

Operation Management in Construction Lecture #2 LBMS planning intro

Olli Seppänen Associate professor

Topics, Lecture #2

- Learning objectives of Lecture #2
- LBMS planning overview
- Interactive planning example (in contact session)
- Production System risk
- Production System cost
- Planning case studies

 Introduction of Assignment #1: Production Planning assignment

Intended learning objectives for this lecture

- ILO 2: **Students can compare and contrast** the similarities and differences of different production planning and control methods
 - ILO emphasized for planning
- ILO 3: Students can calculate the production system cost of a schedule
 - ILO introduced: theory of production system cost
- ILO 4: **Students can explain** the factors related to production system risk of a schedule
 - ILO emphasized
- ILO 5: Students can explain the significance of work and labor flow and how flow can be achieved in construction
 - ILO introduced (planning)
- ILO 9: Students can analyze the quality of a location-based schedule
 - ILO introduced

LBMS technical system

Location hierarchy

Project 1											
Quadrant	Floor										
	Roof										
Carter	3										
Center	2										
	1										
	Roof										
Northeast	3										
Normwest	2										
	1										
	Roof										
Marthanat	3										
Northeast	2										
	1										
	Roof										
5 4	3										
Soumwest	2										
	1										
	Roof										
Southeast	3										
soumeast	2										
	1										

		ΙΥ
	Project 2	
Building	Floor	Area
	7	<u>B</u>
	6	B A
	5	B
	4	<u>B</u>
tesi denti al	3	B
	2	B
	1	B
	Basement	A Garage
	9	<u>B</u>
	8	B
	7	C
	/	<u>А</u>
	6	С В
		A C
Office	5	<u>B</u> A
	4	C B
		A C
	3	<u>B</u>
	2	C B
	1	A B
	*	Α

Floor	Area	1				
			2	3	4	
Tower Roof	STR C					
Level 12	STR C	1			Area C&D	
	STR B	1		Level 4	Area A&R	
Tower Roof	STR A	1				
	STR B	1		Level 3	Area C&D	
Level 12	STR A	1			Area A&B	
Level 11	STR C	1	IINTI		Area C&D	1
Level 10	STR C	1	1	Level 2	Area ARE	
Level 09	STR C	1			Alea Aug	
Level 08	STR C]		Level 1	Area C&D	
1	STR B]			Area A&B	
Lever 11	STR A]			Area C&D]
Laural 40	STR B]		Lower Level	Area A&B	
Lever to	STR A]				
Level 09	STR B]		East B@3	COORTINAD	
Level 03	STR A	1				
Lovel 09	STR B]		South@3	South	
Lever oo	STR A]				
Level 04	STR F]	[EXT]		West B	
Level 03	STR F	1		West B@3		
Level 02	STR F	1		[
Level 01	STR F	1		West A@3	West A	
Level 03	STR E	1				
Level 02	STR E	1		North@3	North	
Level 01	STR E	1			Area D	
Level 04	STR D	1			Area C	
Level 03	STR D	1		Level 4	Area B]
Level 02	STR D	1			Area D	
Level 01	STR D	1		Level 2	Area C	
Level 07	STR C	1		Levers	Area B	
Level 06	STR C	1	[SUP]		Area D	
Level 05	STR C	1		Level 2	Area C	
Level 04	STR C	1		Level 2	Area B	
	STR B	1			Area A	
Level 07	STR A	1		Level 1]
	STR B	1				j
Level 06	STR A					
	STR B	1			Area D	
Level 05	STR A					
	STR B	1				
Level 04						
1		ł			Area C	
Level 03	SIRC	ł	191191			
Level 02	STRC		[000]	Lower Level		
Level 01	STRO	{			Area B	
Level 03	SIKB					of Civil Engineering
	STPP	{				1/8/2021
Level 02	STRA					1/0/2021
	STD P	{			Area A	5
Level 01						
	SIRA	1				

Some LBS guidelines

- Locations must be physical and clearly defined
- Top level locations
 - Structurally independent sections (building / part of building) that can be completed as one entity
 - Separate buildings or separated by module lines / joints
- Lowest level locations
 - Small areas where only one **space-critical** task happens at the same time

Example of LBS of one floor

Quantities

- Estimated by location
 - Manually time consuming
 - BIM-based enables automated updates of quantities
- Related quantity items can form a task IF the work
 - Can be done at the same time in one location
 - Has the same logic outside the task
 - Can be completely finished in one location before moving to the next location

Location-based quantities

Same all iter	crew performs ns	Section:	A					В					
	Man-hours/unit	Floor:	1	2	3	4	Roof	1	2	3	4	Roof	
Code	Item	Consumption											Unit
365116	Fit prefabricated balcony post units	2,25	7	7	7	7		7	7	7	7	5	NO
355125	Install room-size/square panels	1,8	8	1	1	1		10	1	1	1		NO
335107	Install precast concrete floor slabs	0,6		2	2	2	3		2	2	2	3	NO
345115	Install prefabricated staircases	1,98	1	1	1			1	1	1	1		NO
355115	Install load-bearing room-size/square panels	1,8	8	1	1	1		9	1	1	1	19	NO
335108	Install prefabricated beams	1		32	32	32	32		32	32	32	32	NO
365135	Fit prefabricated balcony roof units	0,62					5					5	NO
355145	Install thin-shell panels	1,8		17	17	17	19	17	17	17		19	NO
365125	Fit prefabricated balcony floor units	1,85		5	5	5			5	5	5		NO
325125	Top layer finishing to concrete floor slabs	1,84	14	6	6	6		14	6	6	6		NO
325115	Install precast dividing walls	1,84	10	15	15	15		16	16	16	16		NO
235150	Install precast concrete hollow core slabs	0,61	28					32					NO
	Total man-hours		108	133	133	131	71	157	135	135	105	117	

Consumption rates and optimum crew

- Building construction
 - Consumption rate in manhours / unit or machine hours / unit
 - Consumption is the inverse of productivity (units / manhour)
 - Assumes optimum crew
 - Minimum number of people working together to achieve optimum production
 - Several optimum crews can be deployed to increase production rate (units / day)
- Infrastructure / roads etc.
 - Typically more machines
 - **Production rate** = units / day
 - Each machine type can have a different production rate / day for the same work.

Which labor consumption to use?

-	Total time (T4)		
4			
4	Method time (T2)		
Basic time (T1)	Non-productive time (TL1)	Non-productive time (TL2)	Non-productive time (TL3)

- "Effective time" 10-20% more than Method time
 - Includes "normal" disruptions of less than 1 hr
- Total time T4, 10-30% more than Effective time
- = a lot of waste in productivity estimates!

Source: Koskenvesa, Koskela et al. (2010)

From quantities to duration

Flowline Diagram – Overhead MEP

Flowline Diagram

Flowline Diagram

18

27

Video 2

Layered CPM Logic – elaborated in the contact session

Layer 1: Location-based link Layer 2: Location-based on higher level

Production system cost

Production system costs are functions of the schedule

- Direct labor costs
- Overhead costs

Measures the efficiency of the plan

• Better schedule – lower overall production system costs

Motivator for trade contractors to follow the plan

• Trade contractors pay for direct labor costs and any improvement in production system cost affects their bottom line

Production system cost components

- Working time
- Mobilization / demobilization
- Waiting time
- Moving around
- Logistics
- Overhead

Production system cost example

Calculation test

Floor	Nov		D	ec				Jan			Feb										
		47	48	49	50	51	52	1	2	3	4	5	6	7	8						
	14151613	7 18 21 22 23 24	25 28 29 30 1	25678	9 12 13 14 15	16 19 20 21 22 2	23 26 27 28 29 3	2345	3 9 ¹⁰ 1112	13 16 17 18 1920	2324252627	³⁰ ³¹ 1 2 3	67891	13141516	17 20 21 22 23 24						
5		Calcu with	late pr	oductior llowing i	n systen parame	n cost ters:							1	1							
4		50€/ Task 1 Task 2 8 hour	hr : 2 reso : 4 reso s / day	ources																	
3		Direct (De)mo resource Waiting	cost? ob cost ce for (g cost?	? (assur de)mob	ne 4 hr:)	s/															
2																					
1			1694-1		1994 C																

Production system risk

- Construction has high variability
 - Most of the variability is coming from external issues (70%)
 - Worker skills / work methods explain a small amount of variability (30%)
- Variability can be analyzed with risk analysis. LBMS divides variability to:
 - Variability in start dates
 - Variability in durations
 - Variability in productivity
 - Variability in resource availability
 - Variability caused by return delays

all	Design issues Material logistics Previous tasks Weather Resources Communication
	Work methods Skill differences Standardization
	Optimum productivity

Variability in start dates

Variability in durations

Variability in productivity

Area	Mar Apr																																					
	Mar	4	2	3	4	5	6	7	8	0	10	11	12	13	14	15	16	Apr 17	18	10	20	21	22	23	24	25	26	27	28	20	30	31	32	33	34	35	36	37
5	-1		4		rio 1	2	0	1	0	3	10		12	13	14	10	10		10	19	20	21		23	24	20	20		20	2	2		52	<u>JJ</u>	24	30	20	<u></u>
4			P lo	roduc catio	slov	ver tha	an pla w in a	anned all the	1.																	•												
3	Project start																																					
2																																						
1	1	ASK				_	_		TAS.		/																											
Target:		_		Actua	altere			Fored	cast: —		-																											
Design m	ode																																					
Schedule	Dianne	c v2 2	0.64	664																																		-

Aalto University School of Engineering

Variability of resource availability

Variability caused by return delays

Buffers to protect against risk – capacity buffer

- If variability / risks cannot be removed, buffers are needed
- CAPACITY BUFFER is one way of buffering
 - Plan with fewer resources than are available for the project OR
 - Plan with lower production rate
- "Buffer resources" can work on non-critical tasks
- Potential problem: setting goals low may result in low production (Parkinson's law)

Buffers to protect against risk – time buffer

- Time buffers can be added between tasks, construction phases or end of the project
- In LBMS, primarily between tasks
- Time buffers give time to react to deviations and prevent cascading delays
- However, they increase project duration

Planning example #1

Model-based Scheduling – 20 % duration compression

Planning example (Olivieri et al. 2018)

Thank you Questions & Comments

