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Multiple linear regression

The simple linear regression can be extended to multiple linear regression
incorporating several explanatory variables.

Multiple linear regression, assumptions

Consider n observations (x1, y1), (x2, y2), . . . , (xn, yn) and assume that
the p-dimensional xi are non-random.

Assume, that p < n.

Assume, that the values of the variable y depend linearly on the
values of the variable x ,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi , i = 1, . . . , n,

where the regression coefficients β0, β1, . . . , βp are unknown
constants.

3 / 28



Multiple linear regression

The multiple linear regression model is usually coupled with the following
additional assumptions.

Multiple linear regression, assumptions, continued

The expected value of the errors is E[εi ] = 0 for all i = 1, . . . , n.

The errors have the same variance Var[εi ] = σ2.

The errors are uncorrelated i.e. ρ(εi , εj) = 0, i 6= j .

The errors are i.i.d. (a stronger version of the previous two
assumptions).
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Multiple linear regression

Under the previous assumptions, the random variables yi have the
following properties:

Expected value: E[yi ] = β0 + β>xi , i = 1, . . . , n,

Variance: Var(yi ) = Var(εi ) = σ2.

Correlation: ρ(yi , yj) = 0, i 6= j .

If we chose to assume that the errors are i.i.d., then yi are
independent of each other.
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Multiple linear regression, parameters

The multiple linear model

yi = β0 + β>xi + εi , i = 1, . . . , n,

has the following parameters: regression coefficients β0, β = (β1, . . . , βp)>

and the error variance Var(εi ) = σ2.

These parameters are usually unknown and have to be estimated from the
observations.

Under the assumption that E[εi ] = 0, for all i = 1, . . . , n, the simple linear
model can be given as

yi = E[yi ] + εi , i = 1, . . . , n,

where E[yi ] = β0 + β>xi is the systematic part and εi is the random part
of the model.

6 / 28



Multiple linear regression, parameter interpretation

The systematic part
E[yi ] = β0 + β>xi

of the linear model defines the regression plane

”y = β0 + β>x.”

The intercept β0 tells the expected value of the response when the
explanatory variable vector x is the zero vector.

The regression coefficient βj tells how much the expected value of the
response variable y changes when the value of the explanatory
variable xj grows by one unit and the other variables stay constant.

The error variance Var(εi ) = σ2 describes the magnitude of the
random deviations of the observed values from the regression plane.
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Multiple linear regression, objective

The estimates β̂0, β̂ should be chosen such that the fitted
values/predictions,

ŷi = β̂0 + β̂
>
xi ,

best match the observations in some suitable sense.

Again, the most popular solution method is the method of least squares.

Let X be a n × (p + 1) matrix whose first column in full of ones and the
remaining columns correspond to the observed values of the p explanatory
variables. Let the n-vector y contain the observed response values.
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The method of least squares

In the method of least squares we choose the estimates by minimizing
the sum of squared differences between the observations yi and the
fitted values ŷi ,

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(
yi − (β̂0 + β̂

>
xi )
)2
.

Denoting β̂
∗

= (β̂0, β̂
>

)>, the explicit solution is

β̂
∗

= (X>X)−1X>y.
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Unstability of the solution

The least squares solution requires inverting the matrix X>X. If its rank is
smaller than p, then some of the explanatory variables are fully linearly
dependent. In that case, some of the variables can be excluded from the
analysis without losing any information.

If X>X is full rank, it could still be that it is very close to being singular.
This corresponds to multicollinearity, the case where the explanatory
variables are not necessarily fully linearly dependent but still exhibit large
correlations.

Multicollinearity can make the regression coefficients unstable and its
presence can be investigate using the variance inflation factors of the
explanatory variables.
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Variance inflation factor
Variance inflation factor (VIF) for an explanatory variable xik is defined as:

VIFk =
1

1− R2
k

,

where R2
k is the coefficient of determination for a model where xik is the

dependent variable and the remaining predictors are used as explanatory
variables.

VIF is calculated separately for each explanatory variable xik . If the variable
xik is uncorrelated with the other explanatory variables, then the VIF = 1.

If an explanatory variable has VIF ≥ 10, multicollinearity is likely present,
and some of the variables should be dropped from the model.

Roughly, the aim is to select variables such that the coefficient of
determination (of the (xi , yi )-model) is as high as possible and the
explanatory variables are as uncorrelated as possible.
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Fitted values and residuals

Recall that the fitted value of the variable yi , i.e., the value given to
the response variable by the estimated regression plane at the point
xi , is

ŷi = β̂0 + β̂
>
xi , i = 1, . . . , n.

The residual ε̂i of the estimated model is the difference

ε̂i = yi − ŷi , i = 1, . . . , n

between the observed value yi (of the variable y) and fitted value ŷi .

The smaller the residuals of the estimated model are, the better the
regression model explains the observed values of the response variable.
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Residual mean square estimation

Under the regression assumptions, an unbiased estimate for the error
variance Var(εi ) = σ2 is given by

σ̂2 =
1

n − p − 1

n∑
i=1

(ε̂i − ¯̂ε)2 =
1

n − p − 1

n∑
i=1

ε̂2i =
1

n − p − 1

n∑
i=1

(yi − ŷi )
2.

Note that the divisor equals the sample size n minus the number of
estimated regression parameters p + 1.
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Coefficient of determination

Coefficient of determination (also known as “R-squared”) gives a
single number with which to assess the accuracy of the model fit.

Coefficient of determination is defined as

R2 = 1− SSE

SST
,

where

SST =
n∑

i=1

(yi − ȳ)2 and SSE =
n∑

i=1

ε̂2i

measure the variation of the data “before” and “after” fitting the
model.

If SSE is small compared to SST, the model has managed to explain
a large proportion of the variance in the data.

We always have 0 ≤ R2 ≤ 1.
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Diagnostics

The verification of the assumptions of a regression model is called
diagnostics.

The diagnostics are usually performed by using the plots of the
residuals versus the fitted values (or the explanatory variable xi if
there is only a single one).

If the model assumptions hold, the residuals,
1 are approximately evenly distributed on both sides of zero,
2 have constant variance regardless of the value of x (no

heteroscedasticity),
3 exhibit no unusual (non-linear) patterns in general.

Additionally, if the sample size is small and we cannot rely on the
central limit theorem, the normality of the residuals should be tested.
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Example, linear regression

Kuva: Example of mostly satisfactorily looking residuals.
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Example, outlier

Kuva: Diagnostics can also be used to spot outliers.
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Example, heteroskedasticity

Kuva: The variance of the residuals depends clearly on the value of x
(heteroskedasticity).
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Example, non-linear dependence

Kuva: The residuals exhibit clear non-linear dependency on x .
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Inference for model parameters

Analogous results as for the simple linear regression (confidence intervals,
hypothesis tests) also exist for multiple linear regression under the
assumptions that

Multiple linear regression, assumptions, continued

The errors εi are i.i.d.

The errors εi are normally distributed.

The assumption of normality can be replaced by a large enough sample
size.

However, we will not go through the theory behind them here.
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Bootstrap in linear models

In addition to the standard normality/CLT-based inference output by the
software, bootstrap can be used to obtain confidence intervals for the
model parameters. A bootstrap sample can be created in two ways.

Observation resampling: we simply draw a bootstrap sample of size
n from amongst the observations (x1, y1), . . . , (xn, yn) and fit a linear
model to it (and repeat the same B times).

Residual resampling: a bootstrap resample is obtained as
(x1, y∗1 ), . . . , (xn, y∗n ), where y∗i = ŷi + ε̂∗i and (ŷ1, . . . , ŷn) are the
fitted values of the original sample and ε̂∗1, . . . , ε̂

∗
n is a bootstrap

sample of the residuals of the model for the original sample.

The residual resampling is suited for situations where we want to preserve
the explanatory variable structure of the original data also in the bootstrap
resamples (e.g. two treatment groups of certain sizes).
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Extensions of the multiple regression model
The following slides list some of the most common cases where extensions
to the standard linear regression methodology are required.

Problem: My data exhibits non-linear dependencies.
Solution:

Transform your predictors. That is, yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi

is still a multiple regression model.

Add interaction terms, β12xi1xi2 (note: interaction terms make
interpreting the coefficients difficult).

A more automated solution is given by non-linear regression, such as
kernel regression.

Problem: I have several response variables.
Solution: Model them simultaneously using multivariate regression:

yi = β0 + B>xi + εi , i = 1, . . . , n.
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Extensions of the multiple regression model

Problem: My data contains a large number of outliers and I would rather
not discard them all.
Solution: Use a fitting method which is less sensitive to outlying values
such as “the method of least absolute values”, or `1-regression.

Problem: My data points exhibit significant correlations.
Solution: Depending on the nature of the correlations, use either mixed
models (correlation within groups of subjects), time series methods
(temporal correlation) or something else.
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Extensions of the multiple regression model

Problem: My response variable takes values in some specific subset of R.
That is, the ranges of the two sides of the model equation
E[yi ] = β0 + β>xi do not match.
Solution: Use a suitable link function to transform your model equation,
g(E[yi ]) = β0 + β>xi . This leads, e.g., to logistic regression and log-linear
models.

Problem: Too many variables, p ≥ n.
Solution: This makes the matrix X>X singular, meaning that no least
squares solution exist. This problem can be solved by regularized regression
estimates discussed briefly next time.

28 / 28


	Multiple linear regression
	Parameter estimation
	Assessing model fit
	Inference for model parameters
	Extensions

