MS-C1620 Statistical inference

5 Distribution tests

Jukka Kohonen

Department of Mathematics and Systems Analysis School of Science Aalto University

> Academic year 2020–2021 Period III–IV

Contents

Testing distributional assumptions

Normality tests

- In statistics, assumptions on the underlying distribution are done all the time.
- Many statistical methods become ineffective or even give false results if their assumptions do not hold.
- This is why it is very important to test the distributional assumptions separately.
- Assumptions on normally distributed observations are made particularly often, especially with classical statistical methods.

Contents

Testing distributional assumptions



Normality testing, assumptions

Assume that $x_1, x_2, ..., x_n$ are i.i.d. observed values of a random variable x.

Normality testing, hypotheses

 H_0 : Random variable x is normally distributed.

 H_1 : Random variable x is not normally distributed.

Bowman-Shenton normality test

Bowman-Shenton normality test, test statistic

 The Bowman-Shenton (Jarque-Bera) normality test is a function of skewness and kurtosis,

$$\mathsf{BS}=n(\frac{\hat{\gamma}^2}{6}+\frac{\hat{\kappa}^2}{24}),$$

where $\hat{\gamma}$ is the sample skewness coefficient and $\hat{\kappa}$ is the sample kurtosis coefficient discussed in lecture 1.

- The test tests whether the skewness and kurtosis of the data-generating distribution match with the normal distribution.
- If the observed skewness or kurtosis values differ significantly from the skewness and/or kurtosis values of the normal distribution (0 and 0), the test statistic gets large values.

Bowman-Shenton normality test

Bowman-Shenton normality test, test statistic

- If *n* is large, then under H_0 the test statistic *BS* follows approximately χ_2^2 distribution.
- The expected value of the test statistic under *H*₀ is approximately 2 and **large values** of the test statistic suggests that the null hypothesis *H*₀ is false.

Note that the Bowman-Shenton test is suitable only for large sample sizes.

Rank plot / Quantile-quantile (Q-Q) plot

- Let y₁ ≤ y₂ ≤ · · · ≤ y_n be the data points x₁, x₂, . . . , x_n ordered from the smallest one to the largest one.
- Let q_i be the i/(n+1) quantile from the standard normal distribution $\mathcal{N}(0,1)$ and plot the pairs $(q_i, y_i), i = 1, 2, ..., n$.
- If the observations x_i do come from a normal distribution, then the points (q_i, y_i) should approximately lie on a line.
- If the points do not lie on a line, there is evidence of non-normality.
- The plot can be used in detecting skewness of a distribution and in finding outliers.

Shapiro-Wilk normality test

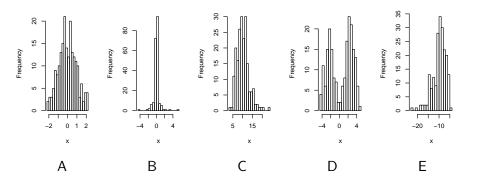
Shapiro-Wilk normality test, test statistic

- The Shapiro-Wilk normality test statistic is the squared value of the Pearson sample correlation coefficient calculated from the rank plot points $(q_i, y_i), i = 1, 2, ..., n$.
- The null distribution of the test statistic is complicated and the test is usually performed with statistical software.
- **Small** values of the test statistic suggest that the assumption of normality does not hold. **Large** values of the test statistic are in line with the null hypothesis.

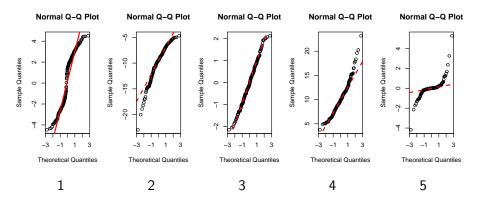
The Shapiro-Wilk normality test requires a large sample size.

Q-Q plot quiz

Which of the following histograms corresponds to each of the Q-Q plots on the next slide? (the answers are given on the next slide after that)



Q-Q plot quiz



Q-Q plot quiz, answers

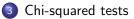
• The correct pairs are (histogram, qqplot):

$$(A, 3); (B, 5); (C, 4); (D, 1); (E, 2).$$

Contents

Testing distributional assumptions

2 Normality tests



Consider a random experiment which has k mutually exclusive outcomes and which is run independently n times.

Let the vector $\mathbf{y} = (y_1, \dots, y_k)$ contain the observed frequencies of the k outcomes.

The distribution of \mathbf{y} is known as the multinomial distribution, the generalization of the binomial distribution into more than two outcomes.

Multinomial distribution

The random vector $\mathbf{y} = (y_1, \dots, y_k)$ follows the multinomial distribution with parameters $n, \mathbf{p} = (p_1, \dots, p_k)$, if its probability mass function is,

$$p(\mathbf{y}) = \frac{n!}{y_1! y_2! \cdots y_k!} p_1^{y_1} p_2^{y_2} \cdots p_k^{y_k},$$

where

$$\sum_{j=1}^k y_j = n$$
 and $\sum_{j=1}^k p_j = 1.$

A useful result in the following is that for a random vector \mathbf{y} following the multinomial distribution with parameters n, \mathbf{p} , the normalized sum,

$$\sum_{j=1}^k \frac{(y_j - np_j)^2}{np_j},$$

where np_j are the expected frequencies of the outcomes follows for large n approximately the $\chi^2_{k-1}\text{-distribution}$

χ^2 goodness-of-fit test

The χ^2 goodness-of-fit test uses the multinomial distribution to tests whether the distribution of a random variable x is some particular, arbitrary distribution.

Goodness-of-fit tests, assumptions

Assume that x_1, x_2, \ldots, x_n are i.i.d. observed values of a random variable x.

Goodness-of-fit tests, hypotheses

 H_0 : Random variable x follows the distribution F_x (with or without unknown parameters).

 H_1 : Random variable x does not follow the distribution F_x .

χ^2 goodness-of-fit test

- Categorize the *n* observations into *k* categories.
- Calculate the frequencies O_1, \ldots, O_k , where O_j is the observed frequency of the *j*th category (note that $\sum_{i=1}^k O_j = n$).
- Let p_j be the probability that, under the null hypothesis, the random variable x belongs gets a value belonging to the *j*th category.
- Calculate the expected frequencies $E_j = np_j$ of the k categories (note that $\sum_{j=1}^{k} p_j = 1$ and $\sum_{j=1}^{k} E_j = n$).

۲

Now, under the null hypothesis, the random vector (O_1, \ldots, O_k) follows the multinomial distribution with the parameters $n, \mathbf{p} = (p_1, \ldots, p_k)$ and the expected category frequencies (E_1, \ldots, E_k)

χ^2 goodness-of-fit test

 χ^2 goodness-of-fit test, test statistic

The test statistic,

$$\chi_g^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i},$$

follows, for large *n*, under H_0 approximately the χ^2_{k-1-e} -distribution, where *e* is the number of estimated parameters (see the salary example below).

- The expected value of the test statistic under H_0 is approximately k 1 e and **large** values of the test statistic suggest that the null hypothesis H_0 does not hold.
- Note that a very small value of the test statistic could be an indicator of *overfitting*.

 χ^2 goodness-of-fit test, example with unknown parameters

- Consider testing whether the monthly salary of the Finns follows a normal distribution.
- Select randomly *n* Finns and document their salaries.
- The null hypothesis is that the observations come from a normal distribution with an unknown expected value and an unknown variance.

 χ^2 goodness-of-fit test, example with unknown parameters

- **(**) Estimate the unknown parameters (μ and σ^2) from the sample.
- ② Discretize the continuous salary variable into k categories.
- Solution Calculate the observed category frequencies O_1, \ldots, O_k .
- Calculate the category probabilities for the estimated normal distribution, for example,

 $\dots, \mathbb{P}(1900 < X \le 2000), \mathbb{P}(2000 < X \le 2100), \dots$

- Solution Calculate the expected category frequencies E_1, \ldots, E_k .
- Calculate the test statistic. Under the null hypothesis the test statistic approximately follows $\chi^2_{k-1-e} = \chi^2_{k-3}$ -distribution, where k is the number of categories and we estimated e = 2 parameters (μ and σ^2).
- Calculate the *p*-value and based on that either reject or do not reject the null hypothesis.

χ^2 homogeneity test

The χ^2 homogeneity test is used to assess whether multiple samples come from the same distribution.

χ^2 homogeneity test, assumptions

We observe a total of r samples such that the samples are independent and the observations within a single sample are i.i.d. Assume that the sample $i \in \{1, ..., r\}$ has n_i observations.

χ^2 homogeneity test, hypotheses

 H_0 : The samples come from the same distribution F_{χ} .

 H_1 : The samples do not come from the same distribution.

 χ^2 homogeneity test, observed frequencies

- Categorize all observations into k categories.
- Calculate the frequencies O_{ij} , $i \in \{1, 2, ..., r\}$, $j \in \{1, 2, ..., k\}$, where O_{ij} is the observed frequency of the observations of the sample *i* in category *j*.

	1	2		k	sum
1	<i>O</i> ₁₁	<i>O</i> ₁₂		O_{1k}	<i>n</i> ₁
2	<i>O</i> ₂₁	<i>O</i> ₂₂		O_{2k}	<i>n</i> 2
:	÷	÷	·	÷	÷
r	<i>O</i> _{<i>r</i>1}	O _{r2}		0 _{rk}	n _r
sum	K_1	<i>K</i> ₂	• • •	K_k	п

 χ^2 homogeneity test, expected frequencies

- Let $p_j = K_j/n$ be an estimate of the proportion of the *j*th category under H_0 (under the null hypothesis the probability of the category *j* is the same for each sample *i*).
- Calculate the expected frequencies under the null, $E_{ij} = n_i p_j$.

	1	2	• • •	k	sum
1	<i>E</i> ₁₁	<i>E</i> ₁₂		E_{1k}	<i>n</i> 1
2	E ₂₁	E ₂₂		E_{2k}	<i>n</i> 2
:	:	÷	·	÷	÷
r	E _{r1}	E _{r2}		E _{rk}	n _r
sum	K_1	K_2	• • •	K_k	n

χ^2 homogeneity test

 χ^2 homogeneity test, test statistic

• The test statistic,

$$\chi_h^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}},$$

follows, for large *n*, under H_0 approximately the $\chi^2_{(r-1)(k-1)}$ distribution.

• Under H_0 the expected value of the test statistic is approximately (r-1)(k-1) and large values of the test statistic suggest that the null hypothesis H_0 is false.

χ^2 test of independence

 χ^2 test of independence is used to study if two random variables (factors) are stochastically independent.

χ^2 -test of independence, assumptions

We observe an i.i.d. random sample of size n and the observations are divided into r classes with respect to a factor A and into k classes with respect to a factor B.

$\chi^{\rm 2}\text{-test}$ of independence, hypotheses

 H_0 : The variables A and B are independent.

 H_1 : The variables A and B are not independent.

 χ^2 test of independence, observed frequencies

- Let R_i be the frequency of the observations in class *i* of the factor *A* and let K_j be the frequency of the observations in class *j* of the factor *B*.
- Let O_{ij} be the observed frequency of the observations that are in class *i* of the factor *A* and in class *j* of the factor *B*.

	1	2	• • •	k	sum
1	<i>O</i> ₁₁	<i>O</i> ₁₂		O_{1k}	R_1
2	<i>O</i> ₂₁	<i>O</i> ₂₂		O_{2k}	R ₂
:	:	÷	·	÷	÷
r	<i>O</i> _{r1}	<i>O</i> _{r2}		0 _{rk}	R _r
sum	<i>K</i> ₁	<i>K</i> ₂	• • •	K_k	n

χ^2 test of independence, expected frequencies

- Let $q_i = R_i/n$ and $p_j = K_j/n$. Under the null hypothesis of independence the probability to fall in to the cell (i, j) is approximately $q_i p_j$.
- Calculate the expected frequencies under the null,

$$E_{ij}=nq_ip_j=R_ip_j=K_jq_i.$$

		1	2		k	sum
ſ	1	<i>E</i> ₁₁	<i>E</i> ₁₂		E_{1k}	R_1
	2	E ₂₁	E ₂₂		E_{2k}	R_2
	÷	÷	÷	·	÷	÷
	r	E _{r1}	E _{r2}		E _{rk}	R _r
	sum	K_1	K_2	•••	K_k	п

χ^2 test of independence

χ^2 -test of independence, test statistic

• The test statistic,

$$\chi_I^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}},$$

follows, for large *n*, under H_0 approximately the $\chi^2(r-1)(k-1)$ -distribution.

• The expected value of the test statistic under H_0 is approximately (r-1)(k-1) is and large values of the test statistic suggest that the null hypothesis is false

The homogeneity test and the test of independence

- Note that the χ^2 test of independence and χ^2 homogeneity test have their test statistics and the degrees of freedom calculated identically.
- However, the tests apply to different situations:
 - If the group sizes of one of the factors are pre-determined, one can not speak of the independence of the factors (since one of them has its frequencies fixed), and the correct interpretation is via the χ^2 homogeneity test.
 - If only the overall sample size n is fixed and the observations are allowed to freely fall into the categories with respect to both factors, the correct interpretation is via the χ²-test of independence.