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DETECTION PROBLEM

How the data can be retrieved from the noisy observations?

The process of retrieving data is called detection, or decision making, hy-
pothesis testing, decoding.

Example: Decoding in communication systems is the process of mapping
the received signal into one of the possible set of code words or transmitted
symbols. Decoder is designed to minimize average probability of error.

Bayes Detectors:
Hypothesis 1 (H1): Z = N (noise alone) Pr(H1true) = p0

Hypothesis 2 (H2): Z = k+N (signal plus noise) Pr(H2true) = 1−p0

Aalto University
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BAYES DETECTORS

N ∼ N (0, σ2
n) and k is a constant signal.

Under hypothesis H1 and hypothesis H2 the pdf’s are

fZ(z|H1) =
e−z

2/2σ2
n√

2πσ2
n

fZ(z|H2) =
e−(z−k)2/2σ2

n√
2πσ2

n

Objective: partition the one dimensional observation space Z into two re-
gions R1 and R2 such that if Z falls into R1, we decide hypothesis H1 is
true, while if Z is in R2, we decide H2 is true.
Aalto University
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Conditional pdf’s for two-hypothesis detection problem.

Four types of decisions that we can make and associated costs:
c11 – the cost of deciding in favor of H1 when H1 is actually true
c12 – the cost of deciding in favor of H1 when H2 is actually true
c21 – the cost of deciding in favor of H2 when H1 is actually true
c22 – the cost of deciding in favor of H2 when H2 is actually true

Aalto University
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The conditional average cost of making a decision given that H1 is true:

C(D|H1)=c11Pr[decideH1|H1is true]+c21Pr[decideH2|H1is true]

Pr[decideH1|H1is true] =

∫
R1

fZ(z|H1)dz

Pr[decideH2|H1is true] =

∫
R2

fZ(z|H1)dz

Since we are forced to make a decision

Pr[decideH1|H1is true] + Pr[decideH2|H1is true] = 1

Equivalently, ∫
R2

fZ(z|H1)dz = 1−
∫
R1

fZ(z|H1)dz

Aalto University
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The conditional average cost given that H1 is true:

C(D|H1)=c11

∫
R1

fZ(z|H1)dz + c21

[
1−

∫
R1

fZ(z|H1)dz

]
The conditional average cost given that H2 is true:

C(D|H2) = c12Pr[decideH1|H2is true] + c22Pr[decideH2|H2is true]

= c12

∫
R1

fZ(z|H2)dz + c22

∫
R2

fZ(z|H2)dz

= c12

∫
R1

fZ(z|H2)dz + c22

[
1−

∫
R1

fZ(z|H2)dz

]

Aalto University
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To find the average cost without regard to which hypothesis is actually true,
we average C(D|H1) and C(D|H2) with respect to the prior probabilities
of hypotheses H1 and H2, p0 = Pr[H1 true] and q0 = 1 − p0 =

Pr[H2 true].

C(D) = p0C(D|H1) + q0C(D|H2)

The average cost of making a decision:

C(D) = p0

(
c11

∫
R1

fZ(z|H1)dz + c21

[
1−

∫
R1

fZ(z|H1)dz

])

+ q0

(
c12

∫
R1

fZ(z|H2)dz + c22

[
1−

∫
R1

fZ(z|H2)dz

])
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• Equivalently,

C(D) = [p0c21 + q0c22] +

∫
R1

{[q0(c12 − c22)fZ(z|H2)]

− [p0(c21 − c11)fZ(z|H1)]} dz

c12 > c22 and c21 > c11 because wrong decision should be more costly
than right decision.
• Thus, the two bracketed terms within the integral are positive because
q0, p0, fZ(z|H2), and fZ(z|H1) are probabilities.
• Hence, all values of z that give a larger value for the second term within
the integral than for the first term should be assigned to R1 because
they contribute the negative amount to the integral.

Aalto University
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C(D) is minimized if we follow the rule

q0(c12 − c22)fZ(z|H2) ≷H2
H1

p0(c21 − c11)fZ(z|H1)

Equivalently,

Λ(Z) ≷H2
H1

η

Λ(Z) ,
fZ(z|H2)

fZ(z|H1)

The this ratio of conditional pdf’s is called the likelihood ratio.
The parameter

η ,
p0(c21 − c11)

q0(c12 − c22)

is called threshold of the test.
Aalto University
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Example: Let the costs for a Bayes test be c11 = c22 = 0 and c21 = c12.
Consider the pdf’s

fZ(z|H1) =
e−z

2/2σ2
n√

2πσ2
n

, fZ(z|H2) =
e−(z−k)2/2σ2

n√
2πσ2

n

(i) Find Λ(Z).
(ii) Write down the likelihood ration test for p0 = q0 = 0.5.
(iii) Compare the result of part (ii) with the case p0 = 1

4 and q0 = 3
4.

To be solved in class.

Aalto University
Department of Signal Processing and Acoustics 9



Lecture Course, Aalto University Winter 2020

PERFORMANCE OF BAYES DETECTOR

The conditional probabilities of making wrong decisions:

PrF =

∫
R2

fZ(z|H1)dz

is the probability of false alarm, and

PrM =

∫
R1

fZ(z|H2)dz = 1−
∫
R2

fZ(z|H2)dz = 1− PrD

is the probability of missed detection, where PrD is the probability of correct
detection.
The average cost of making a decision (risk) :

C(D) = p0c21 + q0c22 + q0(c12− c22)PrM − p0(c21− c11)(1−PrF )

Aalto University
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• We can write these probabilities in terms of the conditional pdf’s of the
likelihood ratio Λ(Z) given H1 and H2.

PrM =

∫ η

0
fΛ(λ|H2)dλ

because, given H2 is true, an erroneous decision is made if Λ(Z) < η.

PrF =

∫ ∞
η

fΛ(λ|H1)dλ

because, given H1 is true, an error occurs if Λ(Z) > η.
• A plot of PrD = 1− PrM versus PrF is called the operating char-
acteristic of the likelihood ratio test, or applied to communication and
radar systems - the receiver operating characteristic (ROC). It provides
all the information necessary to evaluate the risk!

Aalto University
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Example:
For the conditional pdf’s from the previous example, the likelihood ratio test
for an arbitrary threshold η is

2kZ − k2

2σ2
n

≷H2
H1

ln η or X ≷H2
H1

d−1 ln η +
1

2
d

X , Z
σn

is a new random variable, and d , k
σn

ia a new parameter.

X is obtained from Z by scaling by σn as

fX(x|H1) =
e−x

2/2
√

2π
, fX(x|H2) =

e−(x−d)2/2
√

2π

Find PrF and PrM?
To be solved in class.

Aalto University
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THE NEYMAN-PEARSON DETECTOR

• The design of a Bayes detector requires knowledge of the costs and a
priory probabilities.
• If these are unavailable, a simple optimization procedure is to fix PrF at
some tolerable level α, and maximize PrD (or minimize PrM ) subject
to the constraint PrF ≤ α. It is the Neyman-Pearson detector!
• The Neyman-Pearson criterion leads to a likelihood ratio test identical to
the aforementioned Bayes test, except that the threshold η is determined
by the allowed value of probability of false alarm α.
• This value of η can be obtained from ROC for a given value of PrF .
• The slope of a ROC curve at a particular point is equal to the value of
the threshold η required to achieve the PrD and PrF of that point.

Aalto University
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MIN PROBABILITY OF ERROR DETECTOR

The Risk if c11 = c22 = 0 and c12 = c21 = 1:

C(D) = p0

[
1−

∫
R1

fZ(z|H1)dz

]
+ q0

∫
R1

fZ(z|H2)dz

= p0

∫
R2

fZ(z|H1)dz + q0

∫
R1

fZ(z|H2)dz

= p0PrF + q0PrM

i.e. zero cost for making right decision, and equal cost for making either
type of wrong decision.

It is actually the probability of erroneous decision (probability of error).
Thus, the resulting detector is called minimum probability of error detector.
Aalto University
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MAX A POSTERIORI (MAP) DETECTOR

• Letting c11 = c22 = 0 and c12 = c21, the Bayes test becomes

fZ(z|H2)Pr(H2)

fZ(z)
≷H2
H1

fZ(z|H1)Pr(H1)

fZ(z)

where Pr(H1) = p0, Pr(H2) = q0, and

fZ(z) , fZ(z|H1)Pr(H1) + fZ(z|H2)Pr(H2)

• Using Bayes’ rule, the test can be simplified as

Pr(H2|Z) ≷H2
H1

Pr(H1|Z)

• The probabilities Pr(H1|Z) and Pr(H2|Z) are a posteriori probabili-
ties, and the detector is the maximum a posteriori (MAP) detector.

Aalto University
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MATCHED FILTER DETECTION

• The problem of the concern is the detection of a known determin-
istic signal in additive Gaussian noise (the signal and the pdf of noise
are known)
• The detector evolving from these assumptions is called matched fil-
ter
• Applications where the signal is under the designer’s control (e.g., co-
herent communication systems, radar)
• If we want to maximize the probability of detection subject to the con-
straint on the probability of false alarm: Neumann-Pearson approach
• If we want to minimize the average cost: Bayesian risk approach
• We will use the minimum-distance criterion

Aalto University
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Problem Formulation

• Transmitter sends only a single symbol, so that the receiver observation

r(t) = a · s(t) + n(t)

a ∈ A is the transmitted symbol, s(t) is the pulse shape (waveform),
n(t) is the noise
• The receiver design problem: infer from r(t) which of the symbols was
transmitted
• Minimum distance design strategy: choose the alphabet symbol that
best represents the received waveform in a minimum-distance sense

Aalto University
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Example: Minimum-Distance Strategy

• Consider the case of binary antipodal signaling with a zero-excess band-
width pulse and an alphabet {± 1 }. Noise variance is 0.1.
• Receiver calculates

∫∞
−∞ |r(t) − s(t)|2dt and

∫∞
−∞ |r(t) + s(t)|2dt

and compare them

−1

−0.5

0

0.5

1

1.5

(a)

h(
t)

, −
h(

t)
, r

(t
)

−1
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(b)

r(
t)

−
h(

t)
, r

(t
)+

h(
t)

s(t)
−s(t)
r(t)

r(t)−s(t)
r(t)+s(t)
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Min-Distance Receiver for Arbitrary Alphabets

• Principle: choose the symbol that best represents the observation in a
minimum-distance sense, namely:

â = arg min
a∈A

∫ ∞
−∞
|r(t)− a · s(t)|2dt

• Minimum-distance terminology is used because signals can be inter-
preted as vectors in a vector space. Then, the energy in the error be-
tween two signals is the squared distance between their corresponding
vectors
• Minimum-distance criterion is primarily motivated by noise
• It is “optimal” receiver structure in AWGN
• Must calculateM = |A| integrals, one for each element of the alphabet

Aalto University
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Efficient Implementation

Requires a single integral and uses the cost function:

J =

∫ ∞
−∞
|r(t)− a · s(t)|2dt

=

∫ ∞
−∞
|r(t)|2dt︸ ︷︷ ︸
Er

−2Re

{
a∗ ·

∫ ∞
−∞

r(t)s∗(t)dt
}

+|a|2
∫ ∞
−∞
|s(t)|2dt︸ ︷︷ ︸
Es

= Er − 2Re{a∗z}+ |a|2Es

Er and Es are the energies of r(t) and s(t), respectively, and

z =
∞∫
−∞

r(t)s∗(t)dt

Aalto University
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Correlator

• Er is independent on a, thus, immaterial for minimization
• Only one term depends on the observation waveform r(t), and it does
so through the correlation integral z
• z is a sufficient statistic for determining the minimum-distance
decision. More details later!
• Single integral problem: minimize the last two terms of the cost function
• Implementation of the correlation integral z via correlator:

Aalto University
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Matched Filter: Idea

Example: Impulse response of matched filter (MF)

Aalto University
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Matched Filter: Implementation

• Implementation of the correlation integral z via MF:

• The correlator and MF are mathematically equivalent, i.e., produce iden-
tical outputs
• The MF approach is practically preferred
• The MF is able to compensate for synchronization errors by adjusting
the timing of the sampler
• The correlator requires the two inputs r(t) and s∗(t) be synchronized
ahead of time

Aalto University
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Example: MF

• Consider the pulse signal

s(t) =

{
a, 0 ≤ t ≤ T
0, otherwise.

• The MF for s(t) is h0(t) = s(T − t)

Aalto University
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Example: MF (Continuation)

• The response z(t) of the MF to s(t) is the convolution z(t) = h0(t) ∗
s(t)

• Note that the peak output signal occurs at t = T , which is also the
time instant of peak signal-to-noise (SNR) power ratio

Aalto University
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Equivalence of the Correlator and MF

• The output of the MF:

z(t) = h(t) ∗ r(t) =

∫ t

0
r(τ)h(t− τ)dτ =

∫ t

0
r(τ)s(T − t+ τ)dτ

• When t = T , we obtain z(T ) =
∫ T

0 r(τ)s(τ)dτ , which is the same
as the output of the correlator

Aalto University
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Slicer

• Rewrite the cost function by factoring out the term Es:

J=Es

(
Er
Es
− 2Re{a∗ z

Es
}+ |a|2

)
=Es

∣∣∣∣ zEs − a
∣∣∣∣2 − |z|2Es

+ Er

• Only the first term depends on a. Then the minimum-distance receiver
reduces to:

â = arg min
a∈A

∣∣∣∣ zEs − a
∣∣∣∣2

• The minimum-distance decision is a ∈ A closest to the normalized
correlation y = z/Es. The decision can be found by quantizing y to
the nearest symbol. The corresponding devise is called a slicer

Aalto University
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MF maximizes SNR

• Replacing the MF by a more general receiver filter f(t), the sampler
output is:

z =

∫ ∞
−∞

r(t)f(−t)dt=a

∫ ∞
−∞

s(t)f(−t)dt︸ ︷︷ ︸
S

+

∫ ∞
−∞

n(t)f(−t)dt︸ ︷︷ ︸
N

• For white nose with PSD N0, the energy of the noise term is:

E{|N |2} = N0Ef , Ef =

∫ ∞
−∞
|f(−t)|2dt

• SNR is defined as:

SNR =
E{|S|2}
E{|N |2} =

∣∣∣∫∞−∞ s(t)f(−t)dt
∣∣∣2

Ef
· Ea
N0
, Ea = E{|a|2}

Aalto University
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MF maximizes SNR (Continuation)

• Cauchy-Schwarz-Bunyakovsky inequality for any two complex integrable
functions s(t) and f(t) with energies Es and Ef , respectively:∣∣∣∣∫ ∞−∞ s(t)f∗(−t)dt

∣∣∣∣2 ≤ EsEf
with equality if and only if f(−t) = Ks(t) for some constant K
• The matched-filter bound on the SNR:

SNR ≤ EaEs/N0

• The equality is reached if and only if f(t) = Ks∗(−t). Take K = 1.

Aalto University
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MF and Inter-Symbol Interference

• When a sequence of pulses is transmitted, using an MF as a receiver
filter will generally introduce inter-symbol interference (ISI)

• No ISI, if the received pulse is time-limited to the symbol interval

• Generally, if the overall pulse shape at the output of the MF obeys the
Nyquist criterion, then the MF is the optimal receive filter for both the
isolated-pulse case and the sequence-of-pulses case, in the sense that is
maximizes the SNR

Aalto University
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MF and ISI (Continuation)

• The Nyquist criterion in terms of the folder spectrum of the received
pulse is:

1

T

∞∑
m=−∞

∣∣∣S (f − m
T

)∣∣∣2 = 1

• |S(f)|2 is the Fourier transform of the overall pulse shape at the output
of the MF

Aalto University
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THE M-ARY HYPOTHESIS CASE

• The Bayes decision criterion cam be straightforwardly generalized to
M > 2 hypotheses.
• For the M -ary case, M2 costs and M a priori probabilities must be
given;M likelihood ratio tests must be carried out in making a decision.
• Consider a special cost assignment used to obtain the MAP detector.
• Then, we have the following MAP decision rule for the M -hypothesis
case: Compute the M posterior probabilities Pr(Hi|Z), i =

1, 2, . . . ,M , and choose as the correct hypothesis the one correspond-
ing to the largest posterior probability.
• This decision rule is typically used when M -ary signal detection is con-
sidered.

Aalto University
Department of Signal Processing and Acoustics 32



Lecture Course, Aalto University Winter 2020

VECTOR OBSERVATIONS

• If, instead of a single observation Z, we have N observations Z =

(Z1, Z2, . . . , ZN), all previous results hold with the exception that N -
fold joint pdf’s of Z, given H1 and H2, are to be used.

• If Z1, Z2, . . . , ZN are conditionally independent, these joint pdf’s are
simply the N -fold products of the marginal pdf’s.

Aalto University
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MAP RECEIVERS FOR DIGITAL SYSTEMS

Example: M -ary communication system:
• Information source: One of M possible messages every T seconds; mi,
i = 1, 2, . . . ,M .
• Modulator: Massage mi associated with signal S(t), T seconds long;
si(t), i = 1, 2, . . . ,M .
• Channel: White Gaussian noise n(t), PSD = 1

2N0; y(t).

• Receiver: Observes y(t) for T seconds. Guess at transmitted signal
every T seconds; Best guess (minPre): m̂i(t).

For simplicity assume that the messages are produced by the information
source with equal a priori probability.

Aalto University
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The ith signal:
•

si(t) =

K∑
j=1

aijφj(t), i = 1, 2, . . . ,M, K ≤M

φj(t)’s are orthonormal basis function (chosen according to the Gram-
Schmidt procedure).
•

aij =

∫ T

0
si(t)φj(t)dt = 〈si, φj〉

are Fourier coefficients for si(t).
• Thus, each possible signal can be represented as a point in K-
dimensional signal space with coordinates (ai1, ai2, . . . , aiK), for i =

1, 2, . . . ,M .
Aalto University
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Receiver structure for resolving signal into K-dimensional signal space:

The receiver consists of a bank of correlators, and is used to compute the
generalized Fourier coefficients for si(t). Knowing the coordinates (Fourier
coefficients) of si(t) is as good as knowing si(t) itself.

Aalto University
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Detection problem in M -ary communication system

• The difficulty is that the signal is received in the presence of noise, i.e.,
the receiver provides us with noisy coordinates:

z = (z1, z2, . . . , zK) = (ai1 + n1, ai2 + n2, . . . , aiK + nK)

nj ,
∫ T

0
n(t)φjdt = 〈n, φj〉

• z is called data vector, and the space of all possible data vectors is
called observation space.

Aalto University
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A three-dimensional observation space:

Aalto University
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• Formulation of the detection (decision-making) problem:
To associate sets of noisy signal points with each possible transmitted
signal point in a manner that the average error probability will be min-
imized, i.e. the observation space must be partitioned into M regions
Ri, one associated with each transmitted signal, such that if a received
data point falls into region Rl, the decision “sl(t) transmitted” is made
with minimum probability of error.

• Basic principle:

max
l
Pr(Hl|z1, z2, . . . , zk), l = 1, 2, . . . ,M

Hl is the hypothesis “sl(t) transmitted” .
• Assume: Pr(H1) = Pr(H2) = . . . = Pr(HM).

Aalto University
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• Posterior probabilities: using Bayes’ rule

Pr(Hl|z1, z2, . . . , zk) =
fZ(z1, . . . , zK|Hl)Pr(Hl)

fZ(z1, . . . , zK)

Since Pr(Hl) and fZ(z1, . . . , zK) do not depend on l, it is enough
to compute fZ(z1, . . . , zK|Hl) and choose Hl corresponding to the
largest.

• The mean of zj, given hypothesis Hl:

E{zj|Hl} = E{alj + nj} = alj +

∫ T

0
E{n(t)}φj(t)dt = alj

j = 1, 2, . . . ,K

Aalto University
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• The variance of zj, given hypothesis Hl:

var{zj|Hl} = E{[alj + nj]
2} − a2

lj = E{n2
j}

= E

{∫ T

0
n(t)φj(t)dt

∫ T

0
n(t′)φj(t′)dt′

}

=

∫ T

0

∫ T

0
E{n(t)n(t′)}φj(t)φj(t′)dtdt′

=

∫ T

0

∫ T

0

N0

2
δ(t− t′)φj(t)φj(t′)dtdt′

=

∫ T

0

N0

2
φ2
j(t)dt =

1

2
N0, j = 1, 2, . . . ,K

The orthonormality of the φj’s has been used.
• Similarly, we can find that the covariance of zj and zk, for j 6= k, is
zero.

Aalto University
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• Thus z1, z2, . . . , zK are uncorrelated Gaussian random variables and,
hence, are statistically independent. Thus

fZ(z1, . . . , zK|Hl) =

K∏
j=1

exp[−(zj − alj)2/N0]√
πN0

=
1

(πN0)K/2
exp

− K∑
j=1

(zj − alj)2/N0


=

exp{−‖z − sl‖2/N0}
(πN0)K/2

z =
K∑
j=1

zjφj(t), sl(t) =
K∑
j=1

aljφj(t)

Aalto University
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• Except for the factor independent on l, the expression for
fZ(z1, . . . , zK|Hl) is equivalent to the posteriori probability
Pr(Hl|z1, . . . , zK) obtained by applying Bayes’ rule.

• Choosing Hl corresponding to the maximum posterior probability is the
same as choosing the signal with coordinates al1, al2, . . . , ajK so as
to maximize fZ(z1, . . . , zK|Hl) or, equivalently, so as to minimize the
exponent. But ‖z − sl‖2 is the distance between z(t) and sl(t)!

• Decision rule:

min
l
‖z − sl‖2 = min

l

K∑
j=1

(zj − alj)2, l = 1, 2, . . .M
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Detector for frequency modulated signal used widely in automotive radar
Consider M -ary coherent FSK:

si(t) = a cos{2π[fc + (i− 1)∆f ]t}, 0 ≤ t ≤ T

∆f =
m

2T
, m an integer, i = 1, 2, . . . ,M

For simplicity assume that fcT is integer.
(i) Apply Gram-Schmidt orthomormalization to obtain orthonormal basis
set. How many orthonormal functions are? How ith signal can be written?
(ii) Denote signal plus noise waveform as y(t) = si(t) +n(t). What is the
projection of y(t) to the observation space?
(iii) Derive the decision rule.
To be solved in class.
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SUFFICIENT STATISTICS

• Because of the noise component n(t), z(t) =
∑K
j=1 zjφj(t) is not the

same as y(t), since an infinite set of basis functions would be required
to represent all possible y(t)’s.
• However, only K coordinates, where K is signal space dimension, are
required to provide all the information that is relevant to making a
decision.
• y(t) =

∑∞
j=1 yjφj(t) for a complete orthonormal set of basis func-

tions, where the first K of them are chosen using the Gram-Schmidt
procedure for the given signal set.
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• Given the hypothesis Hl is true, the yj’s are given by

yj =

{
zj = alj + nj, j = 1, 2, . . .K

nj, j = K + 1,K + 2, . . .

• The mean and the variance:

E{yj} =

{
alj, j = 1, 2, . . .K

0, j > K
and

var{yj} = 1
2N0, all j

cov{yjyk} = 0, j 6= k
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• The joint pdf of y1, y2, . . ., given Hl:

fY (y1, . . . , yK|Hl) = C exp

− 1

N0

 K∑
j=1

(yj − alj)2 +

∞∑
j=K+1

y2
j


= C1 exp

− 1

N0

∞∑
j=K+1

y2
j

 fZ(y1, . . . , yK|Hl)

• Since this pdf factors, yK+1, yK+2, . . . are independent of
y1, y2, . . . , yK and the former provide no information for making a
decision. Thus d2 derived before is a sufficient statistic.
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Detection of M-ary orthogonal signals

ConsiderM -ary signaling scheme for which the signal waveforms have equal
energies and are orthogonal over signaling interval, i.e.,∫ T

0
si(t)sj(t)dt =

{
Es i = j

0 i 6= j
i = 1, 2, . . . ,M

Es is energy of each signal in (0, T ).
Example: We considered before the M -ary FSK:

si(t) = a cos{2π[fc + (i− 1)∆f ]t}, 0 ≤ t ≤ T

∆f =
m

2T
, m an integer, i = 1, 2, . . . ,M

Need K = M orthonormal functions. The receiver has M correlators.
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• Decision criterion:

max
l
zl = max

l

∫ T

0
y(t)φl(t)dt

i.e., the signal is chosen that has maximum correlation with the received
signal plus noise.
• Probability of symbol error:

PrE =
M∑
i=1

Pr{E|si(t) sent}Pr{si(t) sent}

=
1

M

M∑
i=1

Pr{E|si(t) sent}

where each signal is assumed a priori equal probable.
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• We may write

Pr{E|si(t) sent} = 1− Prci
Prci is the probability of correct decision given that si(t) was sent.

• A correct decision results only if

zj =

∫ T

0
y(t)sj(t)dt <

∫ T

0
y(t)si(t)dt = zi

for all i 6= j.
• Then we can write

Prci = Pr{all zj < zi, j 6= i}
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• If si(t) is transmitted, then

zi =

∫ T

0
[
√
Esφi(t) + n(t)]φi(t)dt =

√
Es + ni

ni =

∫ T

0
n(t)φi(t)dt

• Since zj = nj, i 6= j, given si(t) was sent, it follows that

Prci = Pr{all nj <
√
Es + ni, j 6= i}

• Note that ni is a Gaussian random variable with

var{ni} = E


[∫ T

0
n(t)φj(t)dt

]2
 =

N0

2
, E{ninj} = 0.
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• For a particular value of ni, we can write that

Prci =

M∏
j=1,j 6=i

Pr{nj<
√
Es+ni}=

∫ √Es+ni
−∞

e
−n2

j/N0

√
πN0

dnj

M−1

because the pdf of nj is Gaussian zero-mean with variance
√
N0/2.

• Average over all possible values of ni gives

Prci =

∫ ∞
−∞

e−n
2
i /N0

√
πN0

∫ √Es+ni
−∞

e
−n2

j/N0

√
πN0

dnj

M−1

dni

= (πN0)−M/2
∫ ∞
−∞

e−y
2

(∫ √Es/N0+y

−∞
e−x

2
dx

)M−1

dy

where the substitutions x = nj/
√
N0 and y = ni/

√
N0 are made.
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• Since Prci is independent of i

PrE = 1− Prci

• The integral can be computed numerically. See the figure PrE versus
Es/N0 log2M for several values of M .
• As M → ∞, error-free transmission can be achieved as long as
Es/N0 log2M > ln 2 = −1.59 dB. This error-free transmission is
achieved at the expense of infinite bandwidth, however, since M →∞
means that an infinite number of orthogonal functions are required.
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Probability of symbol error for detection of M -ary orthogonal signals:
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End of Introduction to Detection
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