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BASICS

Random variables

Real random variable x(ξ) represents a mapping that assigns a real
number x to every outcome ξ from the abstract probability space.
Probability distribution of a random variable x

Px(x) = Probability{x(ξ) ≤ x}

Probability density function (pdf):

px(x) =
∂Px(x)

∂x

where

Px(x0) =

∫ x0

−∞
px(x) dx
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Since Px(∞) = 1, we have norming condition∫ ∞
−∞

px(x) dx = 1

Simple interpretation:

px(x) = lim∆→0
Probability{x−∆/2 ≤ x(ξ) ≤ x+ ∆/2}

∆

x1 x2 x

p  (x)x SURFACE = Probability{x1 < x (ξ) < x2}
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Mathematical expectation of an arbitrary f(x):

E{f(x)} =

∫ ∞
−∞

f(x) px(x) dx

Mean:

µx = E{x} =

∫ ∞
−∞

x px(x) dx

Variance of a real random variable X :

var{x} = σ2
x = E{(x− E{x})2}

A complex random variable:

x(ξ) = xR(ξ) + jxI(ξ), var{x} = σ2
x = E{|x− E{x}|2}
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Gaussian distribution : 1-variate case

• RV x has a normal (Gaussian) distribution with mean µ and
variance σ2 if its p.d.f. is of the form

fµ,σ2(x) =
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2
}
, x ∈ R.

We denote this case by x ∼ N (µ, σ2).
• The case N (0, 1) is called the standard normal distribution :

p.d.f.: φ(x) = f0,1(x) =
1√
2π
e−

1
2x

2

c.d.f.: Φ(x) =

∫ x

−∞
φ(z)dz =

1

2

{
1 + erf

( x√
2

)}
.
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• Note that Φ(−x) = 1 − Φ(x) as N (0, 1) is symmetric w.r.t. the
origin and that Φ(·) does not have analytical expression.
• Recall that

x− µ
σ
∼ N (0, 1) when x ∼ N (µ, σ2).

• Thus, if x ∼ N (µ, σ2), then

P(|x− µ| ≤ σ) = P(µ− σ ≤ x ≤ µ+ σ) = 2Φ(1)− 1 ≈ 0.68

P(|x− µ| ≤ 2σ) = P(µ− 2σ ≤ x ≤ µ+ 2σ) = 2Φ(2)− 1 ≈ 0.95.

• Standard deviation σ measures how concentrated the distribution is
about the mean
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Some properties

1. If xi ∼ N (µi, σ
2
i ), i = 1, . . . , p are mutually independent, then

p∑
i=1

xi ∼ N
( p∑
i=1

µi,

p∑
i=1

σ2
i

)
.

2. If xi ∼ N (0, 1), i = 1, . . . , p are mutually independent, then

n∑
i=1

x2
i ∼ χ

2
p

i.e., ‖x‖2 ∼ χ2
p, when x = (x1, . . . , xp)

>.
3. Let x ∼ N (µ, σ2), then the skewness and kurtosis coefficients

γ1 =
E[x3]
σ3 and γ2 =

E[x4]
σ4 − 3 vanish (i.e., are equal to zero).

Aalto University
Department of Signal Processing and Acoustics 6



Lecture Course, Aalto University Winter 2020

Bell shape curve

N (0, 1) distribution N (µ, σ2) distribution

1-1 2-2 3-3 0

68%

95%

99.7%
µ+σµµ−σ

σσ
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Multivariate distribution

• We can go from 1-dimension to any finite dimensions:

P(a < x1 < b, c < x2 < d) =?

• Assume a continuous RV with (joint) p.d.f. f(x) which thus verifies

f(x) ≥ 0 ∀x ∈ Rp∫ ∞
−∞

f(x)dx ≡
∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xp)dx1 · · · dxp = 1.
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• The c.d.f. is

F (a) = F (a1, . . . , ap) = P(x1 ≤ a1, . . . , xp ≤ ap)

=

∫ a1

−∞
· · ·
∫ ap

−∞
f(x1, . . . , xp)dx1 · · · dxp ≡

∫ a

−∞
f(x)dx,

• Also the components xi (or any multivariate components) of x are
RV’s and thus they have distributions as well. These are commonly
called marginal distributions.
• Compose p× 1 RV x as

x =

(
x1

x2

)
,

where x1 = (x1, . . . , xk)
> and x2 = (xk+1, . . . , xp)

>, k < p.
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• Then

F1(a1) = F (a1, . . . , ak,∞, . . . ,∞) =

∫ a1

−∞

∫ ∞
−∞

f(x1,x2)dx1dx2

f1(x1) =

∫ −∞
−∞

f(x1,x2)dx2,

are the marginal c.d.f. and marginal p.d.f. of RV x1. (Similarly
for RV x2).
• (Marginal) p.d.f. and c.d.f. of x2 are defined analogously.
• The p.d.f. of the conditional distribution of RV x2 given x1 is

f(x2|x1) =
f(x1,x2)

f1(x1)

(Similarly one obtain the p.d.f. of the cond. distr. of x1 given x2).
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• RV’s x1, . . . , xp are (mutually) independent if

f(x) = f1(x1) · · · fp(xp) ∀ x = (x1, . . . , xp)
> ∈ Rp

• RV’s x1 ja x2 are (pairwise) independent if

f(x1,x2) = f1(x1)f2(x2) ∀x = (x>1 ,x
>
2 )> ∈ Rp.
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Multivariate normal distribution

• We assume the existence of a density (i.e., non-singular normal distribution
⇒ full rank covariance matrix).
• Multivariate normal (MVN) distribution can be defined more generally
(there can be singular multinormal distributions).
• Thus, we say that a RV x = (x1, . . . , xp)

> has a p-variate normal
distribution if its p.d.f. is of the form

fµ,Σ(x) = (2π)−p/2|Σ|−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
where µ = E[x] and Σ = Cov(x) is a positive definite symmetric
covariance matrix (so Σ � 0). We denote this case by x ∼ Np(µ,Σ).
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• Write σij = (Σ)ij and recall that σii ≡ σ2
i = Var(xi) and σij =

Cov(xi, xj) for i 6= j.
• The case Np(0, I) is called the standard (multi)normal distri-

bution:

f0,I(x) = (2π)−p/2e−
1
2‖x‖

2
.

• Equidensity contours are ellipsoids in Rp since:

fµ,Σ(x) = const.⇐⇒ (x− µ)>Σ−1(x− µ) = const..
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Bivariate case: equidensity contours are ellipses
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N2(0, I) : p.d.f. and the equidensity contours.
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Some Properties

(N1) If x ∼ Np(µ,Σ) and A is a q × p matrix with rank(A) = q ≤ p,
then

z = Ax + b ∼ Nq(Aµ + b,AΣA>)

(N2) If x ∼ Np(µ,Σ), then x1, . . . , xp are mutually independent ⇐⇒
σij = Cov(xi, xj) = 0 ∀i 6= j.

(N3) If (
x1

x2

)
∼ Np

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

then x1 and x2 are independent ⇐⇒ Σ12 = 0.
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(N4) If x1 ∼ Np(µ1,Σ11) and x2 ∼ Nk(µ2,Σ22) are independent, then(
x1

x2

)
∼ Np+k

((
µ1

µ2

)
,

(
Σ11 0

0 Σ22

))
.

and conversely.
(N5) Let x ∼ Np(µ,Σ) and partition x, µ = E[x] and Σ = Cov(x) as:

x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where x1 and µ1 are k-vectors (k < p) and Σ11 = Cov(x1) a k× k
matrix.
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Then

x1 ∼ Nk(µ1,Σ11) and x2 ∼ Np−k(µ2,Σ22)

and the conditional distribution of x2 given x1 isNp−k(µ2|1,Σ2|1), where

µ2|1 = E[x2|x1] = µ2 + Σ21Σ
−1
11 (x1 − µ1),

Σ2|1 = Cov(x2|x1) = Σ2 −Σ21Σ
−1
11 Σ12.
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