6 Convergence of random sequences

In this exercise you study which random sequences converge almost surely or converge in probability.
6.1 Variance. Denote the variance of a random variable $X \in \mathcal{L}^{2}(\mathrm{P})$ with expected value $m_{X}=$ $\mathbb{E}[X]$ by $\operatorname{Var}(X)=\mathbb{E}\left[\left(X-m_{X}\right)^{2}\right]$.
(a) Prove that $\operatorname{Var}(X+a)=\operatorname{Var}(X)$ and $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ for all $a \in \mathbb{R}$.
(b) If $X_{1}, \ldots, X_{n} \in \mathcal{L}^{2}(\mathrm{P})$ are independent, show that $\operatorname{Var}\left(\sum_{k=1}^{n} X_{k}\right)=\sum_{k=1}^{n} \operatorname{Var}\left(X_{k}\right)$.
(c) Does the result of (b) remain true for dependent random variables? Prove the claim or give a counterexample

6.2 Some characteristic functions.

(a) Let $p \in[0,1]$. Calculate the characteristic function $\varphi_{B}(\theta)=\mathbb{E}\left[e^{\mathrm{i} \theta B}\right]$ of a random variable B such that $\mathrm{P}[B=1]=p$ and $\mathrm{P}[B=0]=1-p($ we denote $B \sim \operatorname{Bernoulli}(p))$.
(b) Let $p \in[0,1]$ and $n \in \mathbb{N}$. Calculate the characteristic function $\varphi_{Z}(\theta)=\mathbb{E}\left[e^{\mathrm{i} \theta Z}\right]$ of a random variable Z such that $\mathrm{P}[Z=k]=\binom{n}{k} p^{k}(1-p)^{n-k}$ for all $k \in\{0,1,2, \ldots, n\}$ (we denote $Z \sim \operatorname{Bin}(n, p))$.
(c) Show that if X and Y are independent, with characteristic functions φ_{X} and φ_{Y}, then the characteristic function of $X+Y$ is $\varphi_{X+Y}(\theta)=\varphi_{X}(\theta) \varphi_{Y}(\theta)$.
(d) Let B_{1}, \ldots, B_{n} be independent and identically distributed, with $\mathrm{P}\left[B_{j}=1\right]=p$ and $\mathrm{P}\left[B_{j}=0\right]=1-p$, for all j. Compute the characteristic function of $S=B_{1}+\cdots+B_{n}$ using parts (a) and (c). Compare with the result of part (b), and conclude that $S \sim \operatorname{Bin}(n, p)$.
6.3 Convergence in probability and convergence almost surely along a subsequence. Assume that X_{1}, X_{2}, \ldots are real-valued random variables and $X_{n} \xrightarrow{\mathrm{P}} X$. Let $\left(a_{k}\right)_{k \in \mathbb{N}}$ and $\left(b_{k}\right)_{k \in \mathbb{N}}$ be two sequences of positive real numbers such that $a_{k} \downarrow 0$ and $\sum_{k=1}^{\infty} b_{k}<+\infty$ - for example $a_{k}=\frac{1}{k}$ and $b_{k}=2^{-k}$.
(a) Show that there exist positive integers $n_{1}<n_{2}<\cdots$ such that $\mathrm{P}\left[\left|X_{n_{k}}-X\right| \geq a_{k}\right] \leq b_{k}$.
(b) With the sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ chosen as in part (a), show that

$$
\mathrm{P}\left[\left|X_{n_{k}}-X\right| \geq a_{k} \text { for infinitely many } k\right]=0
$$

(c) With the sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ as in part (a), show that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$ as $k \rightarrow \infty$.

Hint.Recall a suitable Borel-Cantelli lemma.
6.4 Continuity and convergence in probability. A function $h: \mathbb{R} \rightarrow \mathbb{R}$ is called uniformly continuous if for every $\varepsilon>0$ there exists a $\delta>0$ such that for all $x, y \in \mathbb{R}$ satisfying $|x-y|<\delta$ we have $|h(x)-h(y)|<\varepsilon$. Let X, X_{1}, X_{2}, \ldots be real-valued random variables defined on a probability space ($\Omega, \mathscr{F}, \mathrm{P}$). Prove the following statements:
(a) For any uniformly continuous $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
X_{n} \xrightarrow{\mathbb{P}} X \quad \Longrightarrow \quad h\left(X_{n}\right) \xrightarrow{\mathbb{P}} h(X) .
$$

Remark: The conclusion is actually valid for any continuous $h: \mathbb{R} \rightarrow \mathbb{R}$. You don't have to prove this, if you are busy with other things.
(b) For any bounded uniformly continuous $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
X_{n} \xrightarrow{\mathbb{P}} X \quad \Longrightarrow \quad\left\{\begin{array}{l}
\mathbb{E}\left[\left|h\left(X_{n}\right)-h(X)\right|\right] \rightarrow 0 \\
\mathbb{E}\left[h\left(X_{n}\right)\right] \rightarrow \mathbb{E}[h(X)]
\end{array}\right.
$$

Remark: The conclusions are not valid without the assumption of boundedness. Can you give a counterexample in that case?
6.5 Let X_{3}, X_{4}, \ldots be independent random variables such that for $k=3,4, \ldots$ we have

$$
\mathrm{P}\left[X_{k}=0\right]=1-\frac{1}{k \log (k)} \quad \text { and } \quad \mathrm{P}\left[X_{k}=+k\right]=\frac{1}{2 k \log (k)}=\mathrm{P}\left[X_{k}=-k\right]
$$

(a) Calculate the expected value and variance of X_{k}.
(b) Show that we have

$$
\sum_{j=3}^{\infty} \frac{1}{j \log (j)}=\infty \quad \text { and } \quad \frac{1}{n^{2}} \sum_{j=3}^{n} \frac{j}{\log (j)} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Hint.Recall that the integral function of $x \mapsto \frac{1}{x \log (x)}$ is $x \mapsto \log (\log (x))$.
For $n \geq 3$, define the average

$$
A_{n}=\frac{1}{n-2} \sum_{k=3}^{n} X_{k}
$$

(a) Does the sequence $\left(A_{n}\right)_{n=3,4, \ldots}$ of averages converge almost surely?
(b) Does the sequence $\left(A_{n}\right)_{n=3,4, \ldots}$ of averages converge in probability?

