

VESTA installation and basic use

Solid State Chemistry CHEM-E4155, Antti Karttunen, Aalto University, 2021

Installation of VESTA

- VESTA is a very versatile program for the visualization of crystal structures
- It runs on Windows, macOS, and Linux
- Let's first "install" VESTA on your computer (instructions for Windows 10)
- 1. MyCourses -> Solid State Chemistry -> Software -> VESTA
- 2. Download the **zip file** (macOS and Linux users: download from <u>VESTA website</u>)
- 3. Save the zip file anywhere you like (even Desktop is fine, that's easy to find)
- 4. Extract the zip file (for example by right-clicking and choosing Extract All...)
 - You will get a folder **VESTA-x.y.z-win64**, where x.y.z is the version
- 5. VESTA is now "installed"
- 6. Go to the VESTA folder and double-click **VESTA.exe** to start VESTA

Structures discussed on the lectures can be found in VESTA format from MyCourses -> Materials -> Data files for lectures

Using VESTA

- Short instructions for the basic use of VESTA now follow
- We focus on visualization, but VESTA also includes many crystallographic tools
- File -> New structure can be used to build structures from scratch
 - Convenient if a journal paper lists unit cell data, but the structure is not available in a structural database
- We will mainly work with CIF files downloaded from structural databases
- Let's use RbCl from Maija Ahtee (1969) as an example crystal structure (*Fm*-3*m*)
- Download the file **rbcl.cif** from <u>http://www.iki.fi/ankarttu/ssc/rbcl.cif</u>
- If for some reason the link above fails, the structure can be retrieved from <u>COD</u> with COD ID 9009736

Citation for using VESTA: "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data" K. Momma, F. Izumi *J. Appl. Crystallogr.* **2011**, *44*, 1272-1276. VESTA web page: <u>http://jp-minerals.org/vesta/en/</u>

Opening a CIF file in VESTA

- Open the file **rbcl.cif** in VESTA
 - File -> Open
 - Or drag & drop the file to VESTA
- The structure should first look something like this:
- VESTA draws the bonds automatically

- If necessary, the automatic bond search can be turned off from Edit -> Preferences -> Bond search
- Try moving the structure:
 - Hold left mouse button to *rotate*
 - Use mouse wheel to zoom
 - Enter "t" to *translate* with the left mouse button ("r" returns to "rotate")
 - Shift + left button selects atoms or bonds

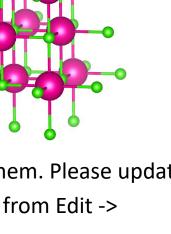


Figure: AJK

Changing properties

Several important settings are under "Properties...":

Tools Style Objects	Properties - RbCl_COD_9009736.cif	Properties - RbCl_COD_9009736.cif
Structural models Show models Show dot surface Style Style	General Atoms Bonds Polyhedra Isosurfaces Sections Unit cell Line Do not show Solid lines Unit Cell edges	General Atoms Bonds Polyhedra Isosurfaces Sections Material Specular: 204 204 Shininess (%): 20
 Ball-and-stick Space-filling 	Sold lines Sold lines Sold lines Line width: 1 All unit cells Dashed lines	Resolution Stacks: 24
 Polyhedral Wireframe Stick 		Slices: 24 Show as displacement ellipsoids Probability (%): 50
Volumetric data Show sections Show isosurfaces Surface coloring Style Smooth shading Wireframe Dot surface	Axes Show compass Show axis labels Material Specular: 255 255 255 Shininess (%): 100 Shapes Shapes Shapes Shapes Show edges Line width: 1.0	Show principal ellipses Outline width: 2.0 Scale isotropic atoms by Uiso Fine-tuning atoms Radius and color Rb Radius: 2.5
Crystal shapes Show shapes Style © Unicolor Custom color Wireframe		Color: 255 💭 0 💭 153 💭 🔲 Label Mark enantiomorphic sites Type: Names of sites 💌 Offset along z direction (Å): 1
Properties Boundary	Preview OK Cancel Save as Default	Preview OK Cancel Save as Default

Changing bonds

- Change Radii type in Properties -> Atoms to "Ionic"
- Close Properties dialog with OK and go to Edit -> Bonds... (Ctrl + B)
- Choose Rb-Cl "bonds" from the list, change Boundary mode to "Do not search atoms beyond the boundary", and click "Apply"
- The structure should look like below
- The Bonds dialog is very important for the final appearance of the structure
- Here we chose to show only one crystallographic unit cell (face-centered cubic)

	ds and atoms										
-Search m	ode		Boundary mode								
Search	A2 bonded to	A1 (O not search atoms beyond the boundary								
Search	atoms bonde	d to A1	\bigcirc Search additional atoms if A1 is included in the boundary								
Search	molecules	(🖱 Search a	dditional aton	ns recursiv	ely if eith	er A1 or A2	is visible			
Search	by label	Show p	olyhedra								
A1: Rb	•	A2: CI	•	Min. length	0	Ma	x. length:	3.86664			
No. Ato	m 1 2	Atom 2	Min. (Å) Max.	(Å) E	Bound.	Poly.	New			
1 Rb	C	1	0	3.86	664 1			Delete			

Polyhedral style

- The Bonds dialog also determines how coordination polyhedra are drawn
- Choose the "Search additional atoms if A1..." Boundary mode in the **Bonds** dialog
- Change Style from the main window to Polyhedral
 - The resulting figure should look like below:
- Octahedral coordination polyhedra around Rb (Cl in the corners of the octahedra)

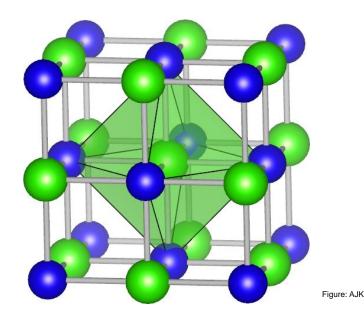
	1 CIRb					•			
	n bonds and atoms ch mode	Boundary	mada				190		
	earch A2 bonded to A1	The second	search atoms beyo						
	earch atoms bonded to		additional atoms if						
O SE	earch molecules	O Search a	additional atoms re	ecursively if e	ither AL of AZ	IS VISIDIE			
S S	earch by label	Show polyhedra						+	
A1: [F	Rb 🔻 A2	: CI 🔹	Min. length: 0		Max. length:	3.5			
o.	Atom 1 Ato	n 2 Min.	(Å) Max. (Å)) Bound.	Poly.	New		~ /	
	Rb Cl	0	3.5	2		Delete			
						Clear			
						Clear			

Set central atom for polyhedra

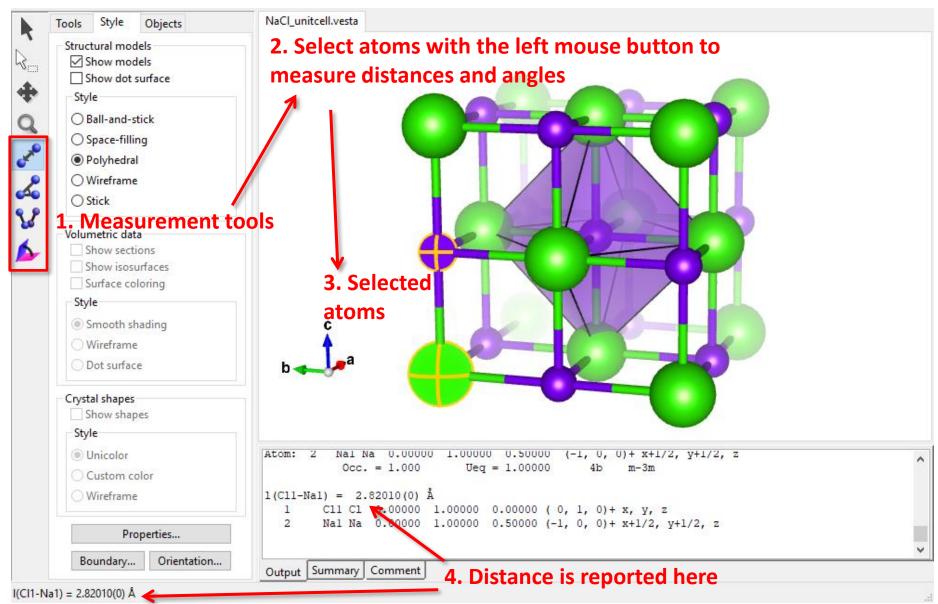
- The order of the atoms in the Bonds dialog determines the central atom in the polyhedron.
- Delete the automatically determined Rb-Cl bond and make a new bond with A1 = Cl; A2 = Rb
- Change the Boundary mode to "Do not search atoms...". The result should look like the following:

	h bonds and ato	ms								
Sea	rch mode		Boundary	/ mode						
Search atoms bonded to A1			O not	 Do not search atoms beyond the boundary Search additional atoms if A1 is included in the boundary 						
			Search							
			Search	additional ato						
	Search by label	Show	v polyhedra							
					h. 0	Mari	longths 2.5	_		
A1:	CI 🔻	A2: Rb	•	Min. lengt	n: U	iviax.	length: 3.5			
No.	Atom 1	Atom 2	Min.	(Å) Max.	(Å) E	ound.	Poly.	Vew		
	C1	Rb	0	3.5				-lata		
								elete		
								lear		

Figures: AJK


Supercells and space-filling style

- If you want to show more than just one unit cell, click "Boundary" and enter the dimensions of the *supercell*
- Below, a 2x2x2 supercell of RbCl is drawn with a **space-filling** style
 - The color of Rb atoms has been changed to blue from Properties -> Atoms

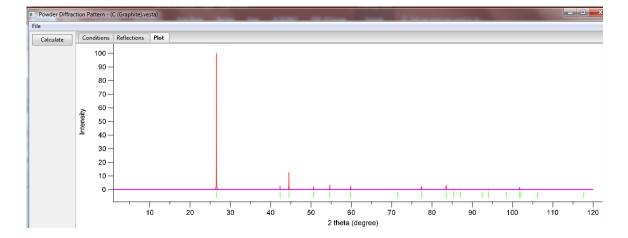

rame	Boundary - RbCl_COD_	9009736.ve	sta		23		
()	Phase: 1 🐥 CI Rb				•		
ric data	Ranges of fractional	oordinates					
sections	x(min) =	0	x(max) =	2			
sosurfaces							
e coloring	y(min) =	-	y(max) =				
th shading	z(min) =	0	z(max) =	: 2			
frame	Cutoff planes						
surface		n H					
Sundee	Miller indices (h		0	0			
hapes	Distance from orig	Contraction of the Contraction o	Å (1	x d)			
w shapes		Appl	y symmetry oper	ations			A
	ń	Calcu	late the best plan	e for the s	elected atoms		
olor	No. h	k	1	d	New		
tom color					Delete		
efran e					Delete		
		n,		•	Clear		
Properties							

Fine-tuning the appearance

- VESTA offers a vast number of options for tuning the appearance of the structures
- Go through the various options in the Properties dialog and try to make the structure look as close to the figure below as possible
 - Blue = Rb, green = Cl
 - Black polyhedral edges, more transparent polyhedron
 - Unicolor bond style

Measurements with VESTA

Advanced VESTA topics (starting from Lecture 7)


Lattice planes with VESTA

- Edit -> Lattice planes -> New -> Choose the Miller index and distance from origin)
- Usually "Distance from origin" = (1 x d) is the best starting point for visualization
- If you want to orient the crystal exactly, use Objects -> Orientation

Lattice Planes - NaCL_planes.vesta	NaCl (Fm-3m), lattice plane (001)
Material Specular: 255 x 255 x 255 x Shininess (%): 100 x Edges Show edges Line width: 1.0 Add lattice planes	
Miller indices (hkl): 1 0 0 Distance from origin: 5.6402 Å (1 × d) Color (RGBA): 255 💌 0 👻 255 👻 192 👻	
No. h k 1 d New 1 1 1 0 0 5 Delete Clear V Preview OK Cancel b	
a der c	

XRD powder patterns with VESTA

- VESTA has built-in tools for XRD powder pattern simulation
- Go to Edit -> Preferences and make sure that the RIETAN text box is empty
- Open a CIF file
- Go to Utilities -> Powder Diffraction Pattern
- Open Conditions tab and set only one wavelength (here Cu-Kα)
- Click Calculate to simulate the pattern (see Plot)
- Reflections tab shows a peak listing
- You can also simulate mixtures by adding phases from Edit -> Edit Data -> Phase

Preferences		×
Settings for RIET	AN	
RIETAN:		Browse
VIEWER:		Browse
Template (*.ins):	C:\Programs\VESTA-WIN64_340\template.ins	Browse

File

owder Diffrac	tion Pattern - (C (Grap	nite).ves	sta)				
Calculate	Conditions Reflect	tions	Plot				
	Source No. of fÉ: 1						
	Wave length <i>f</i> É (A): Relative intensity:	1.5405 1	9				
		·		J			