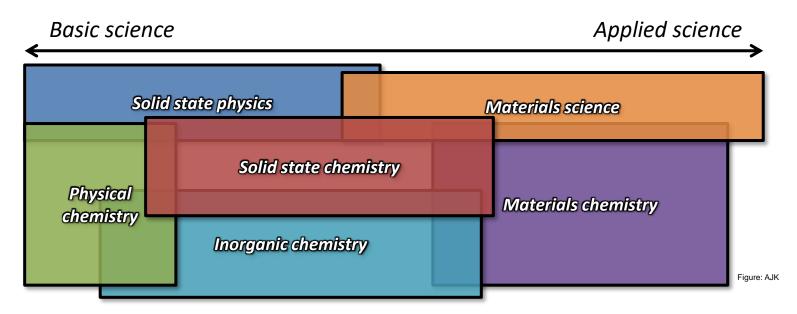
Solid State Chemistry CHEM-E4155 (5 cr)

Spring 2021

Antti Karttunen


Department of Chemistry and Materials Science

Aalto University

Solid state chemistry

Synthesis, structures, properties, and applications of <u>crystalline</u> inorganic materials

- Atomic-level structure of materials is at the very heart of solid state chemistry
- "If you want to understand function, study structure"
 - Francis Crick (1962 Nobel Prize in Physiology or Medicine Structure of DNA)
- The above classification is a rather traditional one: relatively new concepts such as *metal-organic frameworks* bring organic/organometallic chemistry into the picture
- What is **your** background? Chemistry, materials science, something else?

Course outline

Teacher: Antti Karttunen

Lectures

- 14 lectures (course calendar shown on a later slide)
- Each lecture includes a set of exercises (a MyCourses Quiz)
- We start the exercises together during the lecture

Project work

- We create content in the Aalto Solid State Chemistry Wiki
- Includes both independent and collaborative work (peer review)
- Lots of content has been created in the Wiki since 2017.

Grading

- Exercises 50%
- Project work 50%

Workload (135 h)

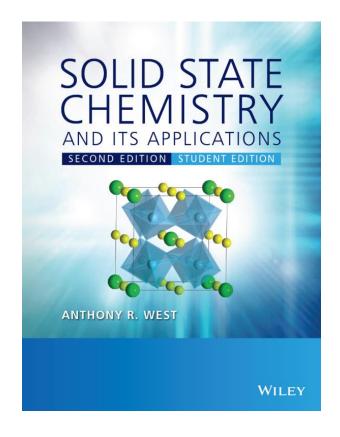
- Lectures, combined with exercises ~28 h
- Home problem solving ~28 h
- Independent project work ~40 h

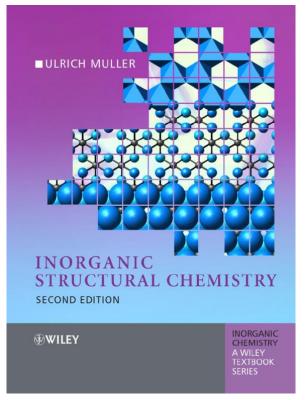
Honor code for exercises

- The purpose of the exercises is to support your learning
- Most of the exercises are graded automatically
 - There may also be some manually graded exercises
- It is perfectly OK to discuss the exercises with the other students
 - In fact, I encourage discussion during the exercise sessions
- It is **not OK** to take answers directly from the other students
 - This also means that is **not OK** to give answers directly to the other students
- The exercise answers and timestamps are being monitored

Course calendar

Lectures in Zoom


(https://aalto.zoom.us/j/69449935597)


at 10:15-12:00

Week	Lect.	Date	Topic
Week 1	1	Mon 11.1.	Structure of crystalline materials. Symmetry.
Structure	2	Wed 13.1.	Structural databases, visualization of crystal structures.
Week 2	3	Mon 18.1.	Bonding in solids. Description of crystal structures.
Bonding	4	Wed 20.1.	Band theory. Band structures.
Week 3	5	Mon 25.1.	Phase diagrams, crystal growth.
Synthesis	6	Wed 27.1.	Solid state synthesis.
Week 4	7	Mon 1.2.	XRD, Miller indices. Powder XRD databases. Microscopies.
Characterization	8	Wed 3.2.	Spectroscopies and thermal analysis.
Week 5	9	Mon 8.2.	Abundance of elements, geochemistry, minerals.
Main groups	10	Wed 10.2.	Main group compounds, allotropes, Zintl phases.
Week 6	11	Mon 15.2.	d-block metals, ligand field theory, magnetism.
d-block metals	12	Wed 17.2.	d-block metal oxides and other compounds.
Week 7	13	Mon 1.3.	At 14-16. Defects, non-stoichiometric compounds.
Defects and doping	14	Wed 3.3.	At 12-14. Semiconductors, doping, electrical properties.

Literature for the course

- Solid State Chemistry and its Applications Student Edition (2nd ed.), Anthony R. West, 2013, Wiley.
- Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, **2006**, Wiley
 - (Anorganische Strukturchemie (fünfte Ed.), 2006, Wiley)

