MS-E1600 Probability Theory Department of Mathematics and Systems Analysis Aalto University

6 Convergence of random sequences

In this exercise you study which random sequences converge almost surely or converge in probability.

6.1 Variance. Denote the variance of a random variable $X \in \mathcal{L}^2(\mathsf{P})$ with expected value $m_X = \mathbb{E}[X]$ by $\operatorname{Var}(X) = \mathbb{E}[(X - m_X)^2]$.

- (a) Prove that $\operatorname{Var}(X + a) = \operatorname{Var}(X)$ and $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$ for all $a \in \mathbb{R}$.
- (b) If $X_1, \ldots, X_n \in \mathcal{L}^2(\mathsf{P})$ are independent, show that $\operatorname{Var}(\sum_{k=1}^n X_k) = \sum_{k=1}^n \operatorname{Var}(X_k)$.
- (c) Does the result of (b) remain true for dependent random variables? Prove the claim or give a counterexample

6.2 Some characteristic functions.

- (a) Let $p \in [0, 1]$. Calculate the characteristic function $\varphi_B(\theta) = \mathbb{E}[e^{i\theta B}]$ of a random variable B such that $\mathsf{P}[B=1] = p$ and $\mathsf{P}[B=0] = 1 - p$ (we denote $B \sim \text{Bernoulli}(p)$).
- (b) Let $p \in [0,1]$ and $n \in \mathbb{N}$. Calculate the characteristic function $\varphi_Z(\theta) = \mathbb{E}[e^{i\theta Z}]$ of a random variable Z such that $\mathsf{P}[Z=k] = \binom{n}{k}p^k(1-p)^{n-k}$ for all $k \in \{0,1,2,\ldots,n\}$ (we denote $Z \sim \operatorname{Bin}(n,p)$).
- (c) Show that if X and Y are independent, with characteristic functions φ_X and φ_Y , then the characteristic function of X + Y is $\varphi_{X+Y}(\theta) = \varphi_X(\theta) \varphi_Y(\theta)$.
- (d) Let B_1, \ldots, B_n be independent and identically distributed, with $\mathsf{P}[B_j = 1] = p$ and $\mathsf{P}[B_j = 0] = 1-p$, for all j. Compute the characteristic function of $S = B_1 + \cdots + B_n$ using parts (a) and (c). Compare with the result of part (b), and conclude that $S \sim \operatorname{Bin}(n, p)$.

6.3 Convergence in probability and convergence almost surely along a subsequence. Assume that X_1, X_2, \ldots are real-valued random variables and $X_n \xrightarrow{\mathsf{P}} X$. Let $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}}$ be two sequences of positive real numbers such that $a_k \downarrow 0$ and $\sum_{k=1}^{\infty} b_k < +\infty$ — for example $a_k = \frac{1}{k}$ and $b_k = 2^{-k}$.

- (a) Show that there exist positive integers $n_1 < n_2 < \cdots$ such that $\mathsf{P}[|X_{n_k} X| \ge a_k] \le b_k$.
- (b) With the sequence $(n_k)_{k\in\mathbb{N}}$ chosen as in part (a), show that

$$\mathsf{P}\Big[|X_{n_k} - X| \ge a_k \text{ for infinitely many } k\Big] = 0.$$

(c) With the sequence $(n_k)_{k\in\mathbb{N}}$ as in part (a), show that $X_{n_k} \xrightarrow{\text{a.s.}} X$ as $k \to \infty$. **Hint.**Recall a suitable Borel-Cantelli lemma. MS-E1600 Probability Theory Department of Mathematics and Systems Analysis Aalto University

6.4 Continuity and convergence in probability. A function $h: \mathbb{R} \to \mathbb{R}$ is called uniformly continuous if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x, y \in \mathbb{R}$ satisfying $|x - y| < \delta$ we have $|h(x) - h(y)| < \varepsilon$. Let X, X_1, X_2, \ldots be real-valued random variables defined on a probability space $(\Omega, \mathscr{F}, \mathsf{P})$. Prove the following statements:

(a) For any uniformly continuous $h \colon \mathbb{R} \to \mathbb{R}$,

$$X_n \xrightarrow{\mathbb{P}} X \implies h(X_n) \xrightarrow{\mathbb{P}} h(X).$$

Remark: The conclusion is actually valid for any continuous $h: \mathbb{R} \to \mathbb{R}$. You don't have to prove this, if you are busy with other things.

(b) For any bounded uniformly continuous $h: \mathbb{R} \to \mathbb{R}$,

$$X_n \xrightarrow{\mathbb{P}} X \implies \begin{cases} \mathbb{E} \big[|h(X_n) - h(X)| \big] \to 0, \\ \mathbb{E} \big[h(X_n) \big] \to \mathbb{E} \big[h(X) \big]. \end{cases}$$

Remark: The conclusions are not valid without the assumption of boundedness. Can you give a counterexample in that case?

6.5 Let X_3, X_4, \ldots be independent random variables such that for $k = 3, 4, \ldots$ we have

$$P[X_k = 0] = 1 - \frac{1}{k \log(k)}$$
 and $P[X_k = +k] = \frac{1}{2k \log(k)} = P[X_k = -k]$

- (a) Calculate the expected value and variance of X_k .
- (b) Show that we have

$$\sum_{j=3}^{\infty} \frac{1}{j \, \log(j)} = \infty \qquad \text{and} \qquad \frac{1}{n^2} \sum_{j=3}^{n} \frac{j}{\log(j)} \longrightarrow 0 \quad \text{as } n \to \infty$$

Hint.Recall that the integral function of $x \mapsto \frac{1}{x \log(x)}$ is $x \mapsto \log(\log(x))$.

For $n \geq 3$, define the average

$$A_n = \frac{1}{n-2} \sum_{k=3}^n X_k$$

- (a) Does the sequence $(A_n)_{n=3,4,\dots}$ of averages converge almost surely?
- (b) Does the sequence $(A_n)_{n=3,4,\dots}$ of averages converge in probability?