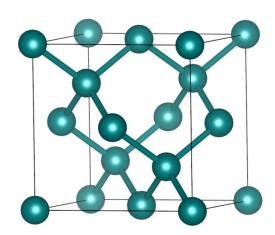
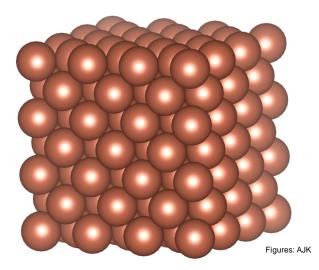

Lecture 3: Bonding in solids and description of crystal structures

- Bonding in solids
 - Electronegativity
 - Atomic and ionic radii
 - (Band theory in Lecture 4)
- Description of crystal structures
 - Coordination
 - Close packed structures
 - Metallic structures
 - Ionic structures with interstitial sites
- Concept of a **structure type**



Strong chemical bonding


- The chemical bonds in solids are usually classified as ionic, covalent, or metallic
 - The focus of the lecture is on these bonding types
- Examples of weaker (non-covalent) bond types: hydrogen bonds, halogen bonds

Ionic bonding (*e.g.* NaCl) Typically high symmetry and high coordination numbers.

Covalent bonding (e.g. Si) Typically highly directional bonds. Smaller coordination numbers than for ionic structures.

Metallic bonding (*e.g.* Cu) Delocalized valence electrons. Can result in high coordination and close packing of atoms

Electronegativity

Electronegativity

- The concept of *electronegativity* is an important tool for estimating how ionic or covalent a chemical bond is
- The electronegativity is a parameter introduced by Linus Pauling as a measure of the power of an atom to attract electrons to itself when it is part of a compound
- Pauling defined the difference of two electronegativities χ_A and χ_B in terms of bond dissociation energies, D_0 :

 $|\chi_{A} - \chi_{B}| = \{D_{0}(AB)\} - 1/2[D_{0}(AA) + D_{0}(BB)]\}^{1/2}$

- D₀(AA) and D₀(BB) are the dissociation energies of A–A and B–B bonds and D₀(AB) is the dissociation energy of an A–B bond, all in eV units
- The expression gives differences of electronegativities
- To establish an absolute scale, Pauling set the electronegativity of **fluorine** to 3.98 (unitless quantity)

Pauling Electronegativities

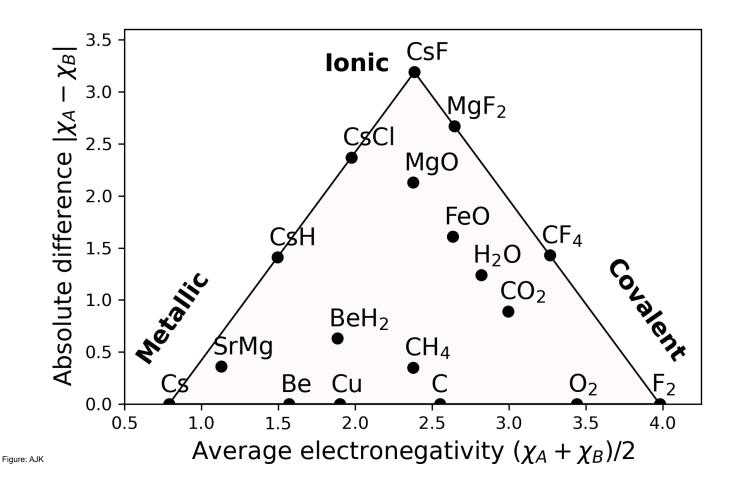
V·T·E	V·T·E Periodic table of electronegativity by Pauling scale																		
				$\rightarrow A$	tomic ra	idius dec	reases -	→ Ioniza	tion ener	gy increa	ases \rightarrow	Electrone	egativity	increase	$s \rightarrow$				
	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group	\rightarrow																		
↓ Perio	↓ Period																		
1	н																		He
	2.20																		
2	Li	Be												В	С	N	0	F	Ne
_	0.98	1.57												2.04	2.55	3.04	3.44	3,98	
3	Na	Mg												Al	Si	P	S	CI	Ar
-	0.93	1.31												1.61	1.90	2.19	2.58	3.16	
4	К	Ca	Sc		Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.82	1.00	1.36		1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
5	Rb	Sr	Y		Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	L.	Xe
	0.82	0.95	1.22		1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60
6	Cs	Ba	La	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	0.79	0.89	1.1		1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	1.62	1.87	2.02	2.0	2.2	2.2
7	Fr	Ra	Ac	*	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
	0.7 ^[en 1]	0.9	1.1	*															
				*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
					1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.1	1.22	1.23	1.24	1.25	1.1	1.27	
				*	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				т	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3 ^[en 2]	

Figure: Wikipedia

Allen Electronegativities

- Pauling's electronegativity scale is the best known, but there are also others
- Allen determined his scale based on spectroscopic data (one-electron energies)
- Good correlation with Pauling electronegativities, but somewhat ambiguous for *d*- and *f*-metals

	Electronegativity using the Allen scale																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Н																	He
2.300																	4.160
Li	Be											В	С	Ν	0	F	Ne
0.912	1.576											2.051	2.544	3.066	3.610	4.193	4.789
Na	Mg											AI	Si	Р	S	CI	Ar
0.869	1.293											1.613	1.916	2.253	2.589	2.869	3.242
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.734	1.034	1.19	1.38	1.53	1.65	1.75	1.80	1.84	1.88	1.85	1.59	1.756	1.994	2.211	2.434	2.685	2.966
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
0.706	0.963	1.12	1.32	1.41	1.47	1.51	1.54	1.56	1.59	1.87	1.52	1.656	1.824	1.984	2.158	2.359	2.582
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.659	0.881	1.09	1.16	1.34	1.47	1.60	1.65	1.68	1.72	1.92	1.76	1.789	1.854	2.01	2.19	2.39	2.60
Fr	Ra																
0.67	0.89																


Using electronegativities (χ)

- Electronegativities can be used to estimate the *polarity* of a bond
- There is **no** clear-cut division between covalent and ionic bonds!
- Note that the electronegativity difference $|\chi_A \chi_B| = 0$ both for fully covalent (*e.g.* C–C) and fully metallic bonds (*e.g.* Li–Li)
- Quantum chemical calculations can help to understand the nature of the bonding better
 - Even then, many controversies about various analysis methods exist
 - More discussion about the analysis methods in Lecture 4

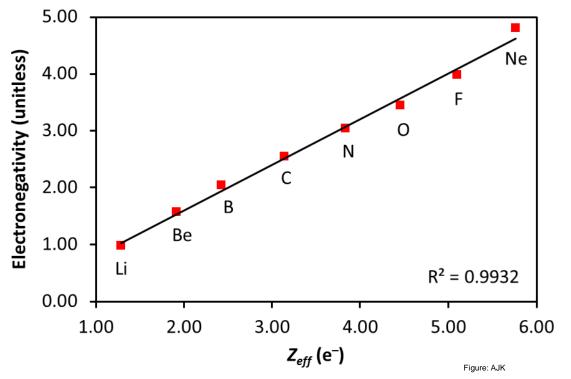
Bond A-B	$ \chi_A - \chi_B $	
Cs–F	3.19	Ionic
Na–Cl	2.23	
H–F	1.78	
Fe–O	1.61	
Si-O	1.54	
Zn–S	0.93	
C–H	0.35	Covalen

van Arkel-Ketalaar Triangles

- The electronegativies can be used to arrange binary compounds into *Triangles of bonding,* also known as *van Arkel-Ketalaar Triangles*
- Very illustrative concept for estimating the nature of a chemical bond

What really determines χ ?

- Pauling determined the χ values from bond dissociation energies
- Allen used one-electron energies from spectroscopic data
- The periodic trends of electronegativity (and chemical bonding) can be discussed in terms of *effective nuclear charge* Z_{eff} experienced by the valence electrons
- $Z_{eff} = Z \sigma$, where Z is the atomic number and σ is **shielding** by other electrons
- The shielding can be determined from simple rules such as Slater's rules or from quantum chemical calculations
 - Clementi, E.; Raimondi, D. L., "Atomic Screening Constants from SCF Functions", J. Chem. Phys 1963, 38, 2686–2689
- Higher the Z_{eff} , the tighter the valence electrons are "bound" to the atom


Element	Li	Ве	В	С	Ν	0	F	Ne
Ζ	3	4	5	6	7	8	9	10
Z _{eff}	1.28	1.91	2.42	3.14	3.83	4.45	5.10	5.76
χ	0.98	1.57	2.04	2.55	3.04	3.44	3.98	(4.8)*

* Allen electronegativity

χ vs. Z_{eff} for the 2nd period

- χ and Z_{eff} do actually show a beautiful correlation when moving from left to right in the periodic table
- However, Z_{eff} of the valence electrons actually *increases* when moving down in periodic table (e.g. Z_{eff}(Cl) = 6.1 e⁻), while electronegativity *decreases*
- Full consideration of orbital shapes *etc.* required to understand the χ values
- The moral of the story: simple explanations of complex manyelectron systems may sound nice, but are probably not right

Electronegativity vs. Z_{eff}

Atomic radii

Atomic radii

- When a crystal structure is available, the distances between atoms are often a very useful measure of the possible bonding between them
- However, the size of an atom or ion is not easy to define because there is not clear-cut definition for the "border" of an atom
- Various definitions for **atomic**, **ionic**, **covalent**, and **van der Waals** radii exist, here the following datasets are included:
 - Atomic radii of neutral atoms from quantum chemical calculations (E. Clementi *et al. J. Chem. Phys.* **1967**, *47*, 1300).
 - Ionic radii from experimental data (R. D. Shannon, Acta Cryst. 1976, 32, 751)
 - Covalent radii from quantum chemical calculations (P. Pyykkö)
 - van der Waals radii from experimental and quantum chemical data (Bondi, A. J. Phys. Chem. 1964, 68, 441; Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806;
 S. Alvarez, Dalton Trans. 2013, 42, 8617).

Atomic radii for neutral atoms

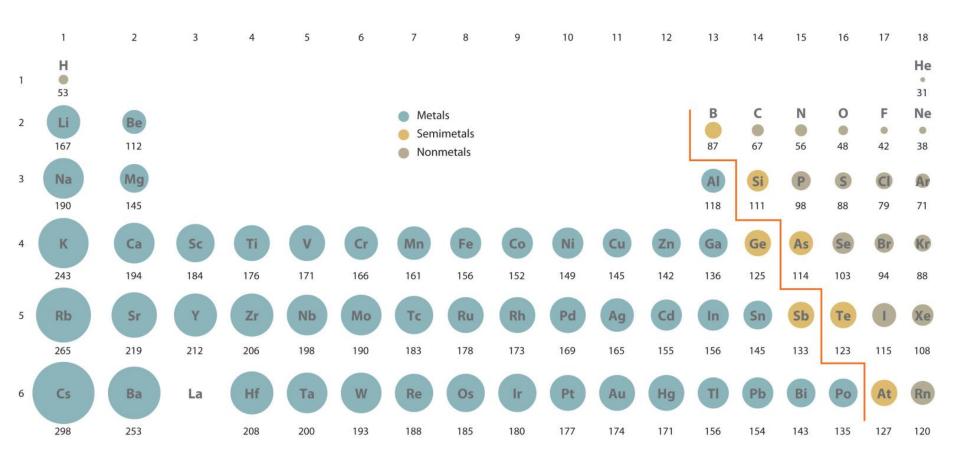
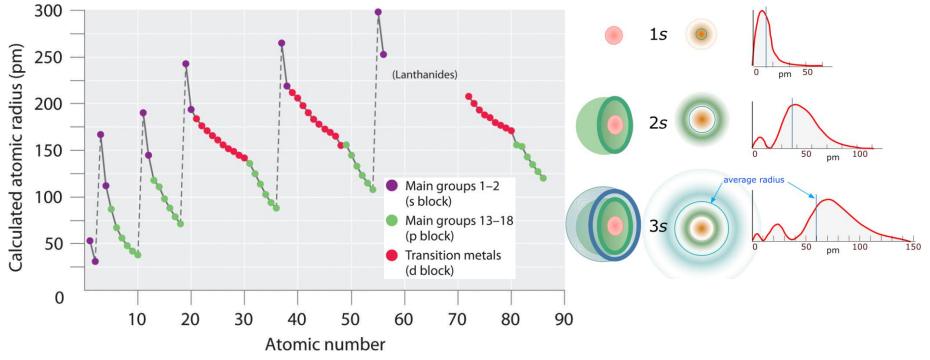
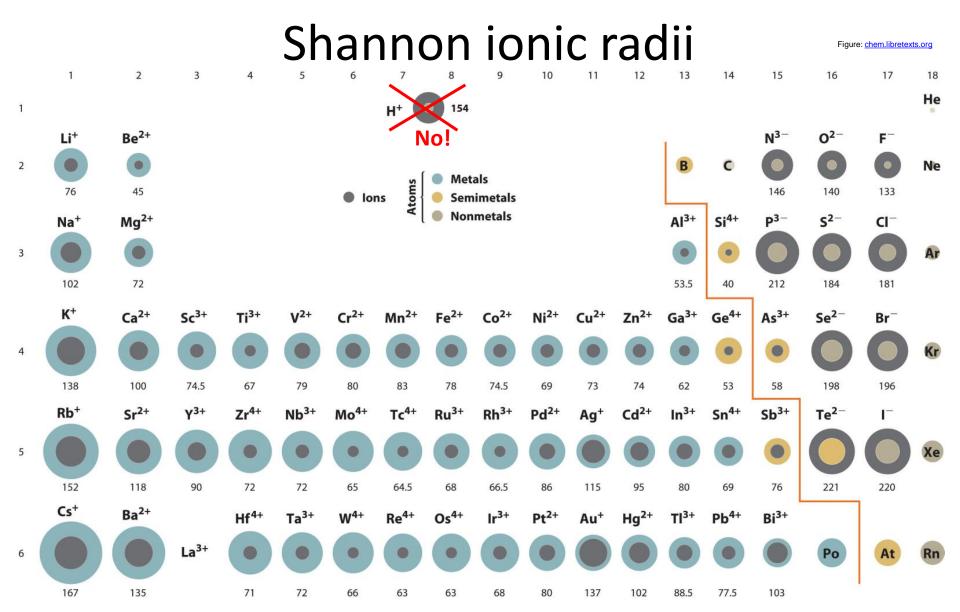




Figure: chem.libretexts.org

Periodic trends of atomic radii

- Radii decrease when moving from left to right (Z_{eff} increases)
- Radii increase when moving down in the group (principal quantum number *n* increases, orbitals become more expanded)
- The atomic radii are useful for the illustration of periodic trends, but not that valuable otherwise

Ionic Radii (in pm units) of the most common ionic states of the s-, p-, and d-block elements. **Gray** circles indicate the sizes of the ions shown; **colored** circles indicate the sizes of the neutral atoms. Source: R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Cryst. **1976**, *32*, 751. Full radii data available at: <u>http://abulafia.mt.ic.ac.uk/shannon/ptable.php</u>).

Applications of the ionic radii

- The ionic radii have been derived from a large number of experimental data
- They can be used for example:
 - To investigate whether a new crystal structure shows ionic bonding
 - To investigate whether a bond that is expected to be ionic has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The Na-Cl distance in solid NaCl is 282 pm, this compares well with the sum of the ionic radii: of Na⁺ (102 pm) and Cl⁻ (181 pm) = 283 pm
- Another application is the *radius ratio rules* for ionic structures (next slide)
- Note that the radii depend on the formal charge and the coordination of the ion!
 - The charge is more important than the coordination (there is not data for all coordination numbers)
 - Figure on the previous slide shows only the most common ionic state. The full dataset at <u>http://abulafia.mt.ic.ac.uk/shannon/ptable.php</u> has more details.

Radius ratio rules

- Cations surround themselves with as many anions as possible, and vice versa.
 - A cation must be in contact with its anionic neighbors (otherwise unstable)
 - Neighboring anions may or may not be in contact
- With simple trigonometry, one can then derive minimum radius ratios for different coordination numbers
- For example, NaCl: 102 pm/181 pm = 0.56 -> *octahedral* coordination.
- Nice qualitative tool, but not highly predictive (lots of exceptions to the rule exist)

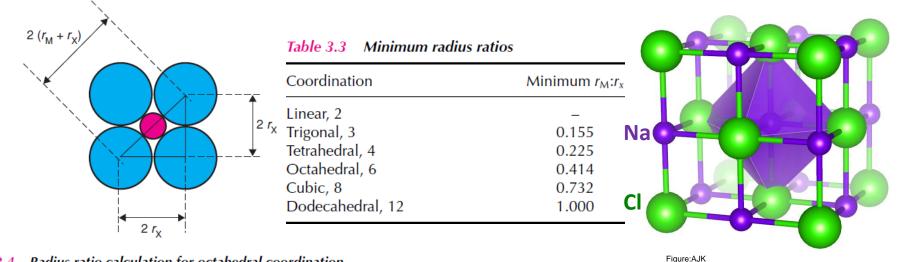
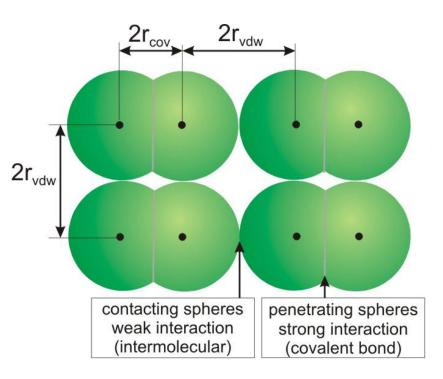


Figure 3.4 Radius ratio calculation for octahedral coordination.


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H																	2 He
32	D.	nd	kä (۲۵	: C _	nci	cto	nt C	$\mathbf{}$	مام	st r	be					2 ne 46
-	ſŢ	y y K	KU .	Jell	-00	1121	SIE			alei	ILI	au					-
-																	-
3 Li	4 Be]			Z	Radiu	ıs, r _n :	Symbol]			5 B	6 C	7 N	8 O	9 F	10 Ne
133	102					I	1					85	75	71	63	64	67
124	90					I	2					78	67	60	57	59	96
-	85					1	3					73	60	54	53	53	-
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
155	139											126	116	111	103	99	96
160	132											113	107	102	94	95	107
-	127	a. 0	22 TT:	22 V	24 0	25.14	22 D	27 0	22 N:	22 0	20 P	111	102	94	95	93	96
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
196	171	148	136	134	122	119	116	111	110	112	118	124	121	121	116	114	117
193	$\frac{147}{133}$	116 114	117 108	112 106	111 103	105 103	109 102	103 96	101 101	115 120	120	117 121	111 114	114 106	107 107	109	121 108
- 37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	- 48 Cd	49 In	50 Sn	51 Sb	52 Te	110 53 I	54 Xe
210	185	163	40 Zr 154	41 NO 147	42 MO 138	45 1C 128	125	45 Kil	40 Pu 120	47 Ag 128	48 Cu 136	⁴⁹ m 142	140	140	136	133 I	131
202	157	130	134	125	138	128	114	123	117	139	130	136	140	133	130	129	131
202	139	124	127	116	113	110	103	106	112	135	-	146	130	127	120	125	122
55 Cs	56 Ba	La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
232	196	La La	152	146	137	131	129	122	123	124	133	144	144	151	145	147	142
209	161		128	126	120	119	116	115	112	121	142	142	135	141	135	138	145
-	149		122	119	115	110	109	107	110	123	-	150	137	135	129	138	133
87 Fr	88 Ra	Ac-Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116	117	118
223	201		157	149	143	141	134	129	128	121	122	136	143	162	175	165	157
218	173		140	136	128	128	125	125	116	116	137						
-	159		131	126	121	119	118	113	112	118	130						
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		180	163	176	174	173	172	168	169	168	167	166	165	164	170	162	
		139	137	138	137	135	134	134	135	135	133	133	133	131	129	131	
		139	131	128	00.17	00 N	04 D	05.1	132	07 11	00.00	00 F	100 5	101.342	100.37	131	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
		186	175	169	170	171	172	166	166	168	168	165	167	173	176	161	
		153	143	138	134	136	135	135	136	139	140	140		139	159	141	
		140	136	129	118	116]

Self-Consistent Covalent Radii

- The Pyykkö Self-Consistent Covalent radii have been derived from a large number of experimental and computational data
- Similar to ionic radii, the covalent radii can be used for example:
 - To check whether a new crystal structure shows covalent bonding
 - To check whether an bond that is expected to be covalent has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The C-C distance in diamond is 154 pm, this compares well with the sum of the single-bond covalent radii 75 + 75 = 150 pm
- The availability of double and triple bond radii makes the data set useful for interpreting new crystal structures
- Original papers:
 - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 186.
 - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 12770.
 - P. Pyykkö, S. Riedel, M. Patzschke, *Chem. Eur. J.* **2005**, *11*, 3511.
- Another (experimental) set of radii: Alvarez et al. Dalton Trans., 2008, 2832.

van der Waals radii

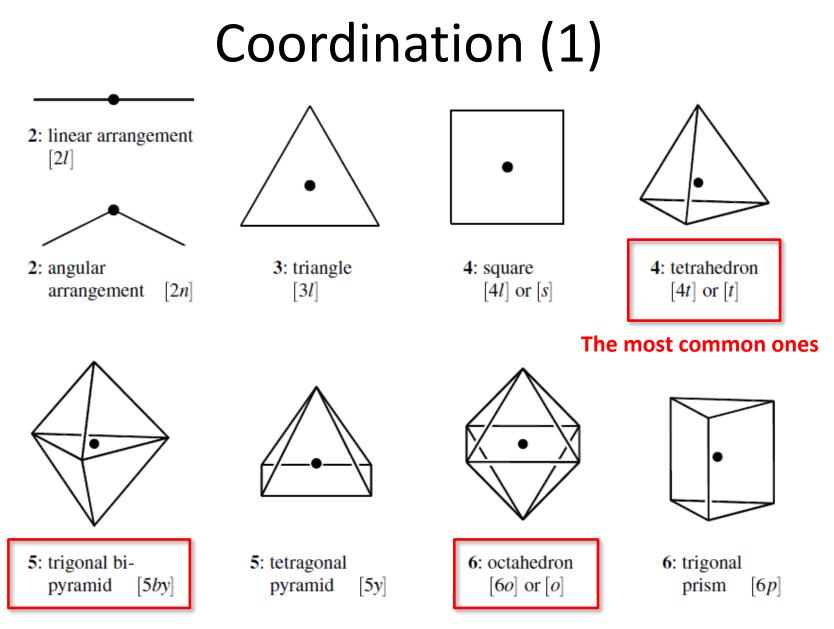
- Significantly larger than covalent radii
- Can be used to check for weak interactions / contacts in a crystal structure
- The dataset of A. Bondi (J. Phys. Chem. 1964, 68, 441) was a major milestone
- Historically vdW radii have been rather difficult to determine for *d*-/*f*-metals
- The values below are a combination of experimental and quantum chemical values

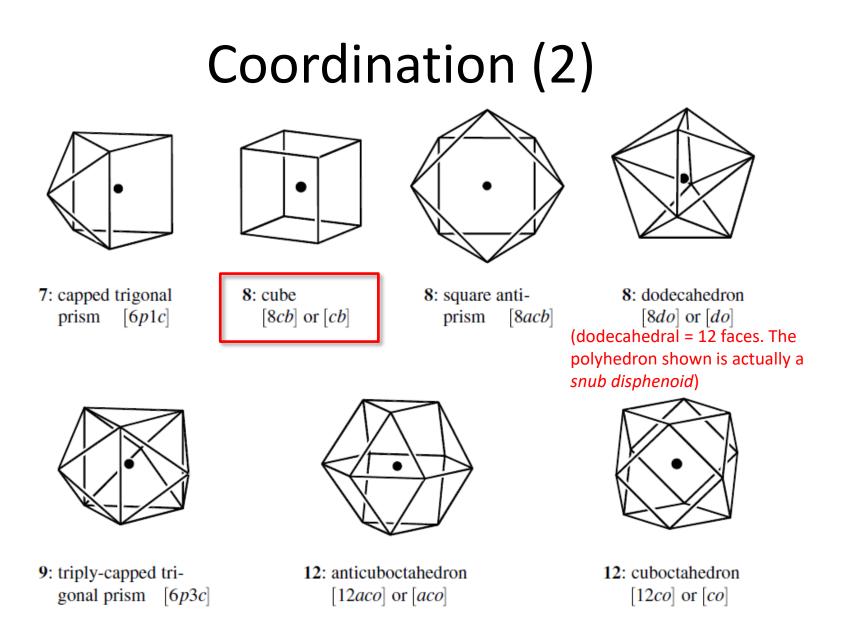
TABLE 12: Consistent van der Waals Radii for AllMain-Group Elements^a

	-						
1	2	13	14	15	16	17	18
Н							He
1.10							1.40
Li	Be	В	С	Ν	0	F	Ne
1.81	1.53	1.92	1.70	1.55	1.52	1.47	1.54
Na	Mg	Al	Si	Р	S	Cl	Ar
2.27	1.73	1.84	2.10	1.80	1.80	1.75	1.88
Κ	Ca	Ga	Ge	As	Se	Br	Kr
2.75	2.31	1.87	2.11	1.85	1.90	1.83	2.02
Rb	Sr	In	Sn	Sb	Te	Ι	Xe
3.03	2.49	1.93	2.17	2.06	2.06	1.98	2.16
Cs	Ba	T 1	Pb	Bi	Ро	At	Rn
3.43	2.68	1.96	2.02	2.07	1.97	2.02	2.20
Fr	Ra						
3.48	2.83						

Ref: Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806

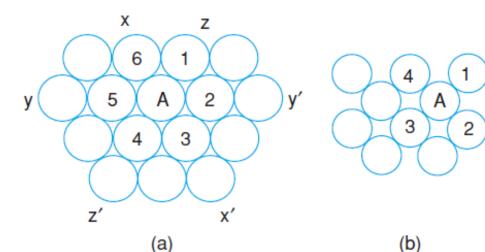
Alvarez van der Waals radii


- S. Alvarez, A cartography of the van der Waals territories, *Dalton Trans.* **2013**, *42*, 8617 (<u>link</u>).
- The most recent and the most comprehensive set of vdW radii
- Analysis of more than five million interatomic "non-bonded" distances in the Cambridge Structural Database
- Proposal of a consistent set of vdW radii for most naturally occurring elements
- Paper available in MyCourses (Materials -> Scientific papers)
- See r_{vdW} values in Table 1. Bondi values are given for comparison:


Z	Е	Bondi	Batsanov	$r_{\rm vdW}$	$ ho_{ m vdW}$ (%)	Data
1	Н	1.20		1.20	66	9888
2	He	1.40		[1.43]		12
3	Li	1.81	2.2	2.12	76	11 067
4	Ве		1.9	1.98	90	3515
5	В		1.8	1.91	70	152 194
6	С	1.70	1.7	1.77	82	385 475
7	Ν	1.55	1.6	1.66	52	187 967
8	Ο	1.52	1.55	1.50	73	420 207
9	F	1.47	1.5	1.46	66	497 497
10	Ne	1.54		[1.58]		12

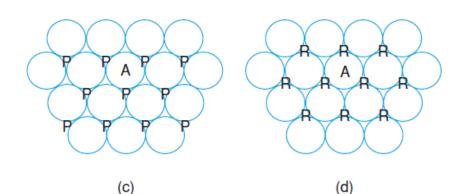
Descriptive structural chemistry and structure types

Descriptive structural chemistry and structure types

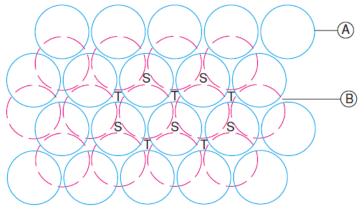

- We have already discussed the structure of crystalline materials from the perspective of the unit cell and lattice parameters (Lecture 1)
- The nature of the chemical bonding affects how a certain structure is described
 - For example, structures with metal cations can typically be described using coordination polyhedra
 - This also works the other way around: the local structure of a solid can immediately suggest a certain type of chemical bonding
- Typical concepts used in descriptive structural chemistry
 - Coordination
 - Linked (coordination) polyhedra
 - Close-packed structures (possibly with interstitial sites)
- Whenever possible, solid state structures are assigned to some structure type
 - Some examples of structure types: rock salt, zinc blende, wurtzite, ...
 - Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>

Close Packing (1)

- Many metallic, ionic, covalent, and molecular crystal structures can be described using the concept of **close packing** (*cp*)
- The structures are usually arranged to have the maximum density and can be understood by considering the most efficient way of packing **equal-sized spheres**
- The most efficient way to pack spheres in *two* dimensions is shown below
- Each sphere, *e.g.* **A**, is in contact with six others -> six **nearest neighbours** and the **coordination number**, **CN** = 6 (the largest possible for a planar arrangement)
- MyCourses -> Materials -> Data files for lectures -> Lecture 3 -> Close-packing

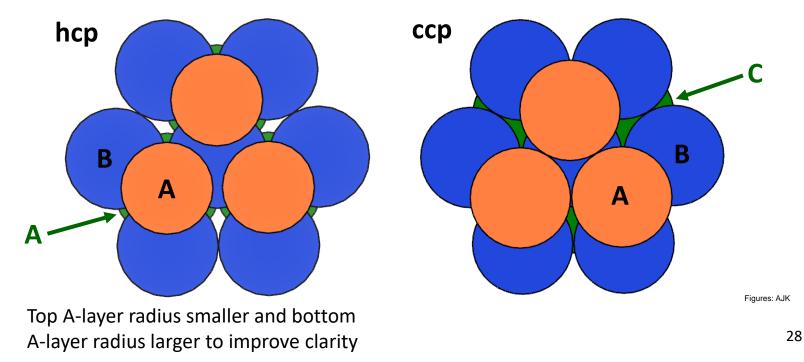

(a) a *cp* layer of equal-sized spheres;(b) a non-*cp* layer with coordination number 4;

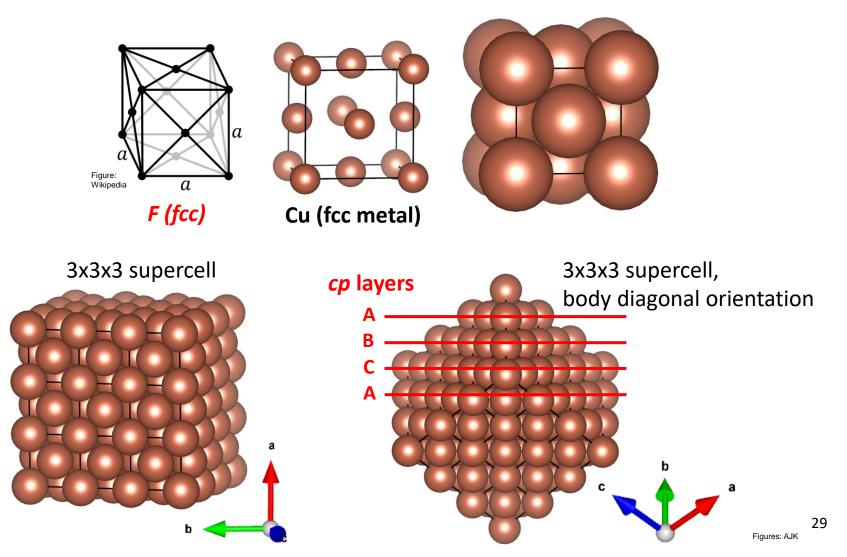
Within a *cp* layer, three close packed directions xx', yy', and zz' occur


Ref: West p. 19

Close Packing (2)

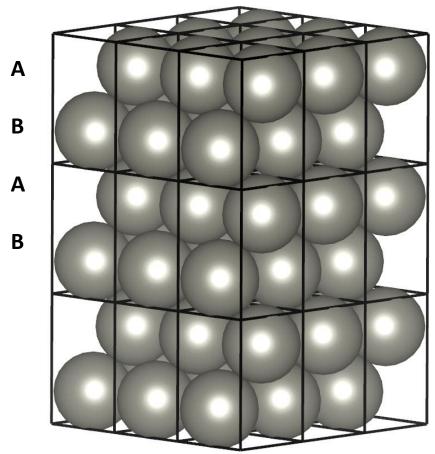
- The most efficient way to pack spheres in *three* dimensions is to stack *cp* layers on top of each other
- There are two simple ways to do this, resulting in **hexagonal close packed** and **cubic close packed** structures
- The most efficient way for two *cp* layers A and B to be in contact is for each sphere of one layer to rest in a hollow between three spheres in the other layer (**P** or **R**)
- Addition of a third *cp* layer can also be done in two ways:
 - Hexagonal close packing (*hcp*): Third layer at **S**, layer sequence ...ABABAB...
 - Cubic close packing (*ccp*): Third layer at **T**, layer sequence ...ABCABC...

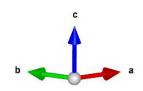

(c, d) alternative positions **P** and **R** for a second *cp* layer Ref: West p. 20


Two cp layers A and B. The B layer occupies the **P** positions

Close Packing (3)

- The simplest layer stacking sequences *hcp* and *ccp* are the most important ones
- More complex sequences with larger repeat units, e.g. ABCACB or ABAC can occur and some of these give rise to the phenomenon of **polytypism**.
- Each sphere is in contact with **12** others (figure: middle atom of the B-layer)
- **74.05%** of the total volume is occupied by spheres (maximum density possible in structures constructed of spheres of only one size)




ccp arrangement corresponds to face-centered cubic lattice

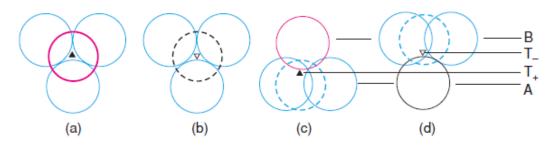
hcp

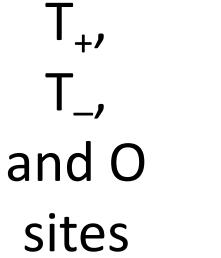
- *hcp* structure of Zn metal (space group $P6_3/mmc$)
 - The structure is slightly distorted, with 6 neighbors at 2.66 Å and 6 at 2.91 Å

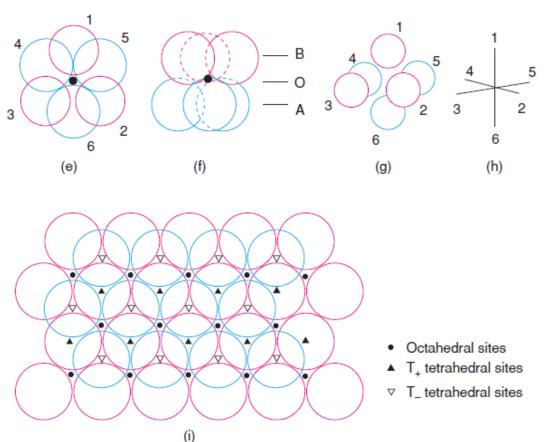
Structures of common metals

- Most metals crystallize in one of the three arrangements: *ccp* (*fcc*), *hcp*, or *bcc*
 - bcc is not a close-packed structure!
- It is still not well understood why particular metals prefer one structure type to another
- Quantum chemical calculations reveal that the lattice energies of *hcp* and *ccp* metal structures are comparable
- Therefore, the structure observed in a particular case probably depends on fine details of the bonding and the band structure of the metal

C	сср		hcp		Ł	DCC
Metal	a/Å	Metal	a/Å	c/Å	Metal	a/Å
Cu	3.6147	Be	2.2856	3.5842	Fe	2.8664
Ag	4.0857	Mg	3.2094	5.2105	Cr	2.8846
Au	4.0783	Zn	2.6649	4.9468	Mo	3.1469
Al	4.0495	Cd	2.9788	5.6167	W	3.1650
Ni	3.5240	Ti	2.9506	4.6788	Та	3.3026
Pb	4.9502	Zr	3.2312	5.1477	Ba	5.019


Table 1.3Structures and unit cell dimensions of some common metals


Periodic table of crystal structures


					•		•		5		٩						
1						\	$\langle \rangle$			\succ	\mathbb{N}						2
н							╸╽┡		7 IV	\mathbf{X}^{-}							He
HEX		Lege	end:				a			$\wedge \times$						1	HCP
3	4								a 🆣		a	5	6	7	8	9	10
Li	Be	/.	. = mixed	l structı	ire " 🚩						В	С	N	0	F	Ne	
BCC	HCP				c	а									SC	FCC	
11	12	[]	= predict	ed		0		(heal		- /6	•	13	14	15	16	17	18
Na	Mg	stru	cture			Ρ		(bcc)		F (fcc)		AI	Si	P	S	CI	Ar
BCC	HCP											FCC	DC	ORTH	ORTH	ORTH	FCC
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
BCC	FCC	HCP	HCP	BCC	BCC	BCC	BCC	HCP	FCC	FCC	HCP	ORTH	DC	RHO	HEX	ORTH	FCC
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
BCC	FCC	HCP	HCP	BCC	BCC	HCP	HCP	FCC	FCC	FCC	HCP	TETR	TETR	RHO	HEX	ORTH	FCC
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
BCC	BCC	DHCP	HCP	BCC/TETR	BCC	HCP	HCP	FCC	FCC	FCC	RHO	HCP	FCC	RHO	SC/RHO	[FCC]	FCC
87	88	89**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
[BCC]	BCC	FCC	[HCP]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]	[BCC]	[BCC]	[HCP]						[FCC]
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		*		Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			DHCP/FCC	DHCP	DHCP	DHCP	RHO	BCC	HCP	HCP	HCP	HCP	HCP	HCP	FCC	HCP	
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		**	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			FCC	TETR	ORTH	ORTH	MON	DHCP	DHCP	DHCP	DHCP	FCC	[FCC]	[FCC]	[FCC]	[HCP]	

Close packing in ionic structures

- When the anion is larger than the cation, the structures often contain *cp* layers of anions and the cations occupy interstitial sites
 - For example: NaCl, Al_2O_3 , Na_2O , and ZnO.
- In such structures there are several variables:
 - Anion stacking sequence (*hcp* or *ccp*)
 - Number and type of interstitial sites occupied by cations.
 - **Tetrahedral** and **octahedral** interstitial sites are present in *cp* structures
- Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>

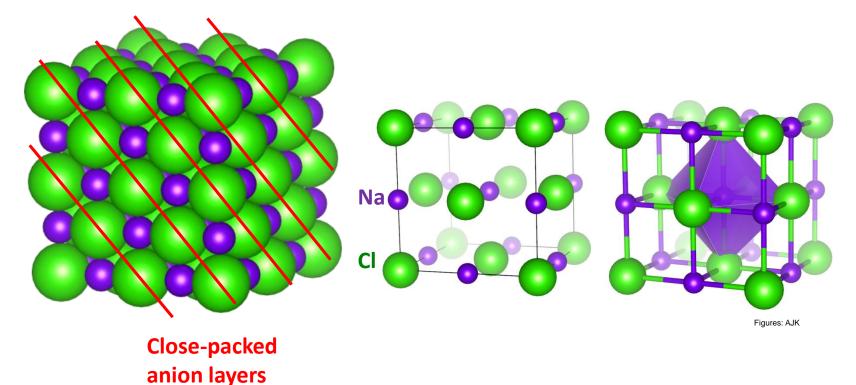
Figure 1.23 Tetrahedral and octahedral sites between two cp anion layers, seen from different perspectives. (a, b) Projection down threefold axis of T_+ , T_- sites. (c, d) Tetrahedral sites edge-on. (e) Projection down threefold axis of octahedral site and (f) seen edge-on. (g, h) Conventional representation of octahedral site. (i) Distribution of T_+ , T_- , O sites between two cp layers.

Ref: West p. 27

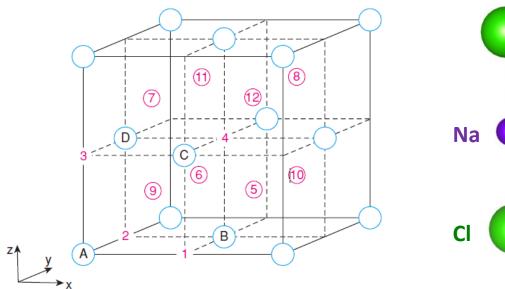
Examples of interstitial sites

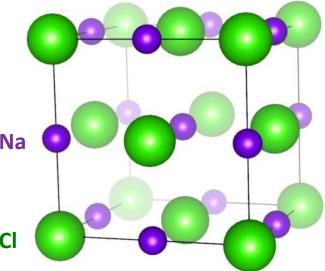
- It is rare that all the interstitial sites in a *cp* structure are occupied
- Often one set is full or partly occupied and the remaining sets are empty

Interstitial sites Examples Anion arrangement T_{+} Τ_ Ο NaCl, rock salt сср 1 ZnS, blende or sphalerite 1 $MgAl_2O_4$, spinel 1/81/81/2CdCl₂ 1/2CrCl₃ 1/3K₂O, antifluorite 1 hcp 1 NiAs ZnS, wurtzite 1 1/2Cdl₂ TiO₂, rutile^a 1/2 Al_2O_3 , corundum 2/3 Mg_2SiO_4 , olivine 1/81/81/2 $BaTiO_3$, perovskite ccp 'BaO₃' layers 1/4


Table 1.4Some close packed structures

Ref: West p. 28


^aThe hcp oxide layers in rutile are not planar but are buckled; the oxide arrangement may alternatively be described as tetragonal packed, tp.


Octahedral interstitials in NaCl structure

- Close-packed layers of Cl⁻ anions
- Na⁺ cations in the octahedral interstitials
- https://wiki.aalto.fi/pages/viewpage.action?pageId=165132721

Cation sites in an fcc anion array

Figure 1.24 Available cation sites, 1–12, in an fcc anion array.

The various cation positions in Fig. 1.24 have the following coordinates:

octahedral	$1: \frac{1}{2}00$	$2:0^{1}/_{2}0$	$3:00^{1}/_{2}$	4: 1/2 1/2 1/2
tetrahedral, T ₊	5: ³ / ₄ ¹ / ₄ ¹ / ₄	6: ¹ / ₄ ³ / ₄ ¹ / ₄	7: ¹ / ₄ ¹ / ₄ ³ / ₄	8: ³ / ₄ ³ / ₄ ³ / ₄
tetrahedral, T_	9: 1/4 1/4 1/4	10: ³ / ₄ ³ / ₄ ¹ / ₄	11: ¹ / ₄ ³ / ₄ ³ / ₄	12: ³ / ₄ ¹ / ₄ ³ / ₄