ELEC-C5310 - Introduction to Estimation, Detection and Learning: Basics of Probability

Prof. Sergiy Vorobyov

Department of Signal Processing and Acoustics Aalto University

BASICS

Random variables

Real random variable $x(\xi)$ represents a mapping that assigns a real number x to every outcome ξ from the abstract probability space. Probability distribution of a random variable x

 $P_x(x) = \text{Probability}\{x(\xi) \le x\}$

Probability density function (pdf):

$$p_x(x) = \frac{\partial P_x(x)}{\partial x}$$

where

$$P_x(x_0) = \int_{-\infty}^{x_0} p_x(x) \, dx$$

Aalto University Department of Signal Processing and Acoustics Since $P_x(\infty) = 1$, we have norming condition $\int_{-\infty}^{\infty} p_x(x) \, dx = 1$

Simple interpretation:

Aalto University Department of Signal Processing and Acoustics

Mathematical expectation of an arbitrary f(x):

$$\mathbf{E}\{f(x)\} = \int_{-\infty}^{\infty} f(x) \, p_x(x) \, dx$$

Mean:

$$\mu_x = \mathcal{E}\{x\} = \int_{-\infty}^{\infty} x \, p_x(x) \, dx$$

Variance of a *real* random variable X:

$$\operatorname{var}\{x\} = \sigma_x^2 = \operatorname{E}\{(x - \operatorname{E}\{x\})^2\}$$

A *complex* random variable:

$$x(\xi) = x_R(\xi) + jx_I(\xi), \quad \operatorname{var}\{x\} = \sigma_x^2 = \operatorname{E}\{|x - \operatorname{E}\{x\}|^2\}$$

Gaussian distribution : 1-variate case

• RV x has a normal (Gaussian) distribution with mean μ and variance σ^2 if its p.d.f. is of the form

$$f_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, \ x \in \mathbb{R}.$$

We denote this case by $x\sim \mathcal{N}(\mu,\sigma^2).$

• The case $\mathcal{N}(0,1)$ is called the **standard normal distribution** :

p.d.f.:
$$\phi(x) = f_{0,1}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

c.d.f.: $\Phi(x) = \int_{-\infty}^x \phi(z) dz = \frac{1}{2} \left\{ 1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right\}.$

- Note that $\Phi(-x) = 1 \Phi(x)$ as $\mathcal{N}(0,1)$ is symmetric w.r.t. the origin and that $\Phi(\cdot)$ does not have analytical expression.
- Recall that

$$rac{x-\mu}{\sigma} \sim \mathcal{N}(0,1)$$
 when $x \sim \mathcal{N}(\mu,\sigma^2).$

• Thus, if
$$x \sim \mathcal{N}(\mu, \sigma^2)$$
, then

$$\mathbb{P}(|x-\mu| \le \sigma) = \mathbb{P}(\mu - \sigma \le x \le \mu + \sigma) = 2\Phi(1) - 1 \approx 0.68$$
$$\mathbb{P}(|x-\mu| \le 2\sigma) = \mathbb{P}(\mu - 2\sigma \le x \le \mu + 2\sigma) = 2\Phi(2) - 1 \approx 0.95.$$

 \bullet Standard deviation σ measures how concentrated the distribution is about the mean

Some properties

1. If $x_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, \ldots, p$ are mutually independent, then

$$\sum_{i=1}^{p} x_i \sim \mathcal{N}\Big(\sum_{i=1}^{p} \mu_i, \sum_{i=1}^{p} \sigma_i^2\Big).$$

2. If $x_i \sim \mathcal{N}(0,1)$, $i = 1, \ldots, p$ are mutually independent, then

$$\sum_{i=1}^{n} x_i^2 \sim \chi_p^2$$

i.e., $\|\mathbf{x}\|^2 \sim \chi_p^2$, when $\mathbf{x} = (x_1, \dots, x_p)^\top$. 3. Let $x \sim \mathcal{N}(\mu, \sigma^2)$, then the skewness and kurtosis coefficients $\gamma_1 = \frac{\mathsf{E}[x^3]}{\sigma^3}$ and $\gamma_2 = \frac{\mathsf{E}[x^4]}{\sigma^4} - 3$ vanish (i.e., are equal to zero).

Aalto University Department of Signal Processing and Acoustics

Bell shape curve

Multivariate distribution

• We can go from 1-dimension to any finite dimensions:

$$\mathbb{P}(a < x_1 < b, c < x_2 < d) = ?$$

• Assume a continuous RV with (joint) p.d.f. $f(\mathbf{x})$ which thus verifies

$$f(\mathbf{x}) \ge 0 \quad \forall \, \mathbf{x} \in \mathbb{R}^p$$
$$\int_{-\infty}^{\infty} f(\mathbf{x}) d\mathbf{x} \equiv \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_1 \cdots dx_p = 1.$$

• The c.d.f. is

$$F(\mathbf{a}) = F(a_1, \dots, a_p) = \mathbb{P}(x_1 \le a_1, \dots, x_p \le a_p)$$

= $\int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_p} f(x_1, \dots, x_p) dx_1 \dots dx_p \equiv \int_{-\infty}^{\mathbf{a}} f(\mathbf{x}) d\mathbf{x},$

- Also the components x_i (or any multivariate components) of \mathbf{x} are RV's and thus they have distributions as well. These are commonly called marginal distributions.
- \bullet Compose $p \times 1 \ \mathrm{RV} \ \mathbf{x}$ as

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix},$$

where
$$\mathbf{x}_1 = (x_1, \dots, x_k)^ op$$
 and $\mathbf{x}_2 = (x_{k+1}, \dots, x_p)^ op$, $k < p$.

• Then

$$F_1(\mathbf{a}_1) = F(a_1, \dots, a_k, \infty, \dots, \infty) = \int_{-\infty}^{\mathbf{a}_1} \int_{-\infty}^{\infty} f(\mathbf{x}_1, \mathbf{x}_2) \mathrm{d}\mathbf{x}_1 \mathrm{d}\mathbf{x}_2$$
$$f_1(\mathbf{x}_1) = \int_{-\infty}^{-\infty} f(\mathbf{x}_1, \mathbf{x}_2) \mathrm{d}\mathbf{x}_2,$$

are the marginal c.d.f. and marginal p.d.f. of RV \mathbf{x}_1 . (Similarly for RV \mathbf{x}_2).

- (Marginal) p.d.f. and c.d.f. of \mathbf{x}_2 are defined analogously.
- \bullet The p.d.f. of the conditional distribution of RV \mathbf{x}_2 given \mathbf{x}_1 is

$$f(\mathbf{x}_2|\mathbf{x}_1) = \frac{f(\mathbf{x}_1, \mathbf{x}_2)}{f_1(\mathbf{x}_1)}$$

(Similarly one obtain the p.d.f. of the cond. distr. of \mathbf{x}_1 given \mathbf{x}_2).

• RV's x_1, \ldots, x_p are (mutually) **independent** if

$$f(\mathbf{x}) = f_1(x_1) \cdots f_p(x_p) \quad \forall \ \mathbf{x} = (x_1, \dots, x_p)^\top \in \mathbb{R}^p$$

 \bullet RV's \mathbf{x}_1 ja \mathbf{x}_2 are (pairwise) independent if

$$f(\mathbf{x}_1, \mathbf{x}_2) = f_1(\mathbf{x}_1) f_2(\mathbf{x}_2) \quad \forall \, \mathbf{x} = (\mathbf{x}_1^\top, \mathbf{x}_2^\top)^\top \in \mathbb{R}^p.$$

Multivariate normal distribution

- We assume the existence of a density (i.e., non-singular normal distribution \Rightarrow full rank covariance matrix).
- Multivariate normal (MVN) distribution can be defined more generally (there can be *singular* multinormal distributions).
- Thus, we say that a RV $\mathbf{x} = (x_1, \dots, x_p)^{\top}$ has a *p*-variate normal distribution if its p.d.f. is of the form

$$f_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) = (2\pi)^{-p/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where $\boldsymbol{\mu} = \mathsf{E}[\mathbf{x}]$ and $\boldsymbol{\Sigma} = \mathrm{Cov}(\mathbf{x})$ is a positive definite symmetric covariance matrix (so $\boldsymbol{\Sigma} \succ 0$). We denote this case by $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- Write $\sigma_{ij} = (\mathbf{\Sigma})_{ij}$ and recall that $\sigma_{ii} \equiv \sigma_i^2 = \operatorname{Var}(x_i)$ and $\sigma_{ij} = \operatorname{Cov}(x_i, x_j)$ for $i \neq j$.
- The case N_p(0, I) is called the standard (multi)normal distribution:

$$f_{\mathbf{0},\mathbf{I}}(\mathbf{x}) = (2\pi)^{-p/2} e^{-\frac{1}{2} \|\mathbf{x}\|^2}.$$

• Equidensity contours are ellipsoids in \mathbb{R}^p since:

$$f_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) = \text{const.} \iff (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = \text{const.}$$

 $\mathcal{N}_2(\mathbf{0}, \mathbf{\Sigma})$ ($\rho = \operatorname{Corr}(x_1, x_2) = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = -0.25$): p.d.f. and contours.

Some Properties

(N1) If
$$\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 and \mathbf{A} is a $q \times p$ matrix with $\mathrm{rank}(\mathbf{A}) = q \leq p$, then

$$\mathbf{z} = \mathbf{A}\mathbf{x} + \mathbf{b} \sim \mathcal{N}_q(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^\top)$$

(N2) If $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then x_1, \ldots, x_p are mutually independent $\iff \sigma_{ij} = \operatorname{Cov}(x_i, x_j) = 0 \ \forall i \neq j$. (N3) If

$$egin{pmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \end{pmatrix} \sim \mathcal{N}_p \left(egin{pmatrix} \boldsymbol{\mu}_1 \ \boldsymbol{\mu}_2 \end{pmatrix}, egin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}
ight),$$

then \mathbf{x}_1 and \mathbf{x}_2 are independent $\iff \mathbf{\Sigma}_{12} = 0$.

(N4) If $\mathbf{x}_1 \sim \mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$ and $\mathbf{x}_2 \sim \mathcal{N}_k(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$ are independent, then $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \sim \mathcal{N}_{p+k} \left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right).$

and conversely.

(N5) Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and partition \mathbf{x} , $\boldsymbol{\mu} = \mathbb{E}[\mathbf{x}]$ and $\boldsymbol{\Sigma} = \mathrm{Cov}(\mathbf{x})$ as:

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \end{pmatrix}, \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, \quad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix}$$

where \mathbf{x}_1 and $\boldsymbol{\mu}_1$ are k-vectors (k < p) and $\boldsymbol{\Sigma}_{11} = \operatorname{Cov}(\mathbf{x}_1)$ a $k \times k$ matrix.

Then

$$\mathbf{x}_1 \sim \mathcal{N}_k(oldsymbol{\mu}_1, oldsymbol{\Sigma}_{11})$$
 and $\mathbf{x}_2 \sim \mathcal{N}_{p-k}(oldsymbol{\mu}_2, oldsymbol{\Sigma}_{22})$

and the conditional distribution of \mathbf{x}_2 given \mathbf{x}_1 is $\mathcal{N}_{p-k}(oldsymbol{\mu}_{2|1}, oldsymbol{\Sigma}_{2|1})$, where

$$\boldsymbol{\mu}_{2|1} = \mathbb{E}[\mathbf{x}_2|\mathbf{x}_1] = \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1),$$

$$\boldsymbol{\Sigma}_{2|1} = \operatorname{Cov}(\mathbf{x}_2|\mathbf{x}_1) = \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}.$$