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Introduction

• The spins interact with their surroundings.
• The effect can be modeled by the phenomenological Bloch 

equation.
• Formulated in terms of the average magnetic dipole moment 

density M.
• The relaxation decay times are T1, T2, T2’, and T2*.
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Magnetization Vector

• Material consists of a huge number of protons.
• Magnetization is the sum of the individual magnetic 

moments per volume:

• The set of same-phase spins in voxel V is called a spin 
‘isochromat’

• If we neglect interactions of spins, we have
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Magnetization Vector

• Assume that the field is static in z-direction: 
• Longitudal and transverse components of magnetization are 

then:

• The differential equations for them are:

• The components ‘relax’ differently due to spin interactions
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Spin-Lattice Interaction and Regrowth 
Solution: T1

• The equilibrium value of magnetization M = M0 z.
• M(t) approaches the equilibrium value due to spin-lattice 

interactions.
• The differential equation for the longitudal z-component is

• T1 is the experimental ‘spin-lattice relaxation time’
• The solution to the differential equation is

• Typical T1s are given on the right:
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Problem 1
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Spin-Spin Interaction and Transverse 
Decay: T2

• Due to spin-spin interactions, the individual spins ’fan out’ 
or ’dephase’.

• The transverse relaxation is modeled by differential equation

• Here T2 is the ‘spin-spin’ relaxation time.
• In rotating frame of reference this is

• In practice, T1 > T2
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Illustration of T1 and T2
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Introduction of T2’ and T2*

• Define the relaxation rates by R1 = 1/T1 and R2 = 1/T2

• Additional dephasing results from magnetic field 
inhomogeneities which introduces rate R2’ = 1/T2’

• The total relaxation rate due to external relaxation

• In terms of relaxation times (R2* = 1/T2*)

• Loss of transverse magnetization due to T2’ is recoverable.
• The intrinsic T2 losses are not recoverable
• Related to “echoes” – we come back to this in later chapters
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Bloch Equation and Static-Field 
Solutions
• The Bloch equation:

• Then the component-wise equations are when 

• The solutions are
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Problem 2
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Problem (cont.)
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Complex representation of transverse 
magnetization
• We can also denote

• The solution in static field case

• Alternatively we can write
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The Combination of Static and RF 
Fields
• Let us add left-circularly polarized rf field B1:

• The effective field in that frame is

• The Bloch equations in rotating frame:
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Short-Lived and Long-Lived RF Pulses

• For short RF pulses, we can ignore relaxations
• Thus we get the flip equation as before

• After the short pulse we can use the Bloch equations with
the T1 and T2 relaxations

• For long pulses, the system saturates and is described with 
steady-state solutions
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