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Introduction

« The spins interact with their surroundings.

« The effect can be modeled by the phenomenological Bloch
equation.

 Formulated in terms of the average magnetic dipole moment
density M.

« The relaxation decay times are T1, T2, T2’, and T2*.
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Magnetization Vector

« Material consists of a huge number of protons.

« Magnetization is the sum of the individual magnetic

moments per volume:

L1 .
M:V Z i

2= protons in V

 The set of same-phase spins in voxel V is called a spin
‘isochromat’

- |f we neglect interactions of spins, we have

| —diti Y —~=- _ g
V2 g T v 2 X Bt

dM -
= YM X Beyy (non-interacting protons)
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Magnetization Vector

« Assume that the field is static in z-direction: 5 _, — ;.

« Longitudal and transverse components of magnetization are
then: M = M,

M, = M,& + M,j
* The differential equations for them are:

dM, : .
7 =0 (non-interacting protons)
dM . -
dtL =YM| X Bey (non-interacting protons)

The components ‘relax’ differently due to spin interactions
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Spin-Lattice Interaction and Regrowth
Solution: T,

« The equilibrium value of magnetization M = M, z.

« M(t) approaches the equilibrium value due to spin-lattice
interactions.

* The differential equation for the longitudal z-component is
e = (Mo = L) (Bua 9
« T, is the experimental ‘spin-lattice relaxation time’

 The solution to the differential equation is

B _ | Tissue | Ty (ms) | 15 (ms) |
M, (t) = M.(0)e Yy Mo(1 —e t/Tl) gray matter (GM) 950 100
. . . . white matter (WM) 600 80
- Typical 7,s are given on the right: S o0 | 50
cerebrospinal fluid (CSF) | 4500 2200
fat 250 60
blood? 1200 | 100-200*
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Problem 1

Problem 4.1

The key equation (4.12) can be used to investigate general questions. If unmagne-
tized material is placed in a region with a finite static field at ¢t =0 (M,(0) = 0):

Find the time it takes, in units of 77, for the longitudinal magnetization to
reach 85% of M.

M.(t) = M. (0)e /T 4 My(1 — e t/™) (Beat || 2) (4.12)
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Spin-Spin Interaction and Transverse
Decay: T,

* Due to spin-spin interactions, the individual spins ’fan out’
or 'dephase’.
 The transverse relaxation is modeled by differential equation
dM, - o 1 -
p =YM | X Beyt — EML Az
 Here T, is the ‘spin-spin’ relaxation time.

* In rotating frame of reference this is

(dZL) = —T%ML (rotating frame) ;
with the solution
M, (t) = M, (0)e "/ (rotating frame) >
* In practice, T, > T, X &
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lllustration of T, and T,

M,

M, ()

M,(0)

*~slope = (M,-M,(0))/T,

|

di :ﬁ(

T, 2T, 3T,
time

1
MO - Mz)

M, (t) = M.(0)e YT  Mo(1 — e7¥/11)

M,(0)

M, (V)
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Introduction of T,” and T,*

* Define the relaxation rates by R, = 1/T,and R, = 1/T,

- Additional dephasing results from magnetic field
inhomogeneities which introduces rate R, = 1/7,’

 The total relaxation rate due to external relaxation
Ry = Ry + R,

* In terms of relaxation times (R," = 1/T,%)
11 1

— = — 4+ —
T T, T
« Loss of transverse magnetization due to T, is recoverable.
 The intrinsic T, losses are not recoverable

 Related to “echoes” — we come back to this in later chapters

Aalto University Laitoksen nimi
School of Electrical 2/11/19

Engineering 10



Bloch Eguation and Static-Field
Solutions

 The Bloch equation:

dM Lo 1 1 -
Y, — X Bex p— - z 2 — —
- M s (Mo — M)z 7 M

« Then the component-wise equations are when B.,, = B,:.
dM, My — M,

dt Ty
dM., M,
— woM, — ==
dt WMy T
dM, M
— M, — 2
wo T2

* The solutions are
M,(t) = e /T (M,(0) coswot 4+ M,(0) sin wt)
M,(t) = e T2 (M,(0)coswot — M,(0) sin wt)
M,(t) = M, (0)e /T + My(1 — e /1)
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Problem 2

A direct derivation of the steady-state solution, when it exists, of a system of
differential equations can often be found by the following procedure. Assuming
that the system evolves to constant value for large times, all time derivatives can be
set to zero. The problem reduces to a system that can often be solved analytically.
Show that the steady-state solution of the Bloch equations (4.37)—(4.39) is

AWTQ
- = My i) w17s,
1
Mg‘j/s = M()Bwng,
14+ (AWT2)2
M58 - MO D Y
where
D =14 (AwTy)? + wiT|Ty.
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Problem (cont.)

dM. ' My — M,
= —w M, 4.37
( dt ) Wiy + 5 (4.37)
dM,\' M,
( ) = Aw M, — (4.38)
dt !
dM,\' M,
= —Aw M, M, — -2 4.39
( dt ) w T + W1V, T2 ( )
with
Aw = wy —w (4.40)
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Complex representation of transverse
magnetization

« We can also denote

Mo (t) = M,(t) +iM,(t)
 The solution in static field case

M (t) = e ™0 (0)
« Alternatively we can write

M (t) = |M+(t)‘€i¢(t) - Mi@)@i(b(t)

My (t) = e 20 (0)

¢(t) = —wot + ¢(0)
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The Combination of Static and RF
Fields

« Let us add left-circularly polarized rf field B1:
Bewt = Bo? + B,/
* The effective field in that frame is
Bujs = (Bo— 2)s + By’
 The Bloch equations in rotatigg frame:

dM,\' My — M,
( dt ) = —W1My/ + 77_‘1
dM,\' M,
e I\ L
( dt ) w My =
M\’ M,
( di ) = —Aw Mm/ "‘(Ule — TQ
w1 = ’)/Bl

Aw=wy—w
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Short-Lived and Long-Lived RF Pulses

 For short RF pulses, we can ignore relaxations
» Thus we get the flip equation as before

« After the short pulse we can use the Bloch equations with
the T, and T, relaxations

 Forlong pulses, the system saturates and is described with
steady-state solutions
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