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Sum of two random variables: Mean and SD

If X ,Y are random variables, and S = X + Y , we already know
how to calculate its

• mean: E(X + Y ) = E(X ) + E(Y )

• variance: Var(X + Y ) = Var(X ) + 2 · Cov(X ,Y ) + Var(Y )

• standard deviation:
√

Var

That is, location and width of the distribution of X + Y .

But we still do not know the shape of the distribution. This may
be very different from the distributions of X and Y . (Examples will
follow.)

Knowing the shape would be useful for calculating good estimates
of e.g. tail probabilities. (Chebyshev gives only loose bounds, recall
last lecture. Knowing the shape is better.)



Sum of several random variables: Mean and SD
Before going to shapes, let’s note that for a sum of three random
variables, we can just apply the summation formulas recursively.

E(X + Y + Z ) = E((X + Y ) + Z ) = E(X + Y ) + E(Z )

= E(X ) + E(Y ) + E(Z ).

and

Var(X + Y + Z ) = Var(X ) + Var(Y ) + Var(Z )

+ 2 Cov(X ,Y ) + 2 Cov(X ,Z ) + 2 Cov(Y ,Z ).

In particular, if all variables are independent, then all covariances
are zero, so

Var(X + Y + Z ) = Var(X ) + Var(Y ) + Var(Z ).

Generalization to more than 3 variables goes as you can expect.



Sum of two random variables: Shape
If X ,Y are random variables, their sum S = X + Y is also a
random variable. Its distribution can be determined from the joint
distribution fX ,Y (x , y). How?

Like the distribution of any transformation g(X ,Y ):

1. Study the joint distribution of (X ,Y ).

2. Find the possible values of g(X ,Y ).

3. For each possible value s, find out, which values of the pair
(X ,Y ) lead to g(X ,Y ) = s.

4. Add up their probabilities, to find P(g(X ,Y ) = s).

In step 3, one might really go through the possibilities (one by
one), or try to find a general rule.

Example

The sum of two 100-sided dice S takes integer values 2 . . . 200.
Let us find all of their probabilities (on blackboard).



Sum of two random variables: Shape

The distribution of X + Y can be determined by summing over the
“diagonals” of the joint distribution fX ,Y (x , y).

fX+Y (s) =
∑
x

fX ,Y (x , s−x)

fX+Y (s) =

∫ ∞
−∞

fX ,Y (x , s−x) dx .

If X and Y are independent:

fX+Y (s) =
∑
x

fX (x) fY (s−x)

fX+Y (s) =

∫ ∞
−∞

fX (x) fY (s−x) dx .

(This is called the convolution of the two distributions.)



Example: Sum of two geometric

Let X1 and X2 be independent, each following the geometric
distribution with parameter a = 4/5, and density

f (x) = (1− a)ax .

0.0
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0.2
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Application: Roll a five-sided die until you get a five. The number
of “failed” rolls has this geometric distribution.

Determine the distribution of X1 + X2.



Example: Sum of two geometric

The possible values of X1 + X2 are {0, 1, 2, . . . }, and the density is
obtained from

fX1+X2(s) =
∑
x

f (x)f (s − x) =
s∑

x=0

(1− a)ax(1− a)as−x

The density of the sum is

fX1+X2(s) = (1−a)2(s +1)as
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Application: Roll a five-sided die, until you have got two fives in
total. The number of “failed” (non-five) rolls has this distribution,
called negative binomial distribution.



Sum of several random variables: Shape

Let X ,Y ,Z be independent random variables.
What is the distribution of their sum X + Y + Z?

Apply the previous formula twice.

• Let U = X + Y , and find fU by the convolution formula.

• Let S = U + Z , and find fS by the convolution formula.

This gives the exact distribution of the sum, but the repeated
summations/integrals may be difficult.

In many cases the exact distribution is well known (so you may
find it in the literature). Examples . . .

• sum of indicator rv’s has “binomial distribution”

• sum of geometric rv’s has “negative binomial distribution”

• sum of exponential rv’s has “gamma distribution”

• . . .
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What does the Law of Large Numbers say?

If Xi are many independent numbers from the same distribution,
with mean µ, then their average is with high probability

1

n

n∑
i=1

Xi ≈ µ.

The Law of Large Numbers does not tell

• How good is this approximation? (What is the probability?)

• Does the standard deviation of X play some role?

Some idea of the approximation is gained by the standard deviation

SD

(
1

n

n∑
i=1

Xi

)
=

1

n
SD

(
n∑

i=1

Xi

)
.

So we need a formula for SD of a large sum.



Standard deviation of X + Y

Calculate σX+Y = SD(X + Y ), when we know means µX = 1 ja
µY = 1 and standard deviations σX = 2 ja σY = 3.

Solution
From the linearity of covariance,

Var(X + Y ) = Cov(X + Y , X + Y )

= Cov(X ,X ) + Cov(Y ,X ) + Cov(X ,Y ) + Cov(Y ,Y )

= Var(X ) + 2 Cov(X ,Y ) + Var(Y ),

thus
SD(X + Y ) =

√
σ2
X + 2 Cor(X ,Y )σXσY + σ2

Y .

We cannot calculate the SD of the sum without knowing the correlation.

• Because −1 ≤ Cor(X ,Y ) ≤ 1, we do get bounds
|σX − σY | ≤ SD(X + Y ) ≤ σX + σY , eli 1 ≤ σX+Y ≤ 5.

• If X and Y are independent, then Cor(X ,Y ) = 0 and
σX+Y =

√
σ2
X + σ2

Y =
√

13 ≈ 3.6.



Standard deviation of a long sum

Fact
If X1, . . . ,Xn are random variables, the standard deviation of their
sum is

SD
(∑

i

Xi

)
=

√∑
i

σ2i +
∑
i

∑
j 6=i

σiσjρi ,j ,

where σi = SD(Xi ) and ρi ,j = Cor(Xi ,Xj).

If X1, . . . ,Xn are independent (so ρi ,j = 0) and identically
distributed (so µi = µ and σi = σ), we can simplify

SD
( n∑

i=1

Xi

)
=

√√√√ n∑
i=1

σ2i =
√
nσ2 = σ

√
n.



Standard deviation of a long sum: Proof
From the linearity of covariance,

Var
(∑

i

Xi

)
= Cov

(∑
i

Xi ,
∑
j

Xj

)
=
∑
i

∑
j

Cov(Xi ,Xj)

=
∑
i

(
Cov(Xi ,Xi ) +

∑
j 6=i

Cov(Xi ,Xj)

)
=
∑
i

Var(Xi ) +
∑
i

∑
j 6=i

Cov(Xi ,Xj)

=
∑
i

σ2
i +

∑
i

∑
j 6=i

σiσjρi,j ,

thus

SD
(∑

i

Xi

)
=

√
Var

(∑
i

Xi

)
=

√∑
i

σ2
i +

∑
i

∑
j 6=i

σiσjρi,j .



Standard deviation of a long sum, with independent terms

Fact
If X1, . . . ,Xn are independent and have the same standard
deviation σ = σi for all i = 1, . . . , n, then

SD
( n∑

i=1

Xi

)
=

√√√√ n∑
i=1

σ2i = σ
√
n.

Proof.
Follows from the previous slide, because (by independence)
ρi ,j = Cor(Xi ,Yj) = 0 for all i 6= j .



Mean and SD of a sum: Summary

If X1, . . . ,Xn have means, standard deviations and correlations
µi = E(Xi ), σi = SD(Xi ) ja ρi ,j = Cor(Xi ,Xj), then:

If terms are E(
∑

i Xi ) SD(
∑

i Xi )

Anything
∑

i µi

√∑
i σ

2
i +

∑
i

∑
j 6=i σiσjρi ,j

Independent
∑

i µi

√∑
i σ

2
i

Independent, same
distribution

µn σ
√
n



Interlude: Proof of Law of Large Numbers
We can now actually prove LLN. Consider the long-run average

An = (X1 + X2 + . . .+ Xn) / n,

where Xi are iid with mean µ and standard deviation σ.

Combine two things that we know:

1. SD(An) is not very big. Actually it is σ/
√
n.

2. By Chebyshev, it is not likely that An is many standard
deviations away from its mean, which is µ. Thus LLN!

More precisely: Let rn = 0.001/SD(An). Then

Pr(|An − µ| > 0.001) ≤ 1

r2n
(Chebyshev)

=
σ2

0.0012
· 1

n
→ 0 when n→∞.



Example. Sum of many dice

Play n rounds, gaining Xi (die result) on each round. Let us look
at mean, std.dev. and distribution of total gains
Sn = X1 + · · ·+ Xn for n = 10, 100, 1000.
Gain from one round has µ = 3.5 and std.dev.

σ =
√
E
(
X 2
i

)
− µ2 =

√
1
6(12 + · · ·+ 62)− (3.5)2 ≈ 1.7.

Independent rounds =⇒ E(Sn) = µn ja SD(Sn) = σ
√
n.

0 10 20 30 40 50 60 0 100 200 300 400 500 600 0 1000 3000 5000

E(S10) = 35

SD(S10) ≈ 5.4

E(S100) = 350

SD(S100) ≈ 17

E(S1000) = 3500

SD(S1000) ≈ 54



Another example. Sum of many indicator variables

300 tickets are sold for a flight that has 290 seats. We estimate
that 5% of the passengers won’t show up (independently).
Probability that we can seat all passengers who show up?

Number of passengers showing up is N = X1 + · · ·+ X300, where

Xi =

{
1, if the ith passenger shows up,

0, otherwise.

Because µX = E(Xi ) = 0.95 and σX = SD(Xi ) =
√
µX (1− µX ) ≈ 0.22,

we get µN = µX × 300 = 285 and σN = σX ×
√

300 ≈ 3.8.

From Chebyshev, we could have the bound

P(N ∈ [280, 290]) ≈ P(N = µN ± 1.32σN) ≥ 1− 1

1.322
≈ 42.6%.

So we have at least probability 42.6% of seating everybody.
However, we can do much better by looking at the distribution shape.



Sum of indicators: Exact distribution
What is the exact distribution of N, the number of passengers
showing up?

N = X1 + · · ·+ X300

The possible values of N are {0, 1, 2, . . . , 300}.

P(N = 0) = (1− 0.95)300 ≤ 0.1300 = 10−300

P(N = k) =

(
300

k

)
(1− 0.95)300−k0.95k

• N has the binomial distribution with parameters n = 300 and
p = 0.95.

• We can simply calculate the individual densities and add them up.

• R does it for us:
P(N ≤ 290) = pbinom(290,300,0.95) ≈ 93.5% and
P(N ∈ [280, 290]) =
pbinom(290,300,0.95) - pbinom(279,300,0.95) ≈ 85.7%.



Sum of indicators: Simulated distribution
Let us simulate the numbers of show-up passengers (N) on 10 000
flights, that is, numbers from Bin(300, 0.95), and draw a
histogram.

250 260 270 280 290 300



100 dice vs. 300 flight tickets

We observe: The distributions of these two random variables (sum
of dice; and number of show-up passengers) seem to have the
same shape, although different location and scale.

280 300 320 340 360 380 400 420 270 275 280 285 290 295 300

Sum of 100 independent dice Sum of 300 independent indicators

This is not a coincidence! Moreover, this holds more generally.
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Standard normal distribution
Random variable Z has standard normal distribution (with mean
µ = 0 and standard deviation σ = 1), if it has density

f (t) =
1√
2π

e−t
2/2 = dnorm(x) = dnorm(x)

-σ σ
x

f(x)

-σ σ
x

Φ(x)

Then its cumulative distribution function is

Φ(z) = FZ (z) =

∫ z

−∞

1√
2π

e−
t2

2 dt = pnorm(z) = normcdf(z)

The integral is a bit cumbersome, but if you have z , you can look
up Φ(z) from tables (see e.g. Ross or course page); or you can use
a calculator or computer (R, Matlab/Octave)



Normal distribution (general)

Random variable X has normal distribution with mean µ and
standard deviation σ, if it has density

f (t) =
1√

2πσ2
e−

(t−µ)2

2σ2 = dnorm(x, mu, sigma)

-σ σ
x

f(x)

-σ σ
x

Φ(x)

The general CDF is also easily calculated in R or Matlab:
pnorm(x, mu, sigma), normcdf(x, mu, sigma)

But if you need to use tables, you can use scaling and shifting.



Normal distribution: Scaling and shifting

Fact
If Z has a standard normal distribution, and µ and σ > 0 are
constants, then the transformation X = µ+ σZ also has a normal
distribution.

Now which normal distribution does X have? Let us calculate its
parameters:

E(X ) = E(µ+ σZ ) = µ+ σE(Z ) = µ,

SD(X ) = SD(µ+ σZ ) = σ · SD(Z ) = σ.

We can also go the other way:

Fact
If X has a normal distribution with parameters µ and σ, then
Z = (X − µ)/σ has standard normal distribution.

This is called standardization of X , and useful for calculating the
CDF FX (x).



Using standardization for CDF
If X is normal with parameters µ and σ, and then the
transformation

Z =
X − µ
σ

has standard normal distribution.

Then

FX (x) = P(X ≤ x)

= P(µ+ σZ ≤ x)

= P(σZ ≤ x − µ)

= P
(
Z ≤ x − µ

σ

)
= FZ

(
x − µ
σ

)
.

The values of Fz(. . .), also denoted Φ(. . .), can be looked up in
tables, or calculated e.g. with R.



Finding CDF directly / by standardization

Let X be normally distributed with mean µ = 10 and standard
deviation σ = 3.

What is FX (16) = P(X ≤ 16), that is, the probability that X is at
most two standard deviations (2σ) above its mean?

Method 1. Directly with R.

> pnorm(16,10,3)

[1] 0.9772499

Method 2. By standardization. Because Z = (X − 10)/3 has
standard normal distribution, we calculate
FZ ((16− 10)/3) = FZ (2) by . . .

> pnorm((16-10)/3)

[1] 0.9772499



Normal distribution: More useful facts

Fact
If X ,Y are normally distributed random variables, and
independent, then S = X + Y is also normally distributed.

Fact
If X is a normally distributed random variable, then any scaling
and shifting Y = a + bX also has normal distribution.

In both cases, the parameters of the new distribution can be
calculated by the already known formulas (linearity of mean and
covariance).
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Normal approximation

Fact (Central Limit Theorem, CLT)

If X1, . . . ,Xn are independent and identically distributed random
variables, with same mean µ and same standard deviation σ, then
their sum S has approximately a normal distribution, if n is large.

The parameters of the distribution we already know:

E(S) = nµ

SD(S) =
√
nσ.

It follows that the average S/n also has a normal distribution.

Note
This is a universal law of nature: it holds whatever distribution the
individual terms have (discrete/continuous, symmetric/skewed etc;
recall sums of dice, and sums of indicators.) However, the
independence of the terms is rather important (but there are
variations of CLT).
de Moivre 1733, Laplace 1812, Lyapunov 1911, Lindeberg 1922, Turing 1934



Example: Sum of dice, normal approximation

After 100 rounds, probability that gains are

(a) in the interval [316, 384]?

(b) over 500 EUR?

280 300 320 340 360 380 400 420

One round has µX = 3.5 and σX ≈ 1.7, so sum has µS = 350 and
σS ≈ 17. Normal approximation

S − 350

17

d
≈ Z .

P(316 ≤ S ≤ 384) = P
(
−2 ≤ S − 350

17
≤ 2

)
≈ P(−2 ≤ Z ≤ 2) = 1− 2P(Z ≤ −2) ≈ 95.4%.

P(S100 > 500) = P
(
S − 350

17
> 8.82

)
≈ P(Z > 8.82) = P(Z ≤ −8.82) ≈ 6× 10−19.



Example: Sum of indicators, normal approximation

Probability that we can seat everybody? (Sold
300 tickets, but 290 seats.)

270 275 280 285 290 295 300

Number of passengers showing up N = X1 + · · ·+ X300. Each term Xi

has µX = 0.95 and σX = 0.218, so sum has µN = 285 and σS = 3.77.
Normal approximation:

N − 285

3.77

d
≈ Z .

P(N ≤ 290) = P(N ≤ 290.5) = P
(
N − 285

3.77
≤ 1.46

)
≈ P(Z ≤ 1.46)

= 1− P(Z ≤ −1.46) ≈ 92.8%.

(Exact prob was: pbinom(290,300,0.95) = 93.5%)
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Sum of exponentially distributed r.v.
Driving a car, flies hit windscreen with rate λ = 1/100 (one fly in
100 seconds), randomly and independently.

Let Xi ∼ Exp(λ) be the waiting time for the ith fly (after the
previous fly), or for the first fly if i = 1. The individual waiting
times have the exponential distribution.

The waiting time for n flies, S = X1 + X2 + . . .+ Xn, does not
have exponential distribution. Try the following R code with e.g.
n = 2, n = 5 or n = 50.

rate <- 1/100

repeats <- 1000000

n <- 5

X <- matrix(rexp(repeats*n, rate), repeats, n)

S <- rowSums(X)

hist(S,100)

(S has a “gamma distribution”. Not exponential, not normal.)



Next lecture is about empirical distributions in observed data. . .
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