .
The expected payoff is

E[g(T )] = 21(1/2)1 + 22(1/2)2 + 23(1/2)3 + · · · = ∞.

https://en.wikipedia.org/wiki/St._Petersburg_paradox

https://en.wikipedia.org/wiki/St._Petersburg_paradox


*Further exercise (outside required course)

Y = waiting time (minutes) if metros arrive at 10 min intervals,
and stay 1 min.

This mixed distribution has (see previous lecture slides) CDF

FY (t) =


0, t < 0,
1
10 + t

10 , 0 ≤ t ≤ 9,

1, t > 9.

Problem
Develop a meaningful definition for the expectation of a
discrete-continuous mixed distribution, and calculate E(X ).



Next lecture is about standard deviation and correlation. . .
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