MS-E1600 Probability Theory Department of Mathematics and Systems Analysis Aalto University

1 Event spaces and probability distributions

This exercise gets you introduced to the notion of a sigma-algebra, the mathematical model of an event space used in probability and statistics. In addition, you start to treat probability distributions as measures defined on a sigma-algebra.

1.1 Properties of sigma-algebras. Let \mathcal{F} be a sigma-algebra on a set Ω . Prove the following statements using the basic axioms of a sigma-algebra.

Hint. de Morgan's laws may be helpful.

- (a) \mathcal{F} contains the empty set \emptyset .
- (b) \mathcal{F} is closed under symmetric set differences: $A\Delta B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$, where $A\Delta B = (A \setminus B) \cup (B \setminus A)$. **Hint.** de Morgan's laws.
- (c) \mathcal{F} is closed under countable intersections: $\bigcap_{i\geq 1}A_i \in \mathcal{F}$ whenever $A_1, A_2, \ldots \in \mathcal{F}$.
- **1.2** Sigma-algebras on small finite sets. Let a, b, c be three distinct elements.
 - (a) Write down all sigma-algebras on $\Omega = \{a, b\}$.
 - (b) Write down all sigma-algebras on $\Omega' = \{a, b, c\}$.
 - (c) Give an explicit counterexample which shows that the union of two sigma-algebras is not necessarily a sigma-algebra.

1.3 Probability distributions on countable spaces. Let S be a finite set, and denote by $\mathcal{P}(S)$ the collection of all subsets of S. A function $p: S \to \mathbb{R}$ is called a probability mass function (pmf) if $p(s) \ge 0$ for all s and $\sum_{s \in S} p(s) = 1$.

- (a) Show that if p is a pmf on S, then the set function $\mu(F) = \sum_{s \in F} p(s)$ is a probability measure on $(S, \mathcal{P}(S))$.
- (b) Show that if μ is a probability measure on $(S, \mathcal{P}(S))$, then the function $p(s) = \mu(\{s\})$ is a pmf on S.

MS-E1600 Probability Theory Department of Mathematics and Systems Analysis Aalto University

1.4 Monotone continuity of probability measures. Let (S, \mathcal{F}, μ) be a probability space, that is, μ is a probability measure on (S, \mathcal{F}) . For real numbers x_1, x_2, \ldots we write

- $x_n \uparrow x$ if $x_1 \leq x_2 \leq \cdots$ and $x = \lim_{n \to \infty} x_n$,
- $x_n \downarrow x$ if $x_1 \ge x_2 \ge \cdots$ and $x = \lim_{n \to \infty} x_n$.

For events F_1, F_2, \ldots we write

- $F_n \uparrow F$ if $F_1 \subset F_2 \subset \cdots$ and $\bigcup_{n \ge 1} F_n = F$.
- $F_n \downarrow F$ if $F_1 \supset F_2 \supset \cdots$ and $\bigcap_{n \ge 1} F_n = F$.
- (a) Prove that $F_n \uparrow F \implies \mu(F_n) \uparrow \mu(F)$.
- (b) Prove that $F_n \downarrow F \implies \mu(F_n) \downarrow \mu(F)$.
- (c) Are the statements (a) and (b) true also in the case when μ is just assumed to be a measure on (S, \mathcal{F}) , not necessarily a probability measure?

1.5 Borel sets of the two-dimensional Euclidean space. The Borel sigma-algebra $\mathcal{B}(\mathbb{R}^2)$ is defined as the smallest sigma-algebra on \mathbb{R}^2 which contains all open sets in \mathbb{R}^2 . Denote the collection of closed south-west quadrants of \mathbb{R}^2 by

$$\pi(\mathbb{R}^2) = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\}.$$

Prove that this collection generates $\mathcal{B}(\mathbb{R}^2)$, that is, $\mathcal{B}(\mathbb{R}^2) = \sigma(\pi(\mathbb{R}^2))$.

Hint. The same line of proof as in the one-dimensional case ([Kyt19, Prop I.11] or [JP04, Thm 2.1] or [Wil91, 1.2.a]) works here. You may use the fact that every open set in \mathbb{R}^2 can be written as a countable union $\bigcup_{n=1}^{\infty} R_n$ of open rectangles of the form $R_n = (a_n, b_n) \times (a'_n, b'_n)$.

References

- [JP04] Jean Jacod and Philip Protter. Probability Essentials. Springer, second edition, 2004.
- [Kyt19] Kalle Kytölä. Probability theory. Lecture notes, 2019.
- [Wil91] David Williams. Probability with Martingales. Cambridge University Press, 1991.