
See video on how this course is organised in Youtube

Self-study guide

Week 1

Keywords: Introduction, Finite Element Workflow, Weak Form, Strong Form,
Finite Element Solution in 1D.

Homework: Problems P3, P5, P7, In addition, solve any additional two problems Outline of
Week 1 in
Youtube

from P1-P8 to gain extra points.

Pages: 4-20

Synopsis: During the first week, we have two learning goals. First goal is to
develop understanding of finite element simulation workflow. Particularly, which
steps are taken, e.g., to simulate the temperature inside a transistor. Second goal is
understand how finite element method solves PDEs. This is illustrated by solving
simple one dimensional Poisson’s equation.

Week 2 - Computer exercise week with contact teaching.

Keywords: Error, evaluation of error, uniform refinement, error plot, second order
finite element space.

Homework: Problems P10, P13, P14, In addition, solve any additional two prob-
lems from P10-P16 to gain extra points.

Pages: 21-31

Synopsis: During the second week we learn to evaluate finite element error and
modify the finite element solver to use second order basis functions. Understanding
error behaviour is important to guarantee that FE-solutions can be used to make
correct design decisions. Second order basis functions produce smaller error and
are often used in FE-simulation.

Week 3 - Self study week with youtube video material

Keywords: Weak derivative, Sobolev space, Poincare-Friedrichs inequality, Exis-
tence and uniqueness proof, Lax-Milgram Theorem, Variational problem, Elliptic-
ity, Energy minimisation.

Homework: Problems P17, P19, P22, In addition, solve any additional two prob- Outline of
Week 3 in
Youtube
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lems from P17-P25 to gain extra points.

Pages: 31-42

Synopsis: During the third week, we first introduce sufficient mathematical frame-
work required to prove the existence of a unique solution to weak formulation of
the one dimensional Poisson’s equation. This is, we define Sobolev spaces, their
norms, and inner products. To properly define Sobolev spaces, we discuss weak
derivatives. We apply the Lax-Milgram lemma that is an existence and uniqueness
proof for abstract variational problems to study our model problem. We illustrate
the importance of assumptions made in it’s formulation by giving a simplified ex-
istence proof. Finally, we discuss formulation of the variational problem as an
energy minimisation problem.

Week 4 - Self study week with youtube video material

Keywords: Error analysis, Cea’s Lemma, Nodal interpolation, Interpolation error,
Scaling argument, L2-error estimate.

Homework: Problems P28, P30, P31, In addition, solve any additional two prob- Outline of
Week 4 in
Youtube

lems from P26-P31 to gain extra points.

Pages: 42-52

Synopsis: During the fourth week, we derive error estimates for FE-solution in
H1, L2, and energy norms. Error estimate in H1 and energy norm follows by
establishing a relation between the FE-solution and the best approximation of u
form the FE-space. This relation allows us to compare the FE-solution with nodal
interpolant of u. FE-error estimate is obtained by analysing the interpolation error
using scaling argument. The L2-error is analysed using duality argument and it
exhibits faster convergence rate.

Week 5 - Youtube video material and Contact teaching

Keywords: FEM in 2D, Weak derivative and Sobolev spaces in dimension d,
Trace, Triangular mesh, piecewise linear FE-space, Affine mapping, Integration
over triangle.

Homework: Problems P32, P33, P34. In addition, solve any additional two prob- Outline of
Week 5 in
Youtube

lems from P32-P38 to gain extra points.

Pages: 52-65

Synopsis: During the fifth week, we discuss application of finite element method to
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solve a two dimensional model problem. First, Sobolev spaces in dimension d are
discussed. Then we derive the weak form of the model problem that FEM solves
approximately by posing it in finite dimensional function space. We use the space
of piece-wise linear functions defined on a conforming triangular partition. The
main task is to assembly a linear system related to this finite dimesional problem.
This requires evaluation of integrals over triangles. These integrals are evaluated by
making a change of variables to reference element and using numerical integration
method.

In computer exercises, we give assistance to solving problems P33 and P34. To
get most out of them, please, read Section 9.4 beforehand.

Week 6 - Youtube video material and Contact teaching

Keywords: FEM in 2D, Assembly, Reference basis functions, Implementation

Homework: Problems P40, P43, P44. In addition, solve any additional two prob- Outline of
Week 6 in
Youtube

lems from P39-P44 to gain extra points.

Pages: 65-70

Synopsis: During week six, we implement finite element solver in two dimensions.
The implementation is based on the one dimensional solver on p.17. The main task
is to assembly the matrix A and vector b. This is discussed in section 9.6 along
with method for evaluating hat basis functions using affine mapping and a reference
basis. The gradients of hat basis functions, required in assembly of A, are obtained
by multiplying the gradient of reference basis functions with appropriate term.

In computer exercises, we give assistance to solving problems P43 and P44. To
get most out of them, please, read Sections 9.6 and 9.8 beforehand.

Week 7 - Youtube video material

Keywords: FEM in 2D, Error analysis

Homework: Problems P45, P48, P49. In addition, solve any additional two prob- Outline of
Week 7 in
Youtube

lems from P45-P49 to gain extra points.

Pages: 70-81

Synopsis: During week seven, we discuss FE-error analysis for our two-dimensional
model problem. The analysis is almost identical with one dimensional case: We
use Cea’s Lemma to bound FE-error by interpolation error that is analysed using
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reference interpolation error estimate and the scaling argument. The main differ-
ence to one dimensional case are requirements that we make on the shape of the
triangles in the applied meshes.

Week 8 (The End)- Youtube video material

Keywords: Error analysis, Regularity

Homework: Problems P51, P52. In addition, solve problem from P50 to gain Outline of
Week 8 in
Youtube

extra points.

Pages: 81-84

Synopsis: During the last lecture week, we briefly discuss the H2(Ω)-regularity
assumption of the solution u. The effect of non-convex corner point of Ω to con-
vergence rate is investigated by numerical examples.

1 Introduction

Many physical quantities, such as temperature and magnetic field, are functions of
spacial coordinates. Often, these unknown functions satisfy mathematical models
that are expressed as Partial Differential Equations (PDEs), this is, equations in-
volving the unknown function, it’s partial derivatives, and input data. Predictions
on such physical quantities are made by solving the associated function from the
PDE. Explicit analytical expression for the solution can be found in very few spe- Example

on mod-
elling in
Youtube

cial cases, e.g., if the PDE is posed in simple domain and has constant coefficients.
Instead, the solution is approximated using numerical methods, such as the Finite
Element Method (FEM) that is the topic of these lecture notes.

Finite Element Method is a tool for computing approximate solutions to var-
ious PDEs. It can be used on complex domains and with difficult material be-
haviour. It has a solid theoretical background and the properties of FE-solutions
can be mathematically analysed. For example, the effect of method parameters
to the accuracy of computed approximate solutions is well understood. There ex-
ists dedicated commercial and open source software for conducting finite element
analysis, i.e. solving physical quantities from PDEs. All these factors make FEM
a widely used tool in scientific computing. FE-

workflow
in Youtube

Finite element workflow begins with the definition of the geometric shape for
the object under study. Simple geometric models are created using finite ele-
ment software, whereas more complex ones are imported from dedicated CAD-
programs. Next, the governing PDE or PDEs and their constitutive models are
defined for each part of the design. Then a mesh is generated for the object, this
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is, it is divided into triangular, tetrahedral, quadrilateral, pyramidal, hexahedral,
or prismatic subdomains called as elements. Finally, the finite element software
computes an approximate solution to the PDE. The obtained FE-solution can be
visualised to obtain intuition on the behaviour of the physical quantity. In addition,
it can be used to compute values for design parameters, such as maximal tempera-
ture or total heat flux.

In this note, we explain the mathematical principles behind the solution step
in the FE-workflow. These principles are best described by applying FEM to a
simple model problem. For this purpose, we use the Poisson equation posed on the
interval (0, 1) as discussed in Section 2. The solution steps for complex real-world
engineering problems and our model problem are nearly identical.

FEM finds an approximate solution to a PDE from a Finite Element space (FE-
space), a finite dimensional set of functions related to the mesh. In the simplest
case, the FE-space contains all continuous functions that are linear on each element
(i.e., continuous piecewise linear functions). Inside finite element solver, the FE-
space is defined using a basis that allows the solver to associate functions with
vectors in Rn. Basis and sets of functions are critical for understanding FEM and
discussed in Section A.

FE-solver computes an approximate solution to a linear PDE by using a basis of
the finite element space to transform it to a linear system. Coefficients of this linear
system are computed in an assembly step, discussed in Section 3, by evaluating
integrals related to basis functions and problem data. The resulting linear system is
solved and it’s solution is returned to the user. The solution is then visualised and
used to compute values for design parameters in post-processing step.

Example
1.1 in
Youtube

Example 1.1. As an example of FE-solution process, we conduct thermal analysis
of the power transistor depicted in Fig. 1. The aim in such analysis could be,
e.g., to study whether the maximal temperature of the transistor stays below the
limit recommended by the manufacturer or exceeds it. All FE-simulation is done
in Comsol Multiphysics.

We begin by describing the mathematical model used in thermal analysis. Let
Ω ⊂ R3 be an open set consisting of the power transistor. The stationary tem-
perature distribution inside the transistor is a function u : Ω 7→ R. Naturally,
the internal temperature depends on the outside world. We use a simplified model
and take the effect of the outside world into account by imposing boundary con-
ditions, i.e., conditions on the behaviour of u at the outer surface of the transistor,
or boundary ∂Ω.

To specify boundary conditions, the boundary ∂Ω is split into two open sets
Γleads and Γbody, see Fig. 2 These sets describe the part of the transistor soldered
to the circuit board and the part cooled by natural convection, respectively. Denote
the ambient temperature by Tamb = 25. We assume that the leads of the transistor
soldered to a circuit board stay at temperature Tamb, and impose the condition

u = Tamb on Γleads. (1)
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Parameter Value
Thermal conductivity for copper 385
Thermal conductivity for silica 20

Parameter h on Γbody 5
Source term for semiconductor part

corresponding to 2Watt power dissipation 125e6

Table 1: Parameter values used in Example 1.1. The source term is obtained by
dividing the total dissipated power of two watts by the volume of the semiconductor
part.

On rest of the boundary, we impose the boundary condition,

∂u

∂n
= h(u− Tamb) on Γbody. (2)

This boundary condition states that the heat flux is relative to the difference be-
tween ambient and surface temperatures. Eq. (2) is a simplified model for natural
convective cooling. The stationary temperature distribution inside the transistor
satisfies the PDE

−∇ · (k∇u) = f in Ω, (3)

where function f : Ω 7→ R models heat sources and parameter k : Ω 7→ R is
material dependent thermal conductivity. The heat source f corresponds to two
watt power dissipation in the semiconductor region and is zero otherwise. The
parameter values used in our example are given in Table 1.

To summarise, the temperature distribution u : Ω → R is solved from the
system

−∇ · (k∇u) = f in Ω

∂u

∂n
= h(u− Tamb) on Γbody

u = Tamb on Γleads

. (4)

We proceed to compute an approximate solution to (4) using FEM. First, a
geometric model of the power transistor is created. The model is constructed from
geometric components conforming with the four parts of the transistor and the
distinct boundary components. This way, the material parameters and boundary
conditions are the same for each geometric component, and they can be easily
specified to the FE-solver.

Next, we specify the PDE to be solved and the related material parameters.
Then, a mesh is generated for the geometric model. We use a mesh consisting
of tetrahedral elements or sub-domains, see Fig. 2. Finally, we compute the FE-
solution. The obtained approximate solution is visualised in Fig. 3.
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Figure 1: The power transistor studied in Example 1.1. The transistor consists
of four parts: copper back plate, silicone chip, ceramic body, and copper legs.
Dimensions of these parts in mm are show in the sketch on the right hand side.

Figure 2: From left: geometric model, boundary component Γleads, and the surface
mesh of the power transistor studied in Example 1.1.
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Figure 3: A slice plot of the temperature distribution insider the power transistor
studied in Example 1.1. The total power dissipated in the semiconductor is two
watts. Maximal temperature is 62.4 Celsius.
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Figure 4: Domain Ω ⊂ R3 for Problem P1. The source term is defined to have
value one in the dashed region and to be zero otherwise.

1.1 Problems

P1. (1p) Conduct thermal analysis for letter F using Comsol.

(a) Draw a three dimensional model of the letter F according to the sketch
given in Fig. 4. Create a separate geometric part of the subdomain
marked with lines.

(b) Let Ω ⊂ R3 be the domain drawn in (a). Solve the PDE

−∆u = f in Ω and u = 0 on ∂Ω.

The source term f has value one in the dashed subdomain is zero other-
wise.

(c) What is the maximal temperature ?

2 Poisson equation in 1D

In this section, we discuss one dimensional Poisson’s equation that is solved using
FEM in Section 3. The Poisson’s equation is: Find u ∈ C2(0, 1) ∩ C([0, 1]) such Poisson’s

Eq.
in Youtube

that

−d
2u(x)

dx2
= f in (0, 1)

u(0) = u(1) = 0.

(5)

The source function f : (0, 1) 7→ R is the given input and u = 0 imposes a zero
Dirichlet boundary condition to function u. Variants of the Poisson’s equation in
dimensions d = 1, 2, 3 arise in several fields of science. It is used, for example,
to model static electric fields or stationary temperature distributions as in Exam-
ple 1.1.
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The problem (5) is called as the strong form of the Poisson’s equation. The
problem is well defined only if there exists a solution that has two derivatives in
(0, 1) and is continuous on the closed interval [0, 1]. For such functions, we write
u ∈ C2(0, 1) ∩ C([0, 1]), for more details see Section A.2. Unfortunately, the
requirement on existence of a solution u having two derivatives is very strong, and
problem (5) is not well defined for all relevant source functions f .

Example 2.1. Consider solving problem (5) for

f(x) =

{
−1 x ∈

(
0, 1

2

]
1 x ∈

(
1
2 , 1
) .

Thus, on (0, 1/2) it holds that
d2u1

dx2
= 1

Integrating twice gives

u1(x) =
1

2
x2 + C1x+ C0

whereC1 andC0 are unknown constants. Imposing the boundary condition u(0) =
0 yields C0 = 0. Using similar process on (1

2 , 1) gives

u2(x) = −1

2
(x− 1)2 +D1(x− 1),

where D1 is an unknown constant. The solution u to (5) has to be continuous on
[0, 1] and twice differentiable on (0, 1). This is the case, if we manage to choose
C1 and D1 so that

u1

(
1

2

)
= u2

(
1

2

)
du1

dx

(
1

2

)
=
du2

dx

(
1

2

)
d2u1

dx2

(
1

2

)
=
d2u2

dx2

(
1

2

) (6)

are satisfied. The first and the second condition give the solution candidate

u(x) =

{
1
2x

2 − 1
4x x ∈ (0, 1

2 ]

−1
2(x− 1)2 − 1

4(x− 1) x ∈ (1
2 , 1)

.

This solution candidate does not satisfy third condition in (6). This is, we could not
find a solution with two derivatives to (5) with our example loading. The candidate
function and it’s derivatives are visualised in Figure 5.

The first step in solving (5) is to relax the requirements on the solution u by
deriving an alternative formulation of (5).
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Figure 5: From left: functions u,dudx , and d2u
dx2

defined in Example 2.1.

Weak form
in YoutubeWeak form To obtain a well posed problem for a sufficiently large class of func-

tions f , the strong form of the given PDE is transformed into it’s weak form.
The weak form is obtained by multiplying the strong problem with a test func-
tion v ∈ V , where V is an appropriate function space and integrating the right
hand side by parts. For (5) this gives: find u ∈ V such that∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
fv dx for all v ∈ V (7)

An appropriate choice for the space V is the Sobolev space H1
0 (0, 1), defined as

H1
0 (0, 1) :=

{
v ∈ L2(0, 1) |

∫ 1

0

(
dv

dx

)2

dx <∞ and v(0) = v(1) = 0

}
.

The validity of the weak problem (7) follows from the fact that one can prove ex-
istence of a unique solution u ∈ V for a sufficiently large class of source functions
f . In addition, any solution to (5) is also a solution of (7), thus, the weak problem
is generalisation of the strong one.

Example 2.2. Let

f(x) =

{
−1 x ∈

(
0, 1

2

]
1 x ∈

(
1
2 , 1
) ,

and consider solving the problem (7). In Example 2.1, we constructed the solution
candidate

u(x) =

{
1
2x

2 − 1
4x x ∈ (0, 1

2 ]

−1
2(x− 1)2 − 1

4(x− 1) x ∈ (1
2 , 1)

that does not have two derivatives at x = 1
2 . Next, we investigate if u is the

weak solution to (5). For any smooth function v satisfying v(0) = v(1) = 0 (or
v ∈ C∞0 (0, 1)) it holds that∫ 1

0

du

dx

dv

dx
dx =

∫ 1/2

0

du1

dx

dv

dx
dx+

∫ 1

1/2

du2

dx

dv

dx
dx
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Integrating by parts gives∫ 1/2

0

du1

dx

dv

dx
dx = −

∫ 1/2

0

d2u1

dx2
v dx+

du1

dx

(
1

2

)
v

(
1

2

)
− du1

dx
(0)v(0).

and∫ 1

1/2

du2

dx

dv

dx
dx = −

∫ 1

1/2

d2u2

dx2
v dx+

du2

dx
(1) v (1)− du2

dx

(
1

2

)
v

(
1

2

)
.

Recall, that function v is continuous and has zero boundary values, this is v(0) =
v(1) = 0. Using these properties and the definition of u gives

du1

dx

(
1

2

)
v

(
1

2

)
− du2

dx

(
1

2

)
v

(
1

2

)
= 0

and further ∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
fv dx.

This property extends to all test functions v ∈ H1
0 (0, 1) by density argument,

hence, u is a weak solution to (5). Detailed discussion on the density argument is
out of our scope and thus omitted.

The motivation for posing Eq. (7) in the space H1
0 (0, 1) is simply by always

having finite integrals on both sides of the Eq. (7). Note, that the homogeneous
Dirichlet boundary condition is included into the definition of the space H1

0 (Ω).
Intuitively speaking, weak form relaxes the requirement u ∈ C2(0, 1) or u

having two derivatives in two ways: first, integration by parts reduces the number
of derivatives taken from u to one. Second, the integral is blind to behaviour of a
solution u in a single point. For example, the function

ψ(x) =

{
2x x < 1

2

2− 2x x ≥ 1
2

is not differentiable at point x = 1
2 , but the integral∫ 1

0

(
dψ

dx

)2

dx

can be evaluated as∫ 1

0

(
dψ

dx

)2

dx =

∫ 1
2

0

(
dψ

dx

)2

dx+

∫ 1

1
2

(
dψ

dx

)2

dx = 4,

thus, it has a well defined value. The formal difficulty associated to taking a deriva-
tive of a non-differentiable function is remedied by the concept of weak derivative.
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2.1 Problems

P2. (1p) Find the strong solution to the two following PDEs

(a) Find u ∈ C2(0, 1) ∩ C([0, 1]) satisfying

−d
2u

dx2
= 1 and u(0) = u(1) = 0.

(b) Find u ∈ C2(0, 1) ∩ C([0, 1]) satisfying

−d
2u

dx2
= 1, u(0) = 1, and

(
du

dx

)
(1) = 0.

P3. (2p) Find the weak solution to the PDE

−d
2u

dx2
= f for f :=

{
1 x ∈ (0, 1

2 ]

0 x ∈ (1
2 , 1)

and u(0) = u(1) = 0.

Proceed as in Examples 2.1 and 2.2:

(a) Find a solution candidate u using integration on intervals (0, 1
2 ] and (1

2 , 1).

(b) Show that you candidate satisfies∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
fv dx

for any v ∈ C∞0 and thus is the weak solution.

(c) Plot functions u and du
dx .

3 Finite element method in 1D

In this Section, we discuss the steps taken in the solution of one dimensional Pois-
son’s equation in (5) using FEM. Identical steps are used to solve real engineering
problems.

Limit to
subspace
in Youtube

Limit to a subspace In finite element method, the solution to the weak problem
(7) is approximated by limiting into a finite dimensional subspace Vh ⊂ V . This
is, the problem: find uh ∈ Vh such that∫ 1

0

duh
dx

dv

dx
dx =

∫ 1

0
fv dx for all v ∈ Vh (8)

is solved instead of (7). Function uh satisfying (8) is called as the Ritz-Galerkin
approximation of u.
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To solve (8) with computer, we need to specify a basis for the space Vh. At
this point, the basis is arbitrary but later we use a specific finite element basis. Let
{ϕ1, ϕ2, . . . , ϕn} be some basis of Vh, this is, every vh ∈ Vh can be written as

vh =
n∑
j=1

αjϕj (9)

for some unique coordinate vector α ∈ Rn. Using expansion uh =
∑n

j=1 βjϕj
for the unknown solution uh, equation (8) becomes: find β ∈ Rn such that

n∑
j=1

βj

∫ 1

0

dϕj
dx

dv

dx
dx =

∫ 1

0
fv dx ∀v ∈ Vh. (10)

Because the space Vh is finite dimensional, the above equation is equivalent to:
find β ∈ Rn such that

n∑
j=1

βj

∫ 1

0

dϕj
dx

dϕi
dx

dx =

∫ 1

0
fϕi dx. (11)

for each i = 1, . . . , n. Observe that (11) is equivalent to the linear system: find
β ∈ Rn such that

Aβ = b,

where A ∈ Rn×n and b ∈ Rn have entries

Aij =

∫ 1

0

dϕj
dx

dϕi
dx

dx and bi =

∫ 1

0
fϕi dx.

FE-space
in YoutubeFinite element space The finite element method is a systematic way to construct

suitable space Vh and to evaluate the entries of the matrix A and the vector b.
We begin by describing the construction of the finite element space. In one spa-
tial dimension, the interval (0, 1) is first divided into sub-intervals as follows: Let
{xi}Ni=1 ⊂ R be a partition of the intervall [0, 1], i.e.,

0 = x1 < x2 < . . . < xN = 1.

The associated sub-intervals are defined as Ii = (xi, xi+1) ⊂ R for i = 1, . . . , (N−
1). These sub-intervals are called as elements.

The simplest example of a finite element space Vh is the space of continuous
piece-wise linear functions over the partition {xi}Ni=1 with zero boundary condi-
tions. Example of such function is given in Fig. 6. We formally define

Vh := { u ∈ C[0, 1] | u(0) = u(1) = 0, u|Ii ∈ P 1(Ii) for i = 1, . . . , (N − 1) }.

In the above definition, the constraint u ∈ C[0, 1] forces function u to be contin-
uous. The notation u|Ii , stands for the restriction of function u to the interval Ii,
i.e.,

u|Ii : Ii 7→ R and u|Ii(x) = u(x) for all x ∈ Ii.
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Figure 6: Example of piecewise linear function over partition 0, 0.2, 0.4, 0.8, 1

The condition u|Ii ∈ P 1(Ii) states that u is a linear function over interval Ii, and
u(0) = u(1) = 0 imposes the zero boundary condition at both end points. Each
function in Vh is uniquely defined, when its value at points {xi}N−1

i=2 is known. The
dimension of the space Vh is denoted by n and is n = N − 2.

The boundary conditions imposed in the space Vh complicate the assembly of
the matrix A and the vector b. Namely, the first and the last element in the parti-
tion have to be treated differently from other elements. To simplify the assembly
process, it is a common practice to consider the larger space

V̂h := { u ∈ C[0, 1] | u|Ii ∈ P 1(Ii) for i = 1, . . . , (n− 1) },

without any imposed boundary conditions, and to construct matrix Â ∈ Rn̂×n̂ and
vector b̂ ∈ Rn̂ related to V̂h. Here n̂ = N is the dimension of the space V̂h.
The space V̂h has infinitely many possible basis. In FEM, the hat basis functions
{ϕ̂j}n̂j=1, defined as

ϕ̂j ∈ V̂h and ϕ̂j(xp) =

{
1 when j = p

0 otherwise
(12)

for j ∈ 1, . . . , n̂, are used. Examples of these basisfunctions are given in Fig. 7. A
basis for the space Vh is obtained as

Vh = span{ϕ̂2, . . . , ϕ̂n̂−1},

this is, Vh is spanned by hat basis functions related to interior nodes of the partition,
see Fig. 7. The hat basis functions related to the interior nodes with indeces j ∈
{2, . . . , n̂− 1} have the expression

ϕ̂j(x) =


x−xj−1

xj−xj−1
x ∈ (xj−1, xj ]

xj+1−x
xj+1−xj x ∈ (xj , xj+1)

0 otherwise

similar relations hold for boundary nodes x1 and xN .
The hat basis functions are preferred as they are local: every hat basis func-

tion is nonzero over one or two elements. Only basisfunctions ϕ̂i and ϕ̂i+1 have
nonzero values on element Ii = (xi, xi+1).
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Figure 7: From top to bottom: basis functions ϕ̂2,ϕ̂3, and ϕ̂4 associated to the
partition {0, 0.2, 0.4, 0.8, 1}. These functions are a basis for the space Vh.

Assembly of the linear system Computing entries of the matrix Â and the vector
b̂,

Âij =

∫ 1

0

dϕ̂j
dx

dϕ̂i
dx

dx and b̂i =

∫ 1

0
fϕ̂i dx.

is called as assembly. entries are evaluated in a specific way: Finite element solver Assembly
of A
in Youtube

features a loop over elements in the mesh or partition. On each element, the solver
computes all integrals related to nonzero basis functions over it. The obtained
values are added to the appropriate entries of the matrix Â and vector b̂. This is,
the entries are computed by decomposing

Âij =

∫ 1

0

dϕ̂j
dx

dϕ̂i
dx

dx =
N−1∑
k=1

∫
Ik

dϕ̂j
dx

dϕ̂i
dx

dx

and computing the terms
∫
Ik

dϕ̂j
dx

dϕ̂i
dx dx for each interval (observe, that most of

these terms have value zero). The space V̂h is used so that each interval can be
treated identically.

We consider first assembly of matrix Â. On interval Ij , only basisfunctions ϕ̂j
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and ϕ̂j+1 have non-zero values. Thus, on Ij , the solver evaluates the integrals∫
Ij

dϕ̂j
dx

dϕ̂j
dx

dx,

∫
Ij

dϕ̂j+1

dx

dϕ̂j
dx

dx, and
∫
Ij

dϕ̂j+1

dx

dϕ̂j+1

dx
dx. (13)

The resulting values are added to entries (j, j), (j + 1, j),(j, j + 1),(j + 1, j + 1)
of Â as

Âlk = Âlk +

∫
Ij

dϕ̂l
dx

dϕ̂k
dx

dx for l, k ∈ {j, j + 1}.

The restrictions of basisfunctions ϕ̂j and ϕ̂j+1 to interval Ij are

ϕ̂j |Ij =
xj+1 − x
xj+1 − xj

and ϕ̂j+1|Ij =
xj − x

xj − xj+1
.

Observe, that the above formulas are valid also on first and last element. The
basisfunctions are picewise linear over the partition, hence, their derivatives are
constants over interval Ij . This makes the integrals in (13) easy to evaluate.

Next, consider assembly of b̂. On element Ij , the integrals∫
Ij

fϕ̂j dx, and
∫
Ij

fϕ̂j+1 dx (14)

are evaluated. The resulting values are added to entries b̂j and b̂j+1 as Assembly
of b
in Youtubeb̂l = b̂l +

∫
Ij

fϕ̂l dx for l ∈ {j, j + 1}.

Integrals in (14) involve a product of linear function and the source function f .
These integrals are computed approximately by using numerical quadrature rules.
We use the midpoint rule, and approximate∫

Ij

fϕ̂l dx ≈ f(xmp)ϕl(xmp)(xj+1 − xj) where xmp = 1
2(xj + xj+1).

After assembly, the matrix A and vector b are extracted from Â and b̂. Due to
the relation between the basis of Vh and V̂h it holds that

Aij = Âi+1,j+1 and bi = b̂i+1.

for any i, j = 1, . . . , n. In Matlab notation, A = Â(2 : (N − 1), 2 : (N − 1)) and
b = b̂(2 : (N − 1)), where N is the number of nodes in the partition. Implementation

in YoutubeExample implementation of the assembly process described above is given be-
low.

% Create uniform partition with N nodes for (0,1)
N = 1000;
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x = linspace(0,1,N);

% define the load function.
f = @(x)(ones(size(x)));

% Initialise the matrix Ahat and vector bhat.
Ahat = sparse(N,N);
bhat = zeros(N,1);

% loop over the intervals
for k = 1:(length(x)-1)

% extract endpoints of the interval
x1 = x(k);
x2 = x(k+1);

% evaluate length of interval k.
len = x2-x1;

% evaluate derivatives of basisfunctions on interval k.
dphi(1) = 1/(x1-x2);
dphi(2) = 1/(x2-x1);

% midpoint quadrature points
t = (x1+x2)/2; w = x2-x1;

% evaluate values of basisfunctions
% source term at integration points
phi(:,1) = (t-x2)./(x1-x2);
phi(:,2) = (t-x1)./(x2-x1);

fval = f(t);

% enumerate the basisfunctions on interval k.
enum([1 2]) = [k k+1];
for i=1:2

% evaluate intergrals related to b.
bhat(enum(i) ) = bhat(enum(i) ) + dot(fval.*phi(:,i),w);

for j=1:2
% evaluate integral related to A
Ahat(enum(i),enum(j)) = Ahat(enum(i),enum(j)) + dphi(i)*dphi(j)*len;

end
end

end

% remove basisfunction 1 and N+1 from the system
A = Ahat(2:(N-1), 2:(N-1) );
b = bhat(2:(N-1),1);

u(1,1) = 0;
u(N,1) = 0;
u(2:(N-1),1) = A\b;
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% plot the solution
plot(x,u);

The linear system The linear systemAβ = b defined in the previous step can be
very large. For example, obtaining an accurate solution to (5) posed in a compli-
cated three dimensional domain can lead to matrices of the dimension n = 1 · 106.
Although the matrices resulting from finite element discretisation are large, they
have very few non-zero entries and are symmetric as well as positive definite.

Matrices with a large number of non-zero entries are called as sparse. A con-
siderable amount of memory can be saved by storing only the non-zero entries and
their indices of sparse matrices. In Matlab n × m, sparse matrix data type us-
ing such storage strategy is initialised by command A = sparse(n,m). Linear
systems with sparse, symmetric and positive definite coefficient matrix are solved
using process similar to Gaussian elimination with the difference that symmetry is
utilised and the process tries to preserve all matrices as sparse in each intermediate
step. Solving the linear system is typically the most costly part in FE-analysis.

3.1 Problems

P4. (1p) Let Vh ⊂ H1
0 (0, 1) be a finite dimensional subspace with basis {ϕ1, . . . , ϕn}.

Show that problem: Find uh ∈ Vh satisfying∫ 1

0

duh
dx

dv

dx
dx =

∫ 1

0
fv dx for all v ∈ Vh (15)

and the problem : Find wh ∈ Vh satisfying∫ 1

0

dwh
dx

dϕj
dx

dx =

∫ 1

0
fϕj dx for all j ∈ {1, . . . , n}. (16)

are equivalent. Proceed as follows:

(a) Show that any solution uh to (15) satisfies (16).

(b) Show that any solution wh to (16) satisfies (15).

P5. (2p) Define Vh ⊂ H1
0 (Ω) as Vh := span{x(1−x), x2(1−x)}. Find uh ∈ Vh

satisfying ∫ 1

0

duh
dx

dv

dx
dx =

∫ 1

0
sin(πx)v dx for all v ∈ Vh. (17)

Proceed as follows:

(a) Write down the entries of the coefficient matrix A ∈ R2×2 and source
vector b ∈ R2 of the linear system Aβ = b corresponding to (17)

(b) Compute the entries of A and b by hand.
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(c) Use Matlab to solve β and plot the approximate solution uh over (0, 1).

P6. (0.5p) Consider the partition {0, 1
2 , 1} and the associated continuous piecewise

linear FE-space V̂h without imposed boundary conditions.

(a) Draw the hat basisfunctions ϕ̂1,ϕ̂2, and ϕ̂3 of V̂h.

(b) Represent the function x on (0, 1) as a sum of the hat basisfunctions
given in (a).

(c) Represent the function x− 1 on (0, 1) as a sum of the hat basisfunctions
given in (a).

P7. (2p) Consider the partition {0, 1
2 , 1} and the associated FE-space V̂h. Denote

the second element by I2 := (1
2 , 1).

(a) Give formulas for functions ϕ̂2|I2 , and ϕ̂3|I2 .

(b) Compute by hand the entries (2, 3) and (3, 3) of matrix Â corresponding
to V̂h.

(c) Verify your answer of (b) by using the example FE-code.

P8. (2p) Find exact solution to the strong problem: Find u ∈ C2(0, 1) ∩ C([0, 1])
satisfying

− d2u

dx2
= sin(πx) and u(0) = u(1) = 0. (18)

Study the effect of partition {xi} to the accuracy of piecewise linear FE-
solution. Proceed as follows:

(a) Modify the given example FE-solver to compute piecewise linear FE-
approximation to u.

(b) Compute the exact solution to (18).

(c) Compute the FE-solution using partitions having 10, 100, 1000 uniformly
spaced points. Plot FE-solutions and compare them visually to exact so-
lution computed in (b)

(d) Generate partitions {xi}Ni=1 as follows:

xi =
i− 1

N − 1
+

i− 1

10(N − 1)

(
1− i− 1

(N − 1)

)
for i ∈ {1, . . . , N}

Try different number of points. For each partition, plot FE-solution and
compare it visually to the exact solution computed in (b)

In (c), FEM solution has exact nodal values. This superconvergence is a spe-
cial feature of one dimensional finite element solution of the Poisson problem
on uniform partition. The partition in (d) is not uniform, FE-solution does
not have exact nodal values, and the superconvergence phenomenon is not ob-
served.
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4 Error

The finite element solution uh is an approximation of the exact solution u. In sev-
eral engineering disciplines, the FE-solution is used investigate if a design satisfies
given specifications. For instance, in Example 1.1 we studied if the maximal tem-
perature inside a power transistor stays below the allowed operation temperature
specified by the manufacturer. To guarantee that such decisions are correct, it is im-
portant to understand what is the error in the computed temperature or the accuracy
of the finite element solution.

In this section, we discuss the accuracy of the FE-solution to the one dimen-
sional Poisson’s equation (5). We are interested in the error function

e = u− uh.

As the basis functions are uniquely defined by the partition, the finite element ap-
proximation uh depends on the partition {xi} and the problem parameters. The
source function f is the only parameter of the Poisson’s equation posed over inter-
val (0, 1), hence, e = e({xi}, f).

In the rest of this section, we study the dependency of the error e from the
partition and the source term empirically. We consider uniform partitions: For
N ∈ N, N > 2, define

PN :=

{
i− 1

N − 1

}N
i=1

Observe, that each interval in PN has identical length. To each uniform partition,
we attach the mesh size h = 1

N−1 and characterise the error as a function of h.
The error is studied empirically as follow: First, we choose the such source

function f that the solution u can be explicitly found. Then we compute a FE-
solution and the corresponding error for several uniform partitions. Finally, the
dependency of FE-error on the mesh size h is studied by plotting the error as a
function of h. This kind of error study is not complete; by considering particular
source terms, we obtain examples on the accuracy of the finite element solution.
After developing sufficient tools, the effect of f is analysed mathematically.

Example 4.1. Let
u = (1− x)x. (19)

By direct computation, it holds that

−d
2u

dx2
= 2 on (0, 1) and u(0) = u(1) = 0.

Hence, u in (19) is a solution to (5) with source term f = 2. Error functions
corresponding to piecewise linear FE-approximation on uniform partitions with
N = 5, 10, 20 are depicted in Fig. 8. The FE-solution is piecewise linear over the
partition, hence, its values between nodes can be evaluated simply by using the
Matlab-function interp1. Example code is given below.
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Figure 8: The error functions computed in Example 4.1

% Create uniform partition with N nodes for (0,1)
N_list = [5 10 20];

% define the source term.
f = @(x)(2+0*x);

% define plotting grid.
t=linspace(0,1,1000);

figure;
for i = 1:length(N_list)

% Define the partition
x = linspace(0,1, N_list(i) );

% FE-solve.
u = solver1D(x,f);

% evaluate FE-function in plotting grid.
uh_t = interp1(x,u,t);

% exact solution at plotting grid.
u_t = t.*(1-t);

plot(t,u_t-uh_t);hold on;

end

legend('N=5','N=10','N=20');

It is difficult to quantify whether the errors are large or small based on Fig.8.
Instead, errors are typically quantified by measuring the size of the error function
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in energy-, H1-, or L2-norm. For our model problem these norms are:

energy norm: ‖v‖E :=

(∫ 1

0

(
dv

dx

)2

dx

)1/2

(20)

H1(0, 1)-norm: ‖v‖H1(0,1) :=

(∫ 1

0

(
dv

dx

)2

+ v2 dx

)1/2

(21)

L2(0, 1)-norm: ‖v‖L2(0,1) :=

(∫ 1

0
v2 dx

)1/2

. (22)

The energy-norm is related to the left-hand side of the weak form (8) and is differ-
ent for each PDE.

4.1 Evaluation of error norms

In this section, we discuss how the L2(0, 1)-norm of the error e = u − uh is
evaluated in FE-code. Generalisation to the energy- and H1(0, 1)-norms is left as
an exercise, see P10.

Consider partition {xi}, and let {ϕ̂i} be the corresponding basis of the space
V̂h. Recall, that the FE-solution uh ∈ Vh. Evaluating the L2(0, 1)-error in Vh
requires special treatment of the first and the last element. To avoid this, we write
uh in the basis of V̂h as

uh :=

n̂∑
i=1

β̂iϕ̂i. (23)

and evaluate the error in V̂h. The coordinate vector β̂ ∈ Rn̂ is obtained from
coordinate vector β ∈ Rn of uh in Vh as

β̂ =

0
β
0

 . (24)

To evaluate ‖e‖L2(0,1) , the integral over (0, 1) is split to a sum of integrals over
the elements Ij := (xj , xj+1),

∫ 1

0
e2 dx =

N−1∑
j=1

∫
Ij

[e|Ij ]2 dx.

Numerical integration is used to approximately evaluate the integrals over Ij . Let
(t,w) ∈ RM × RM be a numerical integration rule over Ij and approximate

N−1∑
j=1

∫
Ij

e|2Ij dx ≈
∑
k=1

[e(tk)]
2wk.
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We proceed to evaluate the values e(tk) = u(tk) − uh(tk). The restriction of the
finite element solution uh|Ij satisfies

uh|Ij = β̂jϕ̂j |Ij + β̂j+1ϕ̂j+1|Ij .

Hence, uh|Ij (tk) = β̂jϕ̂j |Ij (tk) + β̂j+1ϕ̂j+1|Ij (tk), where the restrictions of bas-
isfunctions are

ϕ̂j |Ij =
xj+1 − x
xj+1 − xj

and ϕ̂j+1|Ij =
xj − x

xj − xj+1
.

Example implementation is given in the code below. Numerical integration is done
using function gaussint.m that can be downloaded from gaussint.m

%
% x is the partition,
% uh is the coefficient vector of the solution,
% ufun is a function handle to exact solution.
%

function L2error = fem1D_error(x,u,ufun)
val = 0;

for i=1:(length(x)-1)

% Gaussian quadrature rule.
[t,w] = gaussint(2,x(i),x(i+1));

% evaluate the finite element solution at points t.

uh_tk = zeros(1,length(t));
u_tk = zeros(1,length(t));

for k=1:length(t)
uh_tk(k) = u(i)*( x(i+1)-t(k))/(x(i+1)-x(i));
uh_tk(k) = uh_tk(k) + u(i+1)*( x(i)-t(k))/(x(i)-x(i+1));
u_tk(k) = ufun(t(k));

end

% evaluate the integral
val = val + (uh_tk - u_tk).ˆ2*w(:);

end

L2error = sqrt(val);
end

Plotting the error Our aim is to empirically study the dependency of FE-error
measured in energy-, H1(0, 1)-, or L2(0, 1)-norm from the mesh size h and source
function f . After the error has been evaluated for several uniform partitions, it
is plotted. Different parameter dependencies are revealed by using loglog or
semilogy-plots: Let {(yi, xi)}Ni=1 ⊂ R× R be the given data points.
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• The loglog - plot: the set of data points is transformed as (log yi, log xi).
The transformed values are plotted in R2. A line on loglog-plot satisfies

log y = k log x+ b so that y = 10k log x+b = Cxk.

• The semilogy - plot: the set of data points is transformed as (log yi, xi).
The transformed values are plotted in R2. A line on semilogy-plot satisfies

log y = kx+ b so that y = 10kx+b = Cρx.

For instance, the loglog plot suggest that the L2(0, 1) error in Fig. 9 depends on
the mesh size as h2.

Example 4.2. Next, we compute the errors corresponding to source function f = 2
corresponding to the exact solution u = x(1− x). The L2(0, 1)-error is evaluated
on uniform partitions with N ∈ {10, 20, 40, 80, 160, 320} using the code given
below. The obtained errors are depicted in Fig. 9. The computed points lie on a
line. The slope is visually determined by comparing it to plots of functions h and
h2.

% Create uniform partition with N nodes for (0,1)

N_list = [10 20 40 80 160 320];

% define the source term.
f = @(x)(2+0*x);

for i = 1:length(N_list)

% Define the partition
x = linspace(0,1, N_list(i) );

% FE-solve.
u = solver1D(x,f);

% Rvaluate the error
L2error(i) = fem1D_error(x,u, @(x)( x.*(1-x)) );

end

figure;loglog(1./(N_list-1),L2error,'k:o')

25



Figure 9: The L2(0, 1)-norm of the error computed in Example 4.2 Based on this
the Figure, we the L2(0, 1)-error seems to behave as Ch2 for some constant C.
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4.2 Problems

P9. (1p) Consider the following approximations :∫ 1

0
x2 dx ≈ 1

N + 1

N∑
i=0

(
i

N + 1

)2

.

and
1

1− r
≈

N∑
i=0

ri, r =
1

2
.

(a) In both cases, use Matlab to compute and to plot the approximation error
as a function of N using commands plot, semilogy and loglog.

(b) Which graph is the most informative ?

(c) Use the graphs to determine the relation between the error and the pa-
rameter N for both approximations.

P10. (2p)

(a) Write a matlab function for evaluating the energy norm of the error.

(b) Write a Matlab function for evaluating the H1(0, 1)-norm of the error.

Hint: observe that ‖ · ‖H1(0,1) =
(
‖ · ‖2E + ‖ · ‖2L2(0,1)

)1/2
.

(c) Repeat the computation done in Example 4.2 and plot the energy- and
H1(0, 1)-norms of the error as a function of the mesh size h. Use loglog-
plot. How does the error depend on h ?

P11. (1p) Let

f(x) =

{
−1 x ∈

(
0, 1

2

]
1 x ∈

(
1
2 , 1
) (25)

Study the FE-error using a a sequencece of uniform partitions withN = 2k+1
nodes. Proceed as follows:

(a) Verify that the discontinuity of f matches with the nodes in the mesh.

(b) Compute the L2(0, 1), H1(0, 1) and energy norm errors.

(c) Plot the L2(0, 1), H1(0, 1) and energy norm errors. Use the plot to de-
termine, how the error depends on h.

P12. (2p) In assembly of 1D-finite element matrices, one has to compute integral
over interval (a, b) ⊂ R, where a < b. Such integrals are approximated using
numerical quarature rules as∫ b

a
f(x) dx ≈

m∑
i=1

f(xi)wi,
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where x1, . . . , xm ∈ R and w1, . . . , wm ∈ R are called quadrature points and
weights. Consider the midpoint rule,

m = 1, x1 =
a+ b

2
, and w1 = (b− a).

In the following, limit to interval (0, h), h > 0.

(i) Study the accuracy of the midpoint rule as a function of interval lenght h
numerically visualising the error

err(h) :=

∣∣∣∣∫ h

0
x2 dx− x2

1w1

∣∣∣∣
for different values of h. Use logarithmic-plot. For reference, plot func-
tions h, h2, h3 and guess how the error behaves.

(ii) Using integration by parts show that

f(x) = f

(
h

2

)
+ f ′

(
h

2

)(
x− h

2

)
−
∫ x

h/2
f
′′

(t) (t− x) dt.

Hint: start by writing

f(x) = f

(
h

2

)
+

∫ x

h/2
f ′(t) dt

(iii) Using (ii) show that∣∣∣∣∫ h

0
f(t) dt− f

(
h

2

)
h

∣∣∣∣ ≤ sup
x∈(0,h)

|f ′′(x)| 1
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h3.

How does this estimate correspond to (i) ?

5 Second-order basisfunctions

Accuracy of finite element solution can be improved by modifying the partition or
the applied FE-space Vh. In this section, we consider second-order FE-spaces,

V 2
h := { u ∈ C[0, 1] | u(0) = u(1) = 0, u|Ii ∈ P 2(Ii) for i = 1, . . . , (N − 1) }.

Similarly to Section 3, the finite element implementation is simplified by using the
space

V̂ 2
h := { u ∈ C[0, 1] | u|Ii ∈ P 2(Ii) for i = 1, . . . , (N − 1) }.

without imposed boundary conditions.
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Figure 10: The second order basisfunctions ϕi, ϕj+1, and ϕ(2)
Ij

.

We proceed to define a basis for the space V̂ 2
h . There are several possible

choices for the basis, that mostly affect the implementation. We use a simple hier-
archial basis for V̂ 2

h that is obtained by adding the bubble functions

ϕ
(2)
Ij

=

{
(x− xj)(xj+1 − x) for x ∈ Ij
0 otherwise

for every j ∈ {1, . . . , N − 1} to the hat-basis of V̂h. The bubble functions are
second order polynomials, and have value zero at both endpoints, see Fig. 10. The
inclusion of these new basisfunctions requires few small modification of our ex-
ample FE-solver:

1. Indexing: To keep track on which basisfunction is related to which element
the basisfunctions ϕ̂(p)

Ij
are given global indices as

ϕ̂N+j := ϕ̂
(2)
Ij

2. Integration: When using second order basisfunctions, their derivatives are
linear functions. Thus, the entries of the matrix Â have to be evaluated using
numerical integration. Download and use the function gaussint.m

3. Elimination of boundary basisfunctions. The matrix A is now extracted
form Â by removing the rows and the columns as follows:

idof = setdiff(1:(2*N-1),[1 N]); A = Ahat(idof,idof);

same process is used for b. After solution, it is best to store the solution as
coordinate of V̂h, e.g., as

u(1) = 0; u(N) = 0; u(idof) = A/b;
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4. Plotting: To plot the solution, we need to evaluate the finite element solution
on a set of points used for plotting. This is done similar to evaluation of
L2(0, 1)-norm of error, see problem 13.

5.1 Problems

P13. (2p). Write a Matlab-function for plotting v ∈ V̂ 2
h and it’s derivative. Proceed

as follows:

(a) Loop over the elements. On element (x(k), x(k + 1)), create a finer
plotting partition, for example, as
t = linspace(x(k),x(k+1),10);.

(b) Evaluate the basisfunctions and their derivatives at the nodes of the plot-
ting partition. Then, compute the value of v at the plotting partition using
the formula

v|Ik = βkϕ̂k|Ik + βk+1ϕ̂k+1|Ik + βN+kϕ̂
(2)
Ik
.

Use the same expansion to evaluate the first derivative of v.

(c) Test your implementation on partition {0, 0.3, 1} and plot v ∈ V̂ 2
h corre-

sponding to
β̂ =

[
0 0.0525 0 0.25 0.25

]
.

P14. (2p). Modify the example FE-solver to use second order polynomial basis-
functions. You have to do the modifications indicated in the list on p.29.

P15. (2p). Study the accuracy of the second order FE-solver. Proceed as follows:

(a) Write a function for evaluating the energy-, L2(0, 1)-, and H1(0, 1)-
errors of second order FE-solution.

(b) Let f = sinπx, and find the exact solution to (5) by integration.

(c) Compute the energy-, L2(0, 1)-, and H1(0, 1)-errors using uniform par-
titions with 10, 20 , 40, 80, 160, and 320 nodes.

(d) What do you observe ? Compare to results obtained with the first order
finite element method.

P16. (2p). Let ϕi = x(1− x)xi−1 and the space V p = span{ϕi}ni=1. Consider the
problem: find u ∈ V p such that∫ 1

0
u′(x)v′(x) dx =

∫ 1

0
f(x)v(x) ∀v ∈ V p,

(i) Write a Matlab program that assembles the matrix A ∈ Rn×n, Aij =
a(ϕj , ϕi), and the vector b ∈ Rn, bi = L(ϕi). You can fill in the missing
parts in the ex1_p2.m -function, see for file ex1_p2.zip.
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(ii) Let f(x) = sinπx and solve the problem for different values of n. Study
the accuracy of the solution by plotting the difference between the exact
solution −u′′e = f and the approximate one.

6 Sobolev Spaces

In Section 3, we claim that it is reasonable to look for the weak solution u to
(7) from the Sobolev space H1

0 (0, 1). In this Section, we discuss Sobolev spaces,
a family of function spaces defined by giving conditions for the integrability of
derivatives, in more detail. We restrict ourselves to Sobolev spaces based on the
L2 function space. All definitions are given for interval I = (a, b).

We proceed as follows: first, we generalise the derivative to functions less
regular than C1(I). Then we define the spaces Hm(I) and H1

0 (I), i.e. subspace
of H1(I) with imposed boundary condition u(a) = u(b) = 0. Finally, we specify
norm and inner product for these spaces and prove the Poincare-inequality that is
an essential component in the existence proof.

Weak
derivative
in Youtube

Weak derivative Recall that the value of an integral does not depend on the
behavior of the integrated function at a finite set of points. This property allows us
to extend the definition of the derivative to functions that are not differentiable in
the classical sense. The extension is based on the integration by parts formula∫

I
u′ϕ = −

∫
I
uϕ′ (26)

valid for all u ∈ C∞(I) and ϕ ∈ C∞0 (I). Observe, that the mapping

ϕ 7→ −
∫
I
uϕ′

is well defined for any u ∈ L1
loc(I) and ϕ ∈ C∞0 . The notation L1

loc(I) denotes
the space of functions that are Lebesque integrable over every compact subset of
I . The space L1

loc(I) is larger than the space L1(I). For example, the function 1
x

is integrable over every compact subset of (0, 1), but not over the whole interval
(0, 1).

Weak derivative is defined as:

Definition 6.1. The function u ∈ L1
loc(I) is weakly differentiable if there exists

v ∈ L1
loc(I) satisfying∫

I
vϕ = −

∫
I
uϕ′ for all ϕ ∈ C∞0 (I). (27)

We call v as the weak derivative of u.
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Intuitively speaking, the weak derivative is defined by solving it form the in-
tegration by parts formula (26). As all functions in (27) are under integral sign,
weak derivative is defined almost everywhere in I or up to finite set or pointwise
values. The weak derivative v is sought from L1

loc(I) as this is the largest possi-
ble space guaranteeing that

∫
I vϕ is well defined. Observe, that there are functions

u ∈ L1
loc that do not have a weak derivative, this is there does not exists v ∈ L1

loc(I)
satisfying (27).

Example 6.1. Consider computing the weak derivative of

u =

{
x for x ∈ (0, 1)

(2− x) for x ∈ [1, 2).

There holds that ∫ 2

0
uϕ′ =

∫ 1

0
xϕ′ +

∫ 2

1
(2− x)ϕ′.

Using Integration by parts, continuity of u, and continuity of ϕ gives∫ 2

0
uϕ′ = −

∫ 1

0
ϕ+

∫ 2

1
ϕ = −

∫ 2

0
vϕ for v =

{
1 for x ∈ (0, 1)

−1 for x ∈ (1, 2).

for all ϕ ∈ C∞0 (I). Thus, v is the weak derivative of u. Observe, that v is not
uniquely defined at x = 1.

Example 6.2. Consider computing the weak derivative of

u =

{
x for x ∈ (0, 1)

(3− x) for x ∈ [1, 2).

There holds that ∫ 2

0
uϕ′ =

∫ 1

0
xϕ′ +

∫ 2

1
(3− x)ϕ′.

Using integration by parts, definition of u, and continuity of ϕ gives∫ 2

0
uϕ′ =

∫ 2

0
vϕ+ ϕ(1) for v =

{
−1 for x ∈ (0, 1)

1 for x ∈ (1, 2).

for all ϕ ∈ C∞0 (I). We next investigate if the RHS can be written as
∫ 2

0 fϕ. Assume
that f ∈ L1

loc(I) satisfying ∫ 2

0
fϕ =

∫ 2

0
vϕ+ ϕ(1). (28)

exists. Now, choose a sequence {ψm} such that (f − v)ψm → 0 in L1
loc(I) and

ψm(1) = 1. Showing the existence of such sequence {ψm} is non-trivial, and
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requires the use of theorems related to Lebesque integration. As this is not the
topic of this lecture note, all details are omitted. There holds,

1 = ψm(1) =

∫ 2

0
(f − v)ψm → 0,

which is a contradiction. Thus there does not exists f satisfying (28), and u is not
weakly differentiable.

The function u is said to be n-times weakly differentiable, if it’s (n−1)th weak
derivative is weakly differentiable.

Sobolev spaces We have the following definition Sobolev
spaces in
YoutubeDefinition 6.2. Let m ∈ N, and define the space Hm(I) ⊂ L2(I) as the set of

those functions that are m-times weakly differentiable with all weak derivatives up
to order m in L2(I).

We proceed to specify inner product and the norm for there spaces. Norms
are used to measure how large functions are. They are necessary, for instance, to
study the dependency of the solution u on the source function f or to quantify the
FE-error.

Definition 6.3. Let u, v in L2(I). The inner product and the induced norm of the
space L2(I) are

(u, v)L2(I) =

∫
I
uv dx and ‖u‖L2(I) = (u, u)

1/2
L2(I)

=

(∫
I
u2 dx

)1/2

, (29)

respectively.

Definition 6.4. Let m ∈ N and u, v ∈ Hm(I). The inner product and the induced
norm of Hm(I) are

(u, v)Hm(I) =
m∑
α=0

(
d(α)u

dx(α)
,
d(α)v

dx(α)

)
L2(I)

(30)

and

‖u‖2Hm(I) = (u, u)Hm(I) =

m∑
α=0

∥∥∥∥∥d(α)u

dx(α)

∥∥∥∥∥
2

L2(I)

, (31)

respectively. Here we have use notation d(0)u
dx(0)

= u.

A function v belongs to space Hm(I) if it is m-times weak differentiable with
derivatives in L2(I), hence, the inner product and induced norm for Hm(I) in
Definition 6.4 are well defined.
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All inner products and the induced norms satisfy the Cauchy-Schwartz inequal-
ity. Particularly, there holds that

(u, v)L2(I) ≤ ‖u‖L2(I)‖v‖L2(I) (32)

for all u, v ∈ L2(I). The above inequality is frequently used in the following.
It is often useful to define the semi-norms:

Definition 6.5. Let m ∈ N and u ∈ Hm(I). Define the Hm(I)-semi-norm as

|u|Hm(I) :=

∥∥∥∥∥d(m)u

dx(m)

∥∥∥∥∥
L2(I)

. (33)

This definition makes more sence in dimensions d = 2, 3, where it involves
sum of all derivatives of order m.

The Sobolev spaceHm(I) is complete with respect to the norm ‖·‖m, and thus
a Hilbert space. Let I ⊂ Rn be an open and bounded set. Then C∞(I) is dense in
Hm(I), and Hm(I) is a completion of C∞(I) with respect to norm ‖ · ‖m. This
property allows us to give most proofs for C∞(I)-functions and extend them to
Hm(I) by density.

6.1 Poincare inequality and space H1
0 (I)

We have not specified what we mean by the boundary condition H1
0 (I)

and P-F in
Youtubeu(0) = u(1) = 0.

This a delicate question, because the functions u, v ∈ L2(I) are equivalent in
L2(I) if

‖u− v‖L2(I) = 0 or
∫
I
(u− v)2 dx = 0.

As the value of the integral is independent of pointwise behavior of the integrated
function at finite set of points, u and v are identical even if they have different
values at some points. Thus, it is not meaningful to impose pointwise constrains to
L2(I)-functions.

In one spatial dimension, functions in the space H1(I) are continuous, this is
H1(I) ⊂ C(I). Thus, the boundary values of H1(I) - functions are well defined.
This is not the case in dimensions two or three, where we need to specify boundary
conditions in different manner. Let I = (a, b). Then the space H1

0 (I) is defined as

H1
0 (I) := { u ∈ H1(I) | u(a) = u(b) = 0 }.

Functions in the spaceH1
0 (I) satisfy the Poincaré-Friedrichs inequality that relates

their L2(I)- and H1(I)-semi-norms.
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Theorem 6.1 (Poincaré-Friedrichs Inequality). Let I = (a, b) and denote s =
b− a. Then

‖v‖L2(I) ≤ s‖v′‖L2(I) ∀v ∈ H1
0 (I).

Remark 6.1. In the above theorem it is essential that v vanishes on the boundary.
There is also variant of the theorem that does not require the function to vanish,
but instead requires the mean value to vanish, that is, the above holds also for
v ∈ H1(I) such that

∫
I v dx = 0, see P19.

Proof. Without loss of generality, we assume that I = (0, s). Let v ∈ C∞0 (I).
Since the boundary values vanish, i.e. v(0) = 0, we have

v(x) = v(0) +

∫ x

0
v′(z) dz =

∫ x

0
v′(z) dz.

Using Cauchy-Schwarz we get

|v(x)|2 =

∣∣∣∣∫ x

0
v′(z) dz

∣∣∣∣2
≤

∣∣∣∣∣
(∫ x

0
12 dz

)1/2(∫ x

0
v′(z)2 dz

)1/2
∣∣∣∣∣
2

≤

[(∫ x

0
|1|2 dz

)1/2(∫ x

0
|v′(z)|2 dz

)1/2
]2

=

∫ x

0
|1|2 dz

∫ x

0
|v′(z)|2 dz

≤
∫ s

0
|1|2 dz

∫ s

0
|v′(z)|2 dz

= s‖v′‖2L2(I).

Next we integrate over the I to obtain

‖v‖20 =

∫ s

0
|v(x)|2 dx ≤

∫ s

0
s|v|21 dx = s2|v|21.

The proof is completed by using density argument.

This proof is easily extended to higher dimensions by using the above construction
for each dimension separately.

6.2 Problems

P17. (2p) Let α ∈ R and u : (−1, 1) 7→ R be defined as u(x) := (|x|α − 1).

(a) Plot u for different values of α.

(b) For which α is u in L2(−1, 1) ?
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(c) For which α is u weakly differentiable ?

(d) For which α is u in H1(−1, 1) ?

P18. (2p) Let I = (0, s). The Poincaré-Friedrichs Inequality states that ‖u‖L2(I) ≤
C(s)‖u′‖L2(I) for any u ∈ H1

0 (I) and some C(s) > 0 independent of u but
dependent on s. Study computationally how the constant C(s) depends on s.
Proceed as follows:

(a) Show that smallest possible C for interval I is characterized as

C−2 = min
u∈H1

0 (I)
G(u) where G(u) =

(u′, u′)L2(I)

(u, u)L2(I)
.

(b) Show thatC−2 is the smallest eigenvalue λi of the problem: find (λi, vi) ∈
(R, H1

0 (I) \ {0}) such that

(v′i, ϕ
′) = λi(vi, ϕi) ∀v ∈ H1

0 (I).

Hint : the minimum is located at the critical point u of G that can be
characterized as d

dtG(u + tv)|t=0
= 0 ∀v ∈ H1

0 (I). Also, note the

the each eigenvalue satisfies λi =
(v′i,v

′
i)

(vi,vi)
, in which vi is the eigenvector

corresponding to λi.

(c) Modify the example FE-solver to compute an approximation to the con-
stant C(s). Plot the constant as a function of s. How good is the value
given in Theorem 6.1 ?
Hint: The eigenvalue problem that you need to solve is Ax = λMx,
in which Aij = (ϕ′j , ϕ

′
i) and Mij = (ϕj , ϕi). In Matlab, the smallest

eiganvalue of such evp. can be solved with the command eigs(A,M,1,'SM').

P19. (2p) Let s > 0 and

W0 := { u ∈ C∞(0, s) |
∫ s

0
u(t) dt = 0 }.

(i) Show that for any u ∈ W0 there exists some ξ ∈ (0, s) such that u(ξ) =
0.

(ii) Show that there exists a positive constant C(s) independent of u such
that

‖u‖L2(0,s) ≤ C(s)‖u′‖L2(0,s) ∀u ∈W0.

By density argument, this inequality also holds in the space V0 := { u ∈
H1(Ω) |

∫ s
0 u = 0 }.
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7 Existence of unique solution

In this section, we show that the problem: find u ∈ H1
0 (0, 1) satisfying Abstract

setting in
Youtube

∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
fv for all v ∈ H1

0 (0, 1),

has a unique solution. We rely on the Lax-Milgram theorem, an existence theorem
formulated for an abstract variational problem. It can also be applied to show the
existence of a unique solution to other divergence-form PDEs.

Let V be a Hilbert space with inner product 〈·, ·〉V and the induced norm ‖·‖V .
In addition, let a : V × V → R be a bilinear form and L : V → R a linear
functional.

Definition 7.1. Mapping a : V ×V 7→ R is called as bilinear, if it is linear in both
of it’s arguments. This is, for u, v, w ∈ V and α ∈ R, we have

a(u+ v, w) = a(u,w) + a(v, w),

a(u, v + w) = a(u, v) + a(u,w),

a(αu, v) = αa(u, v),

a(u, αv) = αa(u, v).

Definition 7.2. Mapping L : V 7→ R is linear, if it holds that

L(u+ v) = L(u) + L(v) and L(αv) = αL(v).

The Lax-Milgram theorem concerns the variational problem: find u ∈ V sat-
isfying

a(u, v) = L(v) ∀v ∈ V. (34)

If we set V = H1
0 (0, 1), a(u, v) =

∫ 1
0 u
′v′ dx, and L(v) =

∫ 1
0 fv dx, prob-

lem (34) corresponds to the weak problem (7). Studying the above, more abstract
problem allows us to develop tools that can be used to tackle other problems, e.g.,
the two dimensional Poisson problem.

Following assumptions are made on a and L in (34):

Assumption 7.1. Let V be a Hilbert space with norm ‖ · ‖V , a : V × V 7→ R a
bilinear form, and L : V 7→ R a linear functional. Assume that a and L satisfy:

|a(u, v)| ≤ C‖u‖V ‖v‖V (Continuity) (35)

a(u, u) ≥ α‖u‖2V (Ellipticity) (36)

|L(v)| ≤ CL‖v‖V (Boundedness) (37)

for all u, v ∈ V and constants C,CLα > 0 indepedent on u and v.

Assumptions (35), (37) are very mild and guarantee that the definitions of
a(·, ·) and L(·) are reasonable. The assumption (36) is very strong and has cen-
tral role in the existence proof. It is also the most difficult assumption to satisfy.
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Theorem 7.1 (Lax-Milgram Theorem). Let a : V × V → R be an elliptic and
continuous bilinear form and L : V → R a bounded linear functional, then there
exists a unique u ∈ V such that

a(u, v) = L(v) ∀v ∈ V. (38)

Example 7.1. We proceed to show that the problem: find u ∈ H1
0 (0, 1) satisfying Example 7.1

in Youtube∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0
fv for all v ∈ H1

0 (0, 1),

has a unique solution for any f ∈ L2(I). Let V = H1
0 (0, 1), a(u, v) =

∫ 1
0 u
′v′ dx,

and L(v) =
∫ 1

0 fv. Clearly, a(u, v) is bilinear and L(v) is linear. To apply Lax-
Milgram Theorem, we have to verify that a(·, ·) and L(·) satisfy Assumptions 7.1.

Continuous First, we show that a(·, ·) satisfies (35). By Cauchy–Schwarz in-
equality Eq. (32), it holds that

|a(u, v)| =
∣∣∣∣∫ 1

0
u′v′ dx

∣∣∣∣ = |(u′, v′)L2(I)| ≤ ‖u′‖L2(I)‖v′‖L2(I) (39)

As x 7→
√
x is monotonously increasing and ‖w‖L2(I) ≥ 0, it holds that

‖w′‖L2(I) =
(
‖w′‖2L2(I)

)1/2
≤
(
‖w‖2L2(I) + ‖w′‖2L2(I)

)1/2
= ‖w‖H1(I)

for any w ∈ H1(Ω). It follows from (39) that a(·, ·) is continuous.

Elliptic Next, we show that a(·, ·) is elliptic. For this purpose, we use the Poincaré-
Friedrichs Inequality given in Theorem 6.1: ‖w‖L2(I) ≤ C‖w′‖L2(I) for any
w ∈ H1

0 (I) and some C > 0 dependent on I . There holds that

a(u, u) =

∫ 1

0

(
u′
)2

dx = ‖u′‖2L2(I).

Split ‖u′‖2L2(I) = 1
2‖u

′‖2L2(I) + 1
2‖u

′‖2L2(I). Applying the Poincaré-Friedrichs in-
equality to the latter term yields

‖u′‖2L2(I) ≥
1

2
‖u′‖2L2(I)+

1

2C
‖u‖2L2(I) ≥ min

{
1

2
,

1

2C

}(
‖u′‖2L2(I) + ‖u‖2L2(I)

)
.

Hence, a(u, u) ≥ α‖u‖2H1(I) for all u ∈ H1
0 (I) and α = min

{
1
2 ,

1
2C

}
.
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Bounded Finally, we show that L(v) is bounded. By C-S inequality in Eq. (32),

|L(v)| =
∣∣∣∣∫
I
fv dx

∣∣∣∣ =
∣∣(f, v)L2(I)

∣∣ ≤ ‖f‖L2(I)‖v‖L2(I),

for any v ∈ H1
0 (I). As ‖v‖L2(I) ≤ ‖v‖H1(I), Assumptions 7.1 are satisfied, and

the Lax-Milgram Theorem guarantees existence of unique solution to (7).

There are several alternative ways to prove the Lax-Milgram Theorem 7.1. We Simplified
proof of
LM in
Youtube

give a simplified proof under the assumption that V is a finite dimensional space
with the aim to build intuition on the the importance of Assumptions 7.1. Proof
in infinite dimensions utilises similar strategy, but is more technical. In the proof
we work both with functions in V and their coordinate vectors β ∈ Rn in basis
{ϕ1, . . . , ϕn} of V . We write

β ∼ u in V if u =

n∑
j=1

βjϕj .

proof of Lax-Milgram theorem in finite dimension. Assume that V is finite dimen-
sional. This is V has a basis {ϕj}nj=1 where n = dimV .

Formulate as linear system Similar to Section 3, we use the basis of V to re-
formulate (34) as a linear system. As V is finite dimensional, (34) is equivalent to:
find u ∈ V satisfying

a(u, ϕi) = L(ϕi) for each i ∈ {1, . . . , n}.

Expanding u =
∑n

j=1 βjϕj gives the linear system: find β ∈ Rn satisfying

Aβ = b for Aij = a(ϕj , ϕi) and bi = L(ϕi)

for all i, j ∈ {1, . . . , n}.

Study existence of unique solution to the linear system The linear system
Aβ = b has a unique solution if it has a trivial null-space this is, N(A) = {x ∈
Rn | Ax = 0} = {0}. This is,

Ax = 0⇒ x = 0.

Let Ax = 0. Clearly, xTAx = 0. By problem P20, it holds that xTAx = a(u, u)
for x ∼ u in V . Using ellipticity gives xTAx = a(u, u) ≥ α‖u‖2V , and further

‖u‖2V ≤ 0.

As ‖ · ‖V is norm of V it follows that ‖u‖V = 0, u = 0, x = 0, and N(A) = {0}.
This concludes the proof.

When V is infinite dimensional space, one has to formulate the variational
problem as an operator equation in V using the Riesz representation theorem. The
ellipticity assumption (36) is used to show that the operator equation has a unique
solution. Understanding the proof requires tools from functional analysis, and thus,
it is omitted.
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7.0.1 Problems

P20. (1p) Let V = span{ϕ1, . . . , ϕn}, a : V × V → R be symmetric and bilinear,
and L : V → R be linear. In addition, let A ∈ Rn×n, b ∈ Rn be defined as
Aij = a(ϕj , ϕi) and bi = L(ϕi) for i, j ∈ {1, . . . , n}. Show that

(i) (Ax)l = a(u, ϕl) for 1 ≤ l ≤ k and x ∼ u in V .

(ii) a(u, v) = yTAx for y ∼ v and x ∼ u in V

(iii) L(v) = yTb for y ∼ v in V .

P21. (0.5p)

(i) Let V = R and fix a(x, y) = 2xy and L(x) = 10x. Check that L is
linear and that a is bilinear and symmetric.

(ii) From now on, let V be a finite dimensional Hilbert space with basis
{ϕi}ni=1 , a : V ×V → R be symmetric and bilinear, and L : V → R be
linear L (general ones, not the ones given in (i)). Show that the problem:
find u ∈ V such that

a(u, v) = L(v), ∀v ∈ V,

is equivalent to: find u ∈ V such that

a(u, ϕj) = L(ϕj), j = 1, . . . , n.

Expand u =
∑n

j=1 βjϕj and show that β is solution to: Find β ∈ Rn
such that

Aβ = b,

where A ∈ Rn×n, b ∈ Rn are such that Aij = a(ϕj , ϕi) and bi = L(ϕi)
for i, j ∈ {1, . . . , n}.

P22. (2p) Consider the problem: Find u ∈ V such that

a(u, v) = L(v).

Show that there exists a unique solution when

(i) V = R2, ‖v‖V =
(
v2

1 + v2
2

)1/2, a(u, v) = 2u1v1 +u2v1 +u1v2 +2u2v2

and L(v) = v1 + v2.

(ii) V = H1
0 (0, 1), ‖v‖V =

(
‖v′‖2L2(0,1) + ‖v‖2L2(0,1)

)1/2
, a(u, v) =

∫ 1
0 σ(t)u(t)′v(t)′ dt

and L(v) =
∫ 1

0 v(t)′dt +
∫ 1

0 v(t) dt. The coefficient function σ ∈
L∞(0, 1) is bounded and positive a.e. in (0, 1).

P23. (2p) Let V0 and W0 be as in P19, f ∈ V0, and consider the weak problem:
Find u ∈ V0 such that ∫ s

0
u′v′ dt =

∫ s

0
fv ∀v ∈ V0. (40)
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(i) Show that there exists a unique solution to problem (40). Hint: use the
inequality from P19 (ii).

(ii) Let f ∈W0, u ∈ C2(0, s) ∩ C1([0, s]),
∫ s

0 u(t)dt = 0 satisfy

−u′′ = f in (0, s) and u′(0) = u′(s) = 0.

Show that u is a solution to problem (1).

7.1 Equivalence to minimization problem

In this Section, we show that the variational problem (34) can be formulated as Energy
min. prob-
lem in
Youtube

an energy minimisation problem if Assumptions 7.1 hold and a(·, ·) is in addition
symmetric, i.e.

a(u, v) = a(v, u)

for all u, v ∈ V .
‖v‖2E = a(v, v) (41)

and an inner product for functions in V . This norm is called the energy norm of the
variational problem, and it is equivalent to the norm of the Hilbert space V , i.e.,

c‖v‖V ≤ ‖v‖E ≤ C‖v‖V
for every v ∈ V and some c, C > 0 independent of v. The close connection
between energy norm and weak problem make it a good choise in proofs.

The solution to the variational problem (34) is equivalent to the following min-
imization problem: find u ∈ V such that

J(u) = min
v∈V

J(v), (42)

in which the energy functions J : V 7→ R satisfies J(v) = 1
2a(v, v) − L(v). To

show that (34) and (42) are equivalent, we look for the critical points of the energy
functional. If u ∈ V is the minimum, then for every v ∈ V

d

dε
J(u+ εv) (43)

must vanish at ε = 0. This yields

0 =
d

dε
J(u+ εv)|ε=0

=
[ d
dε

(1

2
a(u+ εv, u+ εv)− L(u+ εv)

)]
|ε=0

=
[1

2
a(v, u+ εv) +

1

2
a(u+ εv, v)− L(v)

]
|ε=0

=
1

2
a(v, u) +

1

2
a(u, v)− L(v)

= a(u, v)− L(v).

The converse is easy to see, if u solves the variational problem, then J(u + v) >
J(u) for any v ∈ V , v 6= 0.
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7.2 Problems

P24. (1p) Let V be a Hilbert space, a : V × V → R be a symmetric, elliptic and
continuous bilinear form and L : V → R a continuous linear functional. In
addition, let J : V → R be such that

J(v) =
1

2
a(v, v)− L(v).

Show that J is bounded from below. Hint: at some point it is useful to denote
t = ‖u‖V and study a polynomial of t.

P25. (1p) Use he same notation and make the same assumptions as in P24. Let u be
a solution to Problem a(u, v) = L(v) and ‖ · ‖2E = a(·, ·). Show that

(a) J(u+ v) > J(u) for any v ∈ V , v 6= 0.

(b) ‖u− v‖2E = 2(J(v)− J(u)) for any v ∈ V .

8 Error Analysis

In this section, we derive an upper bound for the H1(I)-, L2(I)-, and energy-
norms of FE-error, e = u − uh. For model problem (7), the error depends on the
the source term f and the partition {xj}, this is, e = e({xj}, f). We are interested
on the behavior of error norms when the mesh size h,

h := max
j∈{1,...,N−1}

(xj+1 − xj),

tends to zero for fixed f . Deriving such bounds is called as convergence analysis.
We prove the error estimate:

‖u− uh‖H1(I) ≤ Ch‖u′′‖L2(I) ≤ Ch‖f‖L2(I) (44)

for model problem (7). The error estimate (44) is valid when the exact solution
u ∈ H2(I).

Overview The error estimate in (44) is derived by taking the following steps:

1. Relate error to the approximation properties of the finite dimensional space:

Finite element method is a complicated process, and difficult to analyse di-
rectly. However, as a subspace method, FE- error is related to error of best
possible approximation of the exact solution form FE-space. Hence, the er-
ror can be related to another process, that is easier to analyse. Particularly,
we relate the error to the approximation of the exact solution from the finite
element space by nodal interpolation.
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2. Study the approximation properties for the finite dimensional space:

We derive an upper bound for the FE-error inH1-norm by studying how well
the exact solution can be approximated by the FE-space. Deriving suitable
results requires us to assume that u ∈ H2(I), or has two derivatives.

Higher regularity Before proceeding, we show that u ∈ H1
0 (I) satisfying∫

I
u′v′ dt =

∫
I
fv dt for f ∈ L2(I) and all v ∈ H1

0 (I) (45)

is in the space H2(I), i.e., u ∈ H2(I). Recall, that the function u′ ∈ L2(I) is
weakly differentiable with weak derivativew, if there existsw ∈ L1

loc(I) satisfying∫
I
wv dt = −

∫
I
u′v′ dt for all v ∈ C∞0 (I).

Using (45) and rearranging the terms gives∫
I
(w + f)v dt = 0 for all v ∈ C∞0 (I).

Hence,w = −f ∈ L2(I) is the second weak derivative of u. Naturally, ‖u′′‖L2(I) =
‖f‖L2(I). This higher regularity of u is an important property in bounding the error.

8.1 Cea’s Lemma

Let V be a Hilbert space with norm ‖ · ‖V . In this section, we study the abstract
variational problem: find u ∈ V satisfying

a(u, v) = L(v) for all v ∈ V. (46)

A subspace method approximates u from some finite dimensional sub-space Vh of Cea’s
Lemma in
Youtube

V as: find uh ∈ Vh satisfying

a(uh, vh) = L(vh) for all vh ∈ Vh. (47)

Under assumptions on a and L, the error ‖u− uh‖V satisfies Cea’s Lemma:

Lemma 8.1 (Céa’s Lemma). Let V be a Hilbert space with the norm ‖·‖V , Vh ⊂ V
a subspace of V , and u ∈ V , uh ∈ Vh solutions to (46) and (47), respectively.
Assume that a : V × V 7→ R and L : V 7→ R satisfy Assumption 7.1. Then

‖u− uh‖V ≤
C

α
inf

vh∈Vh
‖u− vh‖V .

This result tells us that the error u − uh is comparable to the error of the best
approximation of u from Vh.
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Proof. Using ellipticity of a (36), gives

‖u− uh‖2V ≤
1

α
a(u− uh, u− uh).

The proof follows from Galerkin orthogonality-property: As Vh ⊂ V , using (46)
and (47) gives

a(u− uh, vh) = a(u, vh)− a(uh, vh) = L(vh)− L(vh) = 0 (48)

for any vh ∈ Vh. Using Galerking orthogonality (48) and continuity (35) we get

‖u− uh‖2V ≤
1

α
a(u− uh, u− uh)

=
1

α
a(u− uh, u− vh)

≤ C

α
‖u− uh‖V ‖u− vh‖V

for any vh. Dividing by ‖u− uh‖V completes the proof.

If the bilinear form a satisfies Assumptions 7.1 and is symmetric, i.e., a(u, v) =
a(v, u) for all u, v ∈ V , a is an inner produt on V . The induced norm ‖v‖E :=
(a(v, v))1/2 is called as the energy norm. By a small modification to the proof of Symmetry

modifi-
cation in
Youtube

Cea’s Lemma 8.1, it is easy to show that

‖u− uh‖E ≤ inf
vh∈Vh

‖u− vh‖E .

This is, the finite element solution is the best approximation in the energy norm.

8.1.1 Problems

P26. (0.5p) Let V be a Hilbert space with norm ‖·‖V , and bilinear form a : V×V 7→
R satisfy Assumptions 7.1. In addition assume that a is symmetric. Show that

(a) Bilinear form a is an inner product on V .

(b) a(u− v, u+ v) = ‖u‖2E − ‖v‖2E .

P27. (0.5p) Let linear functional L : H1
0 (0, 1) 7→ R satisfy

L(v) :=

∫ 1

0
f ′v′ dt+

∫ 1

0
gv dt for all v ∈ H1

0 (0, 1)

Show that L satisfies Assumption 7.1 for V = H1
0 (0, 1).
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Figure 11: From left: example of nodal interpolation and the related interpolation
error.

8.2 Interpolation

Let u ∈ H1(I). The topic of this section is to define the nodal interpolant πu ∈ Vh
of the function u and to estimate the interpolation errors: Nodal In-

terpolation
in Youtube‖u− πu‖L2(I) and ‖(u− πu)′‖L2(I).

Let {xi}Ni=1 be a partition of I , Ij = (xj , xj+1) for j ∈ {1, . . . , N − 1}, and

V̂h = {v ∈ H1(I) | v ∈ P 1(Ij) for j ∈ {1, . . . , N − 1} }. (49)

Definition 8.1. Let V̂h be as defined in (49). The nodal interpolation operator
π : H1(I) 7→ V̂h is defined as

πv ∈ V̂h and (πv)(xj) = v(xj), ∀j = 1, ..., N.

Recall, that H1(I) ⊂ C(I), hence, the operator π is well defined. Example of
the nodal interpolant is given in Fig. 11. Choosing V = H1

0 (I), ‖·‖V := ‖·‖H1(I),
and combining the nodal interpolation with Céa’s Lemma 8.1 gives the estimate

‖u− uh‖1 ≤
C

α
‖u− πu‖1 (50)

for error between the exact and FE-solution to (7), respectively. Observe, that
estimate (50) holds also for other PDEs satisfying Assumptions 7.1. Hence, by
bounding ‖u− πu‖1, we obtain error estimates for several different PDEs.

We proceed to study approximation properties of the nodal interpolation op-
erator. First, we consider single element Î = (0, 1). Then, the estimates on Î
are extended to element (xj , xj+1) by using the scaling argument, a technique for
extracting explicit geometry dependency of constants.
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Figure 12: From left: example of nodal interpolation and the related interpolation
error over the single element (0, 1).

Let û ∈ H1(0, 1) and π̂û satisfy

π̂û ∈ P 1(0, 1), (π̂û)(0) = û(0), and (π̂û)(1) = û(1). (51)

Clearly ê(0) = ê(1) = 0, see Figure 12. We proceed by estimating the L∞(Î)-
norm of the interpolation error ê = û− π̂û.

Theorem 8.1. Let û ∈ H2(0, 1), π̂û ∈ P 1(0, 1) satisfy (51), and ê = û − π̂û.
Then there holds that

sup
t∈(0,1)

|ê(t)| ≤ C‖û′′‖L2(0,1)

for some C independent of û.

Proof. Let û ∈ C∞(Î). As ê(0) = ê(1) = 0, the supremum of |ê(t)| has to lie at
some zero of ê′. Let s ∈ (0, 1) satisfy

sup
t∈(0,1)

|ê(t)| = ê(s) so that ê′(s) = 0.

By the fundamental theorem of analysis and property ê(0) = 0,

ê(s) =

∫ s

0
ê′(t) dt.

Integration by parts gives

ê(s) = sê′(s)−
∫ s

0
tê′′(t) dt.

As s is extremal point of ê, ê′(s) = 0. Using the Cauchy-Schwartzh inequality
gives

|ê(s)| ≤
(∫ s

0
t2 dt

)1/2(∫ s

0
|ê′′(t)|2 dt

)1/2

.
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Observe that ê′′(t) = û′′(t). Expanding the range of integration and evaluating
the first term gives

|ê(s)| ≤ 1√
3

(∫ 1

0
|û′′(t)|2 dt

)1/2

.

The result given in Theorem 8.1 leads to estimates in the L2(0, 1)-norm and
the H1(0, 1) semi-norm.

Corollary 8.1. Use same notation and make same assumptions as in Theorem 8.1.
In addition, let Î = (0, 1). Then there holds that

‖ê‖L2(Î) ≤ C1‖û′′‖L2(Î) (52)

‖ê′‖L2(Î) ≤ C2‖û′′‖L2(Î). (53)

for some constants C1, C2 independent of û.

Proof. Problem P28

Scaling argument Next, we estimate ‖(u− πu)′‖L2(I). Identical techniques are
used to estimate ‖u− πu‖L2(I). First, the interpolation error is written as the sum
of element-wise interpolation errors,

‖(u− πu)′‖2L2(I) =

N−1∑
j=1

‖(u− πu)′|Ij‖2L2(Ij)
(54)

Each element-wise interpolation error term ‖(u−πu)′|Ij‖2L2(Ij)
is estimated using

Corollary 8.1 and scaling argument: Scaling ar-
gument in
YoutubeLemma 8.2. Let k ∈ {0, 1, . . .}, I = (a, b), hI := (b− a), and r : (0, 1) 7→ (a, b)

be defined as r(t̂) := (b − a)t̂ + a. In addition, let v ∈ Hk(I) and v̂ ∈ Hk(0, 1)
be defined as v̂(t̂) := v(r(t̂)). Then there holds that∥∥∥∥∥d(k)v

dt(k)

∥∥∥∥∥
L2(I)

= h
(1−2k)/2
I

∥∥∥∥∥d(k)v̂

dt̂(k)

∥∥∥∥∥
L2(Î)

. (55)

Here d(0)v
dt(0)

= v and d(0)v̂
dt̂(0)

= v̂.

Proof. The proof follows by the chain rule and change of variables in integration.
First, we make a change of variables t = r(t̂).∥∥∥∥∥d(k)v

dt(k)

∥∥∥∥∥
2

L2(I)

=

∫ b

a

[(
d(k)

dt(k)
v

)
(t)

]2

dt = hI

∫ 1

0

[(
d(k)

dt(k)
v

)
(r(t̂))

]2

dt̂
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Using the chain rule gives

d(k)

dt̂(k)
v̂(t̂) =

d(k)

dt̂(k)

[
v(r(t̂))

]
= hkI

(
d(k)

dt(k)
v

)
(r(t̂)). (56)

Hence,

hI

∫ 1

0

[(
d(k)

dt(k)
v

)
(r(t̂))

]2

dt̂ = h1−2k
I

∫ 1

0

[
d(k)

dt̂(k)
v̂(t̂)

]2

hI dt̂

Which completes the proof.

Theorem 8.2. Let u ∈ H2(I) and π : H1(I) 7→ V̂h be as in Def. 8.1. Then the
interpolation error satisfies Interpolation

error es-
timate in
Youtube

‖(u− πu)′‖L2(I) ≤ Ch‖u′′‖L2(I). (57)

and
‖u− πu‖L2(I) ≤ Ch2‖u′′‖L2(I). (58)

Proof. We give a proof for the first claim. Error estimate in the L2(I)-norm is left
as homework problem. Let rj(t̂) : (0, 1) 7→ Ij be defined as

rj(t̂) = (xj+1 − xj)t̂+ xj .

for j ∈ {1, . . . , N − 1}. In addition, let wj ∈ H1(Ij) and ŵj ∈ H1(0, 1) be
defined as wj = u|Ij − (πu)|Ij and ŵj(t̂) = wj(rj(t̂)). By scaling argument,
Lemma 8.2, the element-wise interpolation error satisfies

‖(u− πu)′|Ij‖2L2(Ij)
= ‖w′j‖2L2(Ij)

= h−1
Ij
‖ŵ′j‖2L2(0,1).

The interpolation error estimate in Corollary 8.1 gives

‖ŵ′j‖2L2(0,1) ≤ C‖ŵ
′′
j ‖2L2(0,1).

Using the scaling argument in Lemma 8.2 gives

‖ŵ′′j ‖2L2(0,1) ≤ h
3
Ij‖w

′′
j ‖2L2(Ij)

.

Combining above equations gives

‖w′j‖2L2(Ij)
= h−1

Ij
‖ŵ′j‖2L2(0,1) ≤ Ch

−1
Ij
‖ŵ′′j ‖2L2(0,1) ≤ h

2
Ij‖w

′′
j ‖2L2(Ij)

.

Using the Eq.(54) and estimating hIj ≤ maxj∈{1,...,N−1} hIj = h completes the
proof.
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The idea of the above proof is simple: instead of using a given interpolation
inequality on interval (xj , xj+1), scaling argument is used to transform the inter-
polation error norm to the reference element (0, 1). Interpolation error estimate
is derived on (0, 1) and applied to the transformed error term. The last step is to
map the result back to the actual element (xj , xj+1). Combining Cea’s Lemma and
Interpolation error theorem gives our final convergence estimate H1(I)

estimate in
YoutubeTheorem 8.3. Let {xj}Nj=1 be a partition of I , Vh ⊂ H1

0 (I) the piecewise linear
FE-space associated to {xj}, and u ∈ H1

0 (I), uh ∈ Vh solutions to (61) and (62),
respectively. Let a : V × V 7→ R and L : V 7→ R satisfy Assumption 7.1. In
addition, assume that u ∈ H2(I). Then

‖u− uh‖H2(I) ≤ Ch‖u′′‖L2(I)

where the mesh size h = maxj∈{1,...,N−1}(xj+1 − xj).

Proof. The proof follows by combining Cea’s Lemma and interpolation error esti-
mate.

8.3 Problems

P28. (2p) Prove Corollary 8.1 Hint: Use Theorem 8.1. The second inequality re-
quires you to use the integration by parts formula∫ b

a
e′(t)e′(t) dt = −

∫ b

a
e(t)e′′(t) dt,

when e(a) = e(b) = 0.

P29. (2p) Show that

‖p̂′‖L2(0,1) ≤ Ĉ‖p̂‖L2(0,1) for all p̂ ∈ P 1(0, 1),

where constant Ĉ is independent of p̂. Proceed as follows:

(a) Let {ϕ1, ϕ2} be a basis of P 1(0, 1) andA,M ∈ R2×2 have entriesAij =∫ 1
0 ϕ
′
iϕ
′
j and Mij =

∫ 1
0 ϕiϕj for i, j ∈ {1, 2}. Show that xTAx =

‖p′‖2L2(0,1) and xTMx = ‖p‖2L2(0,1) for p = x1ϕ1 + x2ϕ2 and further
that

Ĉ2 = max
x∈R2

xTAx

xTMx

(b) Show that A, M are symmetric matrices. In addition, show that A is
positive semi-definite and M is positive definite matrix, i.e.

xTAx ≥ 0 and xTMx > 0 for all x ∈ R2 \ {0}.
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(c) Let B ∈ R2×2 be symmetric. Show that

λmin(B)xTx ≤ xTBx ≤ λmax(B)xTx

for all x ∈ R2. Here λmin(B) and λmax(B) are the smallest and largest
eigenvalues of B. Further, derive the estimate

Ĉ2 ≤ λmin(M)λmax(A)

and argue that λmin(M), λmax(A) > 0.

P30. (2p) Let Vh be the first order FE-space related to partition {xj}Nj=1 of I . As-
sume there exists ρ independent of N and h such that

min
i∈{1,...,N−1}

(xi+1 − xi) ≥ ρh.

Prove the inverse inequality: there exists a constant C dependent on ρ but
independent of vh and h such that

‖v′h‖L2(I) ≤ Ch−1‖vh‖L2(I) for all vh ∈ Vh. (59)

Use the scaling argument and result of Problem P29.

P31. (2p) Let f ∈ L2(0, 2) and σ : (0, 2) 7→ R be defined as σ :=

{
1 t ∈ (0, 1]

2 t ∈ (1, 2)
.

Consider the problem: find u ∈ H1
0 (0, 2) such that∫ 2

0
σu′v′ dt =

∫ 2

0
fv dt for all v ∈ H1

0 (0, 2). (60)

(a) Formulate (60) as an abstract variational problem: find u ∈ V s.t. a(u, v) :=
L(v) for all v ∈ V . Show that a and L satisfy Assumptions 7.1.

(b) Show that u|(0,1) ∈ H2(0, 1), u|(1,2) ∈ H2(1, 2), ‖(u|(0,1))
′′‖L2(0,1) =

‖f |(0,1)‖L2(0,1), and ‖(u|(1,2))
′′‖L2(1,2) = 1

2‖f |(1,2)‖L2(1,2)

(c) Consider solving the problem (60) with first order FE-method using a
partition {xj}Nj=1 having node at 1. Show that the FE-solution satisfies
the error estimate ‖u− uh‖E ≤ Ch‖f‖L2(I).

8.4 L2-error estimate

So far we have derived FE-error estimate in the H1(I)-norm. The same theory
naturally applies also in the energy norm. In this section we derive an estimate
for the FE-error in the L2-norm using the so-called Aubin-Nitsche trick or duality L2(I)

estimate in
Youtube

argument.
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Consider the abstract variational problem : find u ∈ H1
0 (I) satisfying

a(u, v) = L(v) for all v ∈ H1
0 (I), (61)

and it’s FE-approximation: find uh ∈ Vh satisfying

a(uh, vh) = L(vh) for all vh ∈ Vh. (62)

Here Vh is the first order FE-space. Make Assumptions 7.1 on a and L. In addition,
assume that a is symmetric,

L(v) =

∫
I
fv for some f ∈ L2(I),

and that the solution u to (61) satisfies u ∈ H2(I) and ‖u′′‖L2(I) ≤ ‖f‖L2(I). In
other words, the H2(I) - norm of the solution is bounded by the L2-norm of the
source function f ∈ L2(I).

We arrive to the theorem :

Theorem 8.4. Let {xj}Nj=1 be a partition of I , Vh ⊂ H1
0 (I) the piecewise linear

FE-space associated to {xj}, and u ∈ H1
0 (I), uh ∈ Vh solutions to (61) and (62),

respectively. Assume that a : V × V 7→ R is symmetric and satisfies Assump-
tion 7.1, and L : V 7→ R is such that L(v) =

∫
I fv for some v ∈ L2(I). In

addition, assume that u ∈ H2(I) and ‖u′′‖L2(I) ≤ C‖f‖L2(I). Then

‖u− uh‖L2(I) ≤ Ch2‖f‖L2(I).

Proof. Recall the Galerkin orthogonality property:

a((u− uh), vh) = 0 for all vh ∈ Vh.

Observe that e := u − uh ∈ H1
0 (I) ⊂ L2(I). Hence we can set e as the load

functional and study the dual problem: find w ∈ H1
0 (Ω) such that

a(w, v) =

∫
I
ev dt ∀v ∈ H1

0 (Ω). (63)

By assumptions, w ∈ H2(I) and ‖w′′‖L2(I) ≤ C‖e‖L2(I). Choose v = u− uh ∈
H1

0 (Ω) in (63) to get

‖u− uh‖2L2(I) =

∫
I
e(u− uh) dt = a(w, u− uh).

Using symmetry and Galerkin orthogonality, we can insert the interpolation of w

‖u− uh‖2L2(I) = a(w − πw, u− uh).

Using continuity (35) yields

‖u− uh‖2L2(I) ≤ ‖w − πw‖H1(I)‖u− uh‖H1(I).
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Using the interpolation result for the first part and the usual finite element error
estimate for the second part gives

‖u− uh‖2L2(I) ≤ Ch
2|w′′|L2(I) |u′′|L(I).

Using |w′′|L2(I) ≤ C‖e‖L2(I) completes the proof.

.
Above we discovered that the L2(I)-error estimate has O(h2) convergence.

Previously we found out that the H1-error estimate has O(h) convergence. If the
problem is regular enough and the elements span higher order polynomials, then
the rule of thumb is that the L2-error estimate has one more power of h in conver-
gence compared to the H1-estimate. For example, for second order polynomials it
holds that ‖u− uh‖1 ≤ Ch2|u|3 and ‖u− uh‖0 ≤ Ch3|u|3.

9 Finite element method in two dimensions

Let Ω ⊂ R2, source term f ∈ L2(Ω), and material coefficient K ∈ R2×2 be Introduction
to week 5
in Youtube

symmetric and positive definite matrix, i.e.,

λmaxξ
T ξ ≥ ξTKξ ≥ λminξT ξ

for all ξ ∈ R2 and λmax, λmin > 0 independent of ξ. In this section, we ap-
ply finite element method to solve the model problem: Find u ∈ C2(Ω) ∩ C(Ω)
satisfying

−∇ ·K∇u = f in Ω

u = 0 on ∂Ω.
(64)

Sobolev spaces in higher dimensions Before applying finite element method,
PDE (64) is reformulated as a weak problem posed in an appropriate Sobolev
space. We start by defining the necessary spaces in dimension d = 1, 2, 3. We
make the following simplifying assumptions on Ω:

Assumption 9.1. Assume that Ω ⊂ R2 is a simply connected polyhedral domain
with finite number of boundary segments.

This is, the boundary ∂Ω is a polygon and Ω is an open, bounded, and connected
set that does not have any holes, see Fig. 13. In the following, all derivatives are
interpreted in the weak sense.

Definition 9.1. Let u ∈ L1
loc(Ω). The function u is weakly differentiable, if there

exists wi ∈ L1
loc(Ω) for i ∈ {1, . . . , d} such that

(wi, ϕ)L2(Ω) = −(u, ∂iϕ)L2(Ω) for all ϕ ∈ C∞0 (Ω).

We call wi as the weak ith partial derivative of u, and write ∂iu = wi.
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Figure 13: Examples of domains satisfying assumptions 9.1.

Higher weak partial derivatives are obtained by iterating the above definition. When
defining Sobolev spaces we impose conditions on partial derivatives of order m or
less that are easiest to express using a multi-index.

Definition 9.2. We call vectors α ∈ {0, 1, 2 . . . , }d as multi-indices, and denote

∂α := ∂xα11 ,...,x
αd
d
.

In addition, we use the notation |α| := α1 + . . .+ αd.

For example, we write ∂αu ∈ L2(Ω) for all |α| = m to require that all partial
derivatives of orderm lie in the spaceL2(Ω). The Sobolve spaceHm(Ω) is defined
as

Definition 9.3. Let Ω and u ∈ L1
loc(Ω). Then u ∈ Hm(Ω), if u is m-times weakly

differentiable and ∂α ∈ L2(Ω) for all |α| ≤ m.

Definition 9.4. The Hm(Ω) inner product and the induced norm are

(u, v)Hm(Ω) :=
∑
|α|≤m

(∂αu, ∂αv)L2(Ω)

and

‖u‖Hm(Ω) := (u, u)
1/2
Hm(Ω) =

 ∑
|α|≤m

‖∂αu‖2L2(Ω)

1/2

Spaces H1(Ω) and H2(Ω) are enough for most of our purposes.

Space H1
0 (Ω) Next, we consider zero boundary conditions in more detail. The H1

0 (Ω)
space in
Youtube

space H1(Ω) is not a subset of C(Ω) for d = 2, 3. Further, if d = 2, 3, H1(Ω)-
functions that have different values only on the boundary ∂Ω are considered equiv-
alent, hence the restrictions of H1(Ω)-functions to ∂Ω has essentially no meaning.
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Zero boundary conditions are imposed on functions in H1(Ω) using the trace-
operator T : H1(Ω) → L2(∂Ω). Here L2(∂Ω) is the space of square integrable
functions over ∂Ω with the inner product and the induced norm

(u, v)L2(∂Ω) :=

∫
∂Ω
uv and ‖v‖L2(∂Ω) := (v, v)

1/2
L2(∂Ω)

=

(∫
∂Ω
v2

)1/2

.

The trace operator is an continuous extension of the classical restriction operator,
this is, operator T satisfies

Tv = v|∂Ω ∀v ∈ C∞(Ω).

Let v ∈ H1(Ω). Since the space C∞(Ω) is dense in the space H1(Ω) we define
Tv as the limit

Tv = lim
n→∞

vn|∂Ω, (65)

in which {vn}∞n=1 is a sequence in C∞(Ω) satisfying vn → v in H1(Ω). The trace
operator satisfies the following trace theorem:

Theorem 9.1. There holds that

‖u‖L2(∂Ω) ≤ C∂Ω‖u‖H1(Ω)

for any u ∈ H1(Ω) and C∂Ω independent of u.

Trace theorem is important in treatment of Neumann and Robin boundary con-
ditions. The space H1

0 (Ω) is defined follows:

H1
0 (Ω) := { u ∈ H1(Ω) | Tu = 0 }. (66)

Usually, T is not explicitly written in (66), but the condition u = 0 is interpreted
in the sense of traces, i.e., as Tu = 0. Functions in H1

0 (Ω) satisfy the Poincare-
Friedrichs inequality.

Theorem 9.2. There holds that

‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω).

for any v ∈ H1
0 (Ω) and a positive constant C independent of v.

Proof. See Theorem 6.1 for proof in d = 1.
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Figure 14: Example of exterior unit normal of Ω

9.1 Weak problem

We proceed to derive the weak form of Problem (64). First, a suitable intergra- Weak form
in Youtubetion by parts formula is established. Let Ω ⊂ R2 satisfy Assumptions 9.1 and

n : ∂Ω 7→ R2 be the exterior unit normal of Ω, see Fig. 14. Recall the Gauss-
Divergence theorem:∫

Ω
∇ ·G =

∫
∂Ω
G · n for anyG ∈ [C1(Ω)]2. (67)

Lemma 9.1. Let F ∈ [C1(Ω)]2 and n : ∂Ω 7→ R2 be the external unit normal of
Ω. Then there holds that∫

Ω
ϕ∇ · F = −

∫
Ω
F · ∇ϕ+

∫
∂Ω
ϕF · n

Proof. The result follows by choosingG = Fϕ in Gauss-Divergence Theorem (67)
and using the identity:

∇ · (Fϕ) = ϕ∇ · F + F · ∇ϕ.

Multiplying first equation in (64) by test function ϕ ∈ C∞0 (Ω), integrating over
Ω, using integration-by-parts formula in Lemma 9.1 with F = K∇u, and density
yields the weak-problem: find u ∈ H1

0 (Ω) satisfying∫
Ω
K∇u · ∇v =

∫
Ω
fv for all v ∈ H1

0 (Ω). (68)

Problem (68) is posed in the space H1
0 (Ω) as this is the largest possible space

where both sides of the above equation are guaranteed to have finite values. It is
an instance of the abstract variational problem studied in Section 7. Hence, the
existence of a unique solution to (68) follows by showing that Assumptions 7.1 are
satisfied and using Lax-Milgram Lemma 7.1, see P32. In the following, we denote

a(u, v) :=

∫
Ω
K∇u · ∇v and L(v) :=

∫
Ω
fv,
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Figure 15: On left an example of a conforming triangular partition. On right, an
example of a non-conforming triangular partition that has a hanging node.

so that (68) becomes: find u ∈ H1
0 (Ω) satisfying a(u, v) = L(v) for all v ∈

H1
0 (Ω).

9.2 Problems

P32. Show that the weak form (68) has a unique solution. Hint: Apply Lax-
Milgram Lemma 7.1 and Poincare-Friedrichs inequality in Theorem 9.2. Re-
call, that K is symmetric and positive definite matrix.

9.3 Piecewise linear FE-space

FEM finds an approximate solution to the weak problem (68) from a finite dimen-
sional function space Vh. We use the space of piecewise linear continuous functions FE-space

in Youtubeover a conforming triangular partition of Ω, see Figure 16.

Definition 9.5. A conforming triangular partition of Ω is a set of closed triangular
subdomains, T = {T1, . . . , TM}, that satisfy:

1. Ω = ∪Mi=1Ti

2. The intersection Ti ∩ Tj for i 6= j is either empty, a common vertex, or a
common edge of Ti and Tj

Examples of triangular partitions are depicted in Fig. 15. Let Ω satisfy As-
sumptions 9.1 and Th be a conforming triangular partition of Ω. The space of
piecewise-linear-continuous functions over Th is defined as

V̂h := { v ∈ C(Ω) | v|T ∈ P 1(T ) for all T ∈ Th }, (69)

and it’s subspace with imposed zero Dirichlet boundary condition as

Vh := { v ∈ V̂h | v = 0 on ∂Ω }. (70)
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Figure 16: Example of a piecewise linear continuous function on a triangulation.
The triangulation is depicted in gray.

Figure 17: Example of a hat basisfunction
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Hat basis-functions Let {ni}n̂i=1 ⊂ R2 be the vertices of conforming triangular
partition of Th and V̂h as defined in (69). The hat basis of V̂h, {ϕ̂j}n̂j=1, is defined
as

ϕ̂j ∈ V̂h and ϕ̂j(ni) =

{
1 j = i

0 otherwise
for i, j ∈ {1, . . . , n̂}.

Examples of hat basis functions are given in Figure 17. A basis for Vh is obtained
from {ϕ̂j}n̂j=1 by omitting all basisfunctions associated to boundary vertices, i.e.,
those ni that are part of ∂Ω. The hat basis functions are evaluated using reference
basis functions. This is motivated by the assembly process and discussed later.

Assembly Recall that FEM finds an approximate solution to the weak problem
(68) from the subspace Vh ⊂ H1

0 (Ω) by solving: find uh ∈ Vh satisfying

a(uh, v) = L(v) for all v ∈ Vh. (71)

As Vh is finite dimensional, Problem (71) is equivalent to: find uh ∈ Vh satisfying
a(uh, ϕi) = L(ϕi) for all i ∈ 1, . . . , n, and further to the linear system: find
β ∈ Rn satisfying

Aβ = b.

The matrix A ∈ Rn×n and the vector b ∈ Rn have entries Aij = a(ϕj , ϕi),
bi = L(ϕi) for i, j ∈ {1, . . . , n}. The vector β is the coordinate vector of uh, i.e.,
uh =

∑n
j=1 βjϕj .

Assembling the entries of A is cumbersome to implement directly, because tri-
angles with boundary vertices have to be treated differently from interior triangles.
Hence, we assembly instead the matrix Â ∈ Rn̂×n̂ and vector b̂ ∈ Rn̂ that have the
entries

Âij = a(ϕ̂j , ϕ̂i), b̂i = L(ϕ̂i) for i, j ∈ {1, . . . , n̂}.

MatrixA is obtained from Â simply by picking the entries corresponding to interior
nodes. Let I ∈ Nn be an index vector satisfying

ϕk = ϕ̂Ik for k ∈ {1, . . . , n}.

Then Akl = ÂIkIl for k, l ∈ {1, . . . , n}. The remaining task is evaluate the entries
of Â and b̂. The entries are evaluated by looping over triangles in the partition Th
and computing appropriate integrals over each T .

9.4 Integrating over a triangle

Denote a triangle T with vertices a,b, and c as T ∼
[
a b c

]
∈ R2×3. The topic

of this section is numerical evaluation of integrals Integration
over T in
Youtube

∫
T
g dA where g ∈ C(T ),

that are computed during the finite element assembly process.
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Figure 18: Triangle T related to Example 9.1. The triangles T1 and T2 are depicted
by gray.

Example 9.1. Let T ∼
[
0 0.5 1
0 0.5 0

]
, g(x) = xy, and consider the evaluation of

the integral ∫
T
g(x) dA.

First, split ∫
T
g(x) dA =

∫
T1

g(x) dA+

∫
T2

g(x) dA,

where T1 ∼
[
0 0.5 0.5
0 0.5 0

]
and T2 ∼

[
0.5 0.5 1
0 0.5 0

]
, see Fig. 18. By the slicing

principle ∫
T1

g(x) dA =

∫ 1/2

0

∫ x

0
xy dydx =

1

2

∫ 1/2

0
x3 dx =

1

128
.

and∫
T2

g(x) dA =

∫ 1

1/2

∫ 1−x

0
xy dydx =

1

2

∫ 1

1/2
x(1− x)2 dx =

1

48
− 1

128
.

Hence,
∫
T g(x) dA = 1

48 .

Integral over a triangle can be evaluated by dividing it into two parts and com-
puting the resulting integrals using the slicing principle, see Example 9.1. This is
rather cumbersome, hence, the integral is evaluated by making a change of vari-
ables form T to the reference element T̂ ,

T̂ ∼
[
0 1 0
0 0 1

]
,

59



Figure 19: Vectors a1 and a2 are related to sides of triangle T and span a parallel-
ogram.

and using numerical integration method over T̂ . We proceed to give a mapping
from a reference triangle T̂ ∼

[
n̂1 n̂2 n̂3

]
to T ∼

[
n1 n2 n3

]
⊂ R2. This

mapping is used to transform integrals over T to integrals over T̂ . Let AT ∈ R2×2,
bT ∈ R2, and define the affine mapping FT : R2 7→ R2 as

FT (x) = ATx+ bT .

The matrix AT and vector bT are chosen so that

FT

([
0
0

])
= n1, FT

([
1
0

])
= n2, and FT

([
0
1

])
= n3. (72)

Expanding AT =
[
a1 a2

]
we obtain

bT = n1, a1 = n2 − n1, and a2 = n3 − n1.

The vectors a1 and a2 have a geometric interpretation, see Fig. 19. Recall, that the
are of the paralleogram spanned by a1,a2 is given by |detAT |. Hence, we have

|T | = 1

2
|detAT |, where |T | denotes the area of T .

The mapping FT is one-to-one and satisfies FT (T̂ ) = T if |T | > 0, i.e., triangle T
is no-degenerate.

Lemma 9.2. Let triangle T ∼
[
n1 n2 n3

]
satisfy |T | > 0, AT ∈ R2×2, bT ∈

R2, and FT = AT x̂+ bT satisfy (72). Then FT is one-to-one and FT (T̂ ) = T .
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Change-of-variables formula Let FT (x) = ATx+ bT satisfy (72). Then there
holds that ∫

T
f(x) dA =

∫
T̂
f(FT (x̂)) |detAT | dÂ. (73)

Similar formula holds for differentiable mappings. Next, we give a simple justifi- C-O-V in
Youtubecation for the change-of-variables formula (73).

Lemma 9.3. Let M ∈ R2×2 be invertible, b ∈ R2, F (x) = Mx+ b, Ω̂ = (0, 1)2,
Ω = F (Ω), and g : Ω 7→ R satisfy

|g(x)− g(y)| ≤ L‖x− y‖2 ∀x,y ∈ Ω

for some L > 0 independent of x,y. In addition, letN ∈ N and R̂ij ⊂ Ω̂, xij ∈ Ω̂
be defined as

R̂ij =
1

N
(i− 1, i)× (j − 1, j) and x̂ij =

1

N

[
i− 1
j − 1

]
i, j = 1, . . . , N.

Then there holds that∣∣∣∣∫
Ω
g(x) dA− SN

∣∣∣∣ ≤ √2L

N
‖M‖2|Ω|.

and ∣∣∣∣∫
Ω̂
g(F (x̂))| detM | dÂ− SN

∣∣∣∣ ≤ √2L

N
‖M‖2|Ω|.

where SN :=
∑N

i,j=1 f(F (x̂ij)) area(F (R̂ij)) and |Ω| denotes the area of Ω.

Proof. The proof is straightforward and left as an exercise problem.

By algebraic manipulations, there holds that∫
Ω
g(x) dA−

∫
Ω̂
g(F (x̂))| detM | dÂ

=

(∫
Ω
g(x) dA− SN

)
−
(∫

Ω̂
g(F (x̂))| detM | dÂ− SN

)
.

Using Lemma 9.3 to take the limit N → ∞ gives (73). To conclude, the factor
| detM | arises from the change-of-area of the infinitesimal area element under
mapping F .

Quadrature rule Integral over the reference element T̂ is typically evaluated
using suitable numerical integration method. These methods are communicated by Numerical

integration
on T̂ in
Youtube

specifying integration weightsw ∈ RN and the associated set of integration points
{ti}Ni=1 ⊂ R2. The integral is then approximated as∫

T̂
g dA ≈

N∑
i=1

g(ti)wi.
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Simplest such rule is the midpoint rule with

w = w1 =
1

2
and {ti}Ni=1 = t1 =

[
1
3
1
3

]
.

The midpoint rule is accurate for first order polynomials. A more accurate alterna-
tive is to use

w =
[

1
6

1
6

1
6

]
and {ti}Ni=1 =

{[
1
2
0

]
,

[
1
2
1
2

]
,

[
0
1
2

]}
. (74)

The quadrature rule given in (74) is accurate for first and second order polynomials.

9.5 Problems

P33. (2p) Triangular finite element meshes can be stored in two matrices, p ∈
R2×Np and t ∈ N3×Nt . Columns of matrix p hold the nodes or vertices of
the triangulation and the columns of the matrix t hold the vertex indices for
each triangle in the mesh.

(a) Write a function that visualizes a given mesh. hint : patch, trisurf.
Test your function with the mesh

N=10;
s=linspace(0,2*pi,N+1);
s=s(1:N) ;
p=[ 0 cos(s) ; 0 sin(s)];
t=[ 2:(N+1) ; [3:(N+1) 2] ; ones(1,N)];

(b) Let

n1 =

[
1
0

]
, n2 =

[
3
1

]
, n3 =

[
5
2
4

]
, and n4 =

[
3
2
3

]
and

Ω := { x ∈ R2 | x =

4∑
i=1

λini for λi ∈ R, λi > 0 and
4∑
i=1

λi = 1 }.

Define a triangular finite element mesh for Ω by hand and by using mat-
lab pdetoolbox (pdetool). Plot your mesh. Try out the refinemesh

function.

P34. (2p) Let f(x) = x2 and Ω be as in P 33(b).

(i) Create a triangular partition T of Ω.
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(ii) Use the T compute the value of the integral∫
Ω
f dA.

by computing the integral element-wise as:∫
Ω
f dA =

∑
K∈T

∫
K
f dA.

Evaluate integrals over T by making a change of variable to the reference
element and using a numerical integration method.

P35. (2p) Let

ϕ̂1(x̂) = 1− x̂1 − x̂2 ϕ̂2(x̂) = x̂1 and ϕ̂3(x̂) = x̂2.

Compute using Matlab entries of matrix A ∈ R3×3 such that

Aij =

∫
K̂
∇̂ϕ̂Tj ∇̂ϕ̂i dx̂ for i, j ∈ {1, . . . , 3}.

and the vector b ∈ R3

bj =

∫
K̂
f(x̂)ϕ̂j dx̂ for j ∈ {1, . . . , 3},

where fx̂ = x̂2.

P36. (2p) Let {ti}Ni=1 and {wi}Ni=1 be the points and weights of one dimensional
Gaussian-quadrature over interval (0, 1). These points and weights can be
generated by the gaussint.m - function and they integrate polynomials up to
order 2N − 1 exactly over the interval (0, 1). In addition, define the mapping
F : R2 → R2 as

F (x̂) =

[
x̂1(1− x̂2)

x̂2

]
.

(a) Let R̂ = (0, 1)× (0, 1) and K̂ = (0, 0), (1, 0), (0, 1). Use meshgrid to
generate grid of points to R̂. Map these points with F to visually verify
that F (R̂) = K̂ holds.

(b) Define two dimensional quadrature points and the related weights as

xij =

[
ti
tj

]
and ŵij = wiwj i, j = 1, . . . , N.

Show that these points integrate exactly functions xn1x
m
2 where n,m =

1, . . . , 2N − 1 over R̂.
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(c) Use the change of variables formula∫
K̂
f(x) dA =

∫
R̂
f(F (x̂))|detDF (x̂)| dÂ.

To find quadrature points and corresponding weights on K̂. Determine
how high indices n and m are integrated accurately, for functions xn1x

m
2

and fixed N .

P37. (2p) Let F (x) = Mx + c in which M ∈ R2×2, c ∈ R2. Assume that M is
invertible.

(i) Show that F maps line segments to line segments. Hint : You can express
line segment as L := { x | x = αt + β for some t ∈ [0, 1] } in which
α,β ∈ R2 are given vectors.

(ii) Show that |F (S)| = | detM ||S|, in which S = (0, a) × (0, b) for some
a, b ∈ R, a > 0, b > 0. Hint : use (i) and map two sides of the square.
Compute the area of the resulting parallelogram using determinant.

(iii) Using (ii), justify the change of variables formula∫
Ω̂
f(F (x̂))|detM | dÂ =

∫
Ω
f(x) dA.

P38. (2p) Let Ω be as in P 33(b), Ω̂ = (0, 1) × (0, 1), and define a mapping F :
Ω̂→ Ω as

F (x) =

4∑
i=1

niϕi(x),

in which ni

n1 =
[
1 0

]T
, n2 =

[
3 1

]T
, n3 =

[
5
2 4

]T
, and n4 =

[
3
2 3

]T
are the corner nodes of Ω and

ϕ1(x) = (1− x1)(1− x2), ϕ2(x) = x1(1− x2),

ϕ3(x) = x1x2, and ϕ4(x) = (1− x1)x2.

Consider f(x) = x2 and compute by hand the integral∫
Ω
f dA. (75)

You should take the following steps

(i) Use meshgrid to generate a grid of points to Ω̂. Map these points with
F to visually verify that Ω = F (Ω̂) holds. Transform the integral in (75)
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to an integral over the reference domain Ω̂ using the change of variables
formula ∫

K̂
f(x) dA =

∫
R̂
f(F (x̂))|det DF (x̂)| dÂ,

where DF is the Jacobian of F .

(ii) Compute det(DF ), i.e., the determinant of the Jacobian of the mapping
F , and check that it is positive in Ω̂.

(iii) Compute the resulting integral over the reference domain using pen and
paper.

9.6 Reference basis functions

Let Th be a conforming triangulation of domain Ω. Recall the definition of first
order FE-space,

V̂h = { v ∈ C(Ω) | v|K ∈ P 1(T ) for all T ∈ Th }.

We use the hat basis {ϕ̂j}n̂j=1 of V̂h satisfying

ϕ̂j ∈ V̂h and ϕ̂j(ni) =

{
1 j = i

0 otherwise
,

where {ni}n̂i=1 ⊂ R2 are the vertices of Th. In this Section, we define the hat
basis functions in a way that simplifies the evaluation of entries of the matrix Â
and vector b̂ related to our model problem,

Âij :=

∫
Ω
K∇ϕ̂j · ∇ϕ̂i and b̂i =

∫
Ω
fϕ̂i.

FE-assembly process proceeds by computing the contribution of each element T ∈
Th to the entries of Â and b̂.

Indexing basis functions Let T ∈ Th have vertices with indeces i1, i2, and i3.
This is,

T ∼
[
ni1 ni2 ni3

]
.

To manage the indices, we use the index-mapping σ : Th×{1, 2, 3} 7→ {1, . . . , n̂}
that relates the nodal indeces on each triangle to corresponding global indeces as

σ(T, 1) = i1, σ(T, 2) = i2, and σ(T, 3) = i3.

In FE-implementation, σ is obtained from matrix t ∈ R3×Nt stating the nodal
indeces of each triangle in the mesh. The mapping becomes more elaborate if
other, e.g. second order, FE-space is used.
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By definition, the hat basisfunctions ϕ̂σ(T,1), ϕ̂σ(T,2), ϕ̂σ(T,3) have value one in
some vertex of T . All other hat basisfunctions have value zero in each vertex of T .
As the restriction of hat basis functions to T is linear, only ϕ̂σ(T,1)|T , ϕ̂σ(T,2)|T ,
ϕ̂σ(T,3)|T are nonzero over T . Thus the contribution of T to the entries of Â is

Âσ(T,l)σ(T,k) = Âσ(T,l)σ(T,k) +

∫
T
K∇ϕ̂σ(T,l) · ∇ϕ̂σ(T,k) (76)

and to entries b̂
b̂σ(T,l) = b̂σ(T,l) +

∫
T
fϕ̂σ(T,l) (77)

for l, k ∈ {1, 2, 3}.

Reference basis functions Integrals appearing in (76) and (77) are evaluated Assembly
of b and
reference
basis in
Youtube

using the change-of-variables formula. Recall that T̂ is the reference element

T̂ ∼
[
n̂1 n̂2 n̂3

]
=

[
0 1 0
0 0 1

]
.

Let AT ∈ R2×2, bT ∈ R2, and FT (x̂) = AT x̂+ bT satisfy

FT (n̂l) = nσ(T,l) for all l ∈ {1, 2, 3}. (78)

Then FT (T̂ ) = T , and∫
T
fϕ̂σ(T,l) =

∫
T̂
f(FT (x̂))ϕ̂σ(T,l)(FT (x̂))|detAT |.

Evaluating the integral requires computing values of function ϕ̂σ(T,l)(FT (x̂)). We
proceed by Lemma stating that the affine mapping preserves first order polynomi-
als.

Lemma 9.4. Let T ∈ Th, FT : T̂ 7→ T be an affine mapping satisfying (78), and
p ∈ P 1(T ). Then q(x̂) := p(FT (x̂)) satisfies q ∈ P 1(T̂ ).

Proof. P39

Denote ψl(x̂) := ϕ̂σ(T,l)(FT (x̂)) for l ∈ {1, 2, 3}. By Lemma 9.4, ψl ∈ P 1(T̂ ).
Using (78) and the definition of hat basis functions gives

ψl(n̂k) =

{
1 l = k

0 otherwise
. (79)

Functions ψ1, ψ2, and ψ3 are solved from condition (79) as

ψ1(x̂) = 1− x̂1 − x̂2, ψ2(x̂) = x̂1, ψ3(x̂) = x̂2.
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As these function are identical for any triangle T , they are called as reference basis
functions. The (all non-zero) restrictions of hat basis functions to triangle T are
obtained from the reference basis functions as

ϕ̂σ(T,l)|T (FT (x̂)) = ψl(x̂) for all T ∈ T and l ∈ {1, 2, 3}.

Using reference basis functions gives the relation∫
T̂
f(FT (x̂))ϕ̂σ(T,l)(FT (x̂))| detAT | =

∫
T̂
f(FT (x̂))ψl(x̂)| detAT |.

The RHS is evaluated using a numerical integration method with weightsw ∈ RN
and points {ti}Ni=1 as∫

T̂
f(FT (x̂))ψl(x̂)| detAT | ≈

N∑
i=1

f(FT (ti))ψl(ti)|detAT |wi

Observe that values of ψl are required only at the integration points. Pre-computing
these values simplifies the implementation.

Entries of Â The integral Assembly
of Â in
Youtube

∫
T
K∇ϕ̂σ(T,l) · ∇ϕ̂σ(T,k)

is evaluated similar to (77). Change of variables gives∫
T
K∇ϕ̂σ(T,l)·∇ϕ̂σ(T,k) =

∫
T̂
K(∇ϕ̂σ(T,l))(FT (x̂))·(∇ϕ̂σ(T,k))(FT (x̂))|detAT |.

Next Lemma relates (∇ϕ̂σ(T,l))(FT (x̂)) to gradients of the reference basis func-
tions.

Lemma 9.5. Let T ∈ Th, AT ∈ R2×2, bT ∈ R2, and FT (x̂) = AT x̂ + bT be an
affine mapping satisfying (78). In addition, let g ∈ C1(T ), and ĝ(x̂) := g(FT (x̂)).
Then there holds that

(∇g)(FT (x̂)) = A−TT ∇̂ĝ(x̂),

where ∇̂ denotes the gradient with respect to the reference coordinates x̂.

Proof. P40.

Using Lemma 9.5 gives the relation

(∇ϕ̂σ(T,l))(FT (x̂))|T = A−TT ∇̂ψl for all T ∈ Th and l ∈ {1, 2, 3}.
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Thus,∫
T̂
K(∇ϕ̂σ(T,l))(FT (x̂)) · (∇ϕ̂σ(T,k))(FT (x̂))| detAT |

=

∫
T̂
∇̂ψl(x̂)TA−1

T KA−TT ∇̂ψk(x̂)| detAT | (80)

As matrices AT ,K and gradients ∇̂ψ1, ∇̂ψ2, ∇̂ψ3 are all constant, the integral on
the RHS is evaluated simply as

1

2
∇̂ψTl A−1

T KA−TT ∇̂ψk| detAT |.

Numerical integration has to be used with other FE-spaces or non-constant material
coefficients.

9.7 Problems

P39. (0.5p) Prove Lemma 9.4

P40. (2p) Prove Lemma 9.5

P41. (1p) Let the finite element mesh T be such that

p =

[
0 1 2 0 1 2
0 0 0 1 1 1

]
and t =

1 2 2 3
2 4 3 5
4 5 5 6

 (81)

(a) Draw the mesh T .

(b) Compute affine mapping from the reference element to elements 3 and
4.

(c) Consider the bilinear form a(u, v) = (∇u,∇v) and assume that standard
hat basis functions are used. Compute the row 3 of the system matrix

9.8 Implementation

Next we outline the modifications required in the one dimensional example FE- Implementation
in Youtubesolver on p.17 to solve the two dimensional model problem (64).

1. Mesh: Instead of partition to intervals, triangular mesh of Ω is used. Trian-
gular finite element meshes are often stored in two matrices, p ∈ R2×Np and
t ∈ N3×Nt . Columns of matrix p hold the nodes or vertices of the triangula-
tion and the columns of the matrix t hold the vertex indices for each triangle
in the mesh. Mesh can be obtained either by specifying it manually or by
using a mesh generator.
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2. Integration: Integrals are computed with help of an affine mappingFT (x̂) =
AT x̂+bT satisfying (78). The contribution of element T to matrix Â is now
evaluated as follows:

Âσ(T,l)σ(T,k)+ =
1

2
∇̂ψTl A−1

T KA−TT ∇̂ψk|detAT |.

for l, k ∈ {1, 2, 3}. Contribution to bT is obtained as

b̂σ(T,l)+ =
N∑
i=1

f(FT (ti))ψl(ti)|detAT |wi

for l ∈ {1, 2, 3}, integration points {ti}Ni=1, and weights w ∈ RN . Here
+ = means add to, e.g., x+ = 2 means x = x+ 2.

3. Elimination of boundary basisfunctions. Imposing the zero Dirichlet bound-
ary condition requires one to find indeces of nodes that lie on the boundary of
domain Ω. Mesh generator typically returns information on boundary nodes.
Alternatively, boundary nodes can extracted from the t - matrix by finding
all edges of mesh Th that are associated only to one triangle. The problem is
solved as

A = Ahat(idof,idof) ; b = bhat(idof)

u = zeros(ndof,1)

u(idof) = A/b;

where idof is a vector with interior node indices and ndof is then num-
ber of basisfunctions.

4. Plotting: Plotting is done using commands patch or trisurf.

9.9 Problems

P42. (2p) Let

ψ1(x̂) = 1− x̂1 − x̂2 ψ2(x̂) = x̂1 and ψ3(x̂) = x̂2.

In addition, let f(x) = sinπx1 sinπx2, B ∈ R3×3, and the vector b ∈ R3

have entries
Bij =

∫
T̂
∇̂ψTj ∇̂ψi dx̂

bj =

∫
T̂
f(x̂)ψj dx̂

for i, j ∈ {1, 2, 3}. Evaluate the entries of B and b using Matlab.
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P43. (2p) Let Th be a conforming triangular mesh, T ∈ Th, and FT an affine map-
ping satisfying (78). In addition, let ψi be as defined in P42,

ϕi(FT (x̂)) = ψi(x̂), for i ∈ {1, 2, 3},

B ∈ R3×3 and the vector b ∈ R3 have entries

Bij =

∫
T
∇ϕTj ∇ϕi dx i, j = 1 . . . 3

bj =

∫
T
f(x)ϕj(x) dx j = 1, . . . , 3.

Write a program that evaluates the entries of matrix B ∈ R3×3 and vector b.

P44. (2p) Modify the FE-solver on p. 17 to solve the two dimensional Poisson’s
equation: find u ∈ H1

0 (Ω) satisfying

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω).

Test your implementation on domain Ω = (0, 1)2 with f = sinπx sinπy.
Hint: for this particular domain it is easy to find index of boundary nodes
from the p-matrix. Return the code along with piture of the FE-solution uh.

10 Error analysis in two dimensions
Outline of
week 7 in
Youtube

We proceed to study the accuracy of the FE-solution uh ∈ Vh to the two-dimensional
model problem (68). Our aim is to bound the L2(Ω), H1(Ω), and energy norm of
the error u − uh. Recall that the FE-solution depends on triangulation Th, do-
main Ω, coefficient matrix K, and source function f . In one dimensional case, we
derived error estimate depending on the mesh size, i.e., the longest interval in the
applied partition. In two dimensions, we make additional assumptions on Th to
obtain error estimate dependent on the mesh size,

h = max
T∈Th

hT ,

where hT is the diameter of the smallest sphere containing triangle T . We derive
error estimates under the assumption that the exact solution u ∈ H2(Ω), which in
two dimensional case poses restrictions both to the load function f and the domain
Ω. Particularly, Ω has to satisfy assumptions 9.1, and to be convex.

The error estimate is derived in two steps that are identical to one dimensional
case discussed in Section 8:

1. Relate error to the approximation properties of the FE-space
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The two dimensional model problem (64) is an instance of the abstract vari-
ational problem studied in Section 8.1. Particularly, we can apply Cea’s
Lemma 8.1 that states

‖u− uh‖E = inf
v∈Vh
‖u− v‖E .

This is, the FE-solution is the best possible approximation of the exact solu-
tion u from the applied finite element space. The error analysis is based on
comparing u−uh to error in the nodal interpolant of u. AsH1(Ω) functions
for Ω ⊂ Rd for d > 1 do not have well defined pointwise values contrary to
H2(Ω) functions, we assume that the solution u is in the space H2(Ω). The
nodal interpolant π : H2(Ω) 7→ V̂h is defined as

(πu)(ni) = u(ni) for all i ∈ {1, . . . , n̂}.

As u satisfies zero Dirichlet boundary condition it follows that πu ∈ Vh.
Assume that u ∈ H2(Ω). Then the FE-solution uh satisfies

‖u− uh‖E ≤ ‖u− πu‖E . (82)

Similar estimate in the H1(Ω)-norm follows from the equivalence between
‖ · ‖E and ‖ · ‖H1(Ω)-norms, see P46.

2. Study approximation properties of FE-space

By (82), a bound for the error ‖u − uh‖E follows by bounding the inter-
polation error term ‖u − πu‖E . The interpolation error is bounded using
identical strategy to one dimensional case: First, interpolation error estimate
is obtained for the reference element T̂ . This reference interpolation error
estimate is then transferred to an arbitrary triangle by applying the scaling
argument.

Bramble-Hilbert Lemma Next, we give the Bramble-Hilbert Lemma, an inter- B-H
lemma in
Youtube

polation error estimate on the reference triangle T̂ . The proof is rather technical,
and thus omitted. Recall that the reference triangle T̂ satisfies

T̂ ∼
[
n̂1 n̂2 n̂3

]
=

[
0 1 0
0 0 1

]
(83)

Theorem 10.1 (Bramble-Hilbert Lemma). Let T̂ be the reference triangle satisfy-
ing (83). In addition, let π̂ : H2(T̂ ) 7→ P 1(T̂ ) satisfy (π̂v̂)(n̂i) = v̂(n̂i) for all
i ∈ {1, 2, 3} and v̂ ∈ H2(T̂ ). Then there exist a constant C > 0 independent of v̂
such that

|v̂ − π̂v̂|
H1(T̂ )

≤ C|v̂|
H2(T̂ )

and ‖v̂ − π̂v̂‖
L2(T̂ )

≤ C|v̂|
H2(T̂ )

.

for any v̂ ∈ H2(T̂ ).

Here |·|
Hm(T̂ )

stands for theHm(T̂ ) semi-norm, |v|
Hm(T̂ )

:=
(∑

|α|=m ‖∂αv‖2L2(T̂ )

)1/2
.

Proof. See, Braess
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Scaling Argument Let a : H1
0 (Ω) ×H1

0 (Ω) 7→ R be a bilinear form satisfying
Assumptions 7.1 for V = H1

0 (Ω). Recall that the energy norm corresponding to
a is defined as ‖v‖E = (a(v, v))1/2. By continuity and Poincare inequality in
Theorem 9.2, there holds that

‖v‖E ≤ C‖∇v‖L2(Ω)

for any v ∈ H1
0 (Ω) and C independent of v, see P46. Hence, the interpolation

error satisfies

‖u− πu‖E ≤ C‖∇(u− πu)‖L2(Ω) = C

∑
T∈Th

‖∇(u− πu)‖2L2(T )

1/2

. (84)

The element-wise interpolation errors ‖∇(u − πu)‖L2(T ) are estimated by using
the Bramble-Hilbert Lemma and the scaling argument.

Theorem 10.2 (Scaling argument). Let triangle T ∼
[
n1 n2 n3

]
, T̂ be the

reference element satisfying (83), AT ∈ R2×2, bT ∈ R2, and FT (x) = ATx+ bT
satisfy FT (n̂i) = ni for i ∈ {1, 2, 3}. In addition, let v ∈ Hm(T ) and define
v̂ ∈ Hm(T̂ ) as v̂(x̂) := v(F (x̂)) for each x̂ ∈ T̂ . Then for any m ∈ {0, 1, 2, . . .}
there exists positive constants C1 and C2 independent of v and T such that:

|v̂|
Hm(T̂ )

≤ C1‖AT ‖m |detAT |−1/2 |v|Hm(T )

and
|v|Hm(T ) ≤ C2‖A−1

T ‖
m |detAT |1/2 |v̂|Hm(T̂ )

.

Here H0(T ) and H0(T̂ ) denote L2(T ) and L2(T̂ ), respectively.

Before proving Theorem 10.2, we give technical auxiliary results. Recall that Auxiliary
results in
Youtube

the gradient of v̂ is related to gradient of v as

∇̂v̂(x̂) = ATT (∇v)(F (x̂)). (85)

The following Lemma is used to apply similar transformation formula to estimate
the H2(T ) semi-norm.

Lemma 10.1. Let v ∈ H2(T ). Denote the Hessian matrix as

H =

[
∂x1x1 ∂x1x2
∂x2x1 ∂x2x2

]
Then there holds that

1

2

∫
T
‖(Hv)(x)‖2F dx ≤ |v|2H2(T ) ≤

∫
T
‖(Hv)(x)‖2F dx,

where ‖ · ‖F is the Frobenius norm, defined as ‖A‖2F :=
∑n

i,j=1A
2
ij for any A ∈

Rn×n
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Proof. By definition,

|v|2H2(T ) =
∑
|α|=2

‖∂αv‖2L2(T ) and
∫
T
‖Hv‖2F dx =

2∑
i,j=1

‖(Hv)ij‖2L2(T ).

The proof follows by observing that the difference between these expressions is in
the cross terms; the latter one has them twice.

Lemma 10.1 allows us to use the convenient relation between the Hessian matrix
of v̂ and v,

(Ĥv̂)(x̂) = ATT [(Hv)(F (x̂))]AT , (86)

in which

Ĥ =

[
∂x̂1x̂1 ∂x̂1x̂2
∂x̂2x̂1 ∂x̂2x̂2

]
.

Proof of
scaling
argument
in Youtube

Proof of Theorem 10.2 (Scaling argument). We will only give a proof for the first
claim and cases m ∈ {0, 1, 2} that are used in the following. The second claim
follows from similar arguments.

Case m = 0. Change of variables gives

‖v‖2L2(T ) =

∫
T
v(x)2 dx =

∫
T̂
v(FT (x̂))2|detAT | dx̂

=

∫
T̂
v̂(x̂)2| detAT | dx̂ = | detAT | |v̂|2L2(T̂ )

,

which proves the Theorem for m = 0.

Case m = 1. Change of variables gives

|v|2H1(T ) =

∫
T
‖∇v(x)‖2 dx =

∫
T̂
‖(∇v)(FT (x̂))‖2|detAT | dx̂.

Using (85) yields

|v|2H1(T ) =

∫
T̂
‖A−TT (∇̂v̂)(x̂)‖2| detAT | dx̂.

Recall that the two-norm satisfies ‖Az‖ ≤ ‖A‖‖z‖ for any A ∈ Rn×n and z ∈
Rn, hence,

|v|2H1(T ) ≤ ‖A
−T
T ‖

2 | detAT |
∫
T̂
‖(∇̂v̂)(x̂)‖2 dx̂ = ‖A−TT ‖

2 | detAT | |v̂|2H1(T̂ )
,

which proves the claim for m = 1.

Case m = 2. Making a change of variables, using Lemma 10.1, and (86) gives

|v|2H2(T ) ≤
∫
T
‖(Hv)(x)‖2F dx =

∫
T̂
‖A−TT (Ĥv̂)(x̂)A−1

T ‖
2
F | detAT | dx̂.
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Using properties of the Frobenius norm, ‖AB‖F ≤ ‖A‖F ‖B‖F and ‖A‖F =
‖AT ‖F , gives

|v|2H2(T ) ≤ ‖A
−1
T ‖

4
F |detAT |

∫
T̂
‖(Ĥv̂)(x̂)‖2F dx̂ ≤ 2‖A−1

T ‖
4
F |detAT | |v̂|2H2(T̂ )

.

Applying equivalence between two- and Frobenius-norms completes the proof for
m = 2.

Local interpolation error estimate Combining the scaling argument with Bramble-Local in-
terpolation
error es-
timate in
Youtube

Hilbert Lemma gives estimate for the local interpolation error.

Theorem 10.3. Make same assumptions as in Theorem 10.2. Then there exists a
positive constant C > 0 independent of u and triangle T such that

|u− πu|H1(T ) ≤ C‖A−1
T ‖‖AT ‖

2 |u|H2(T )

for any u ∈ H2(T ).

Proof. This proof uses a standard ”scaling argument technique”. Let û ∈ H2(T̂ )
be defined as û(x̂) = u(FT (x̂)) for all x̂ ∈ T̂ . We begin by application of the
scaling argument:

|u− πu|H1(T ) ≤ C2‖A−1
T ‖ |detAT |1/2 |û− π̂û|H1(T̂ )

.

Now, we will use the Bramble-Hilbert lemma

|u− πu|H1(T ) ≤ CC2‖A−1
T ‖ |detAT |1/2 |û|H2(T̂ )

.

Above we used the inequality on the reference element, hence the constantC above
is independent of triangle T . Using the scaling argument once more completes the
proof

|u− πu|H1(T ) ≤ C1CC2‖A−1
T ‖‖AT ‖

2|u|H2(T ).

10.1 Estimates for ‖AT‖ and ‖A−1
T ‖

By Theorem 10.3, the local interpolation error depends on term ‖A−1
T ‖‖AT ‖2 and

H2(T ) semi-norm of the exact solution u. In this Section, we derive estimates
for ‖AT ‖ and ‖A−1

T ‖. Under sufficient assumptions on the triangulation Th, our
analysis indicates that

‖A−1
T ‖‖AT ‖

2 ≤ ChT ,
in which hT is the diameter of triangle T . When combined with Theorem 10.3,
(84), and (82), yields

‖u− uh‖E ≤ Ch|u|2.
Identical estimate holds also in the H1(Ω) -norm, but with different constant. The
terms ‖AT ‖ and ‖A−1

T ‖ are related to two geometric parameters characterising the
shape of the triangle T , see Figure 20.
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Figure 20: The smallest ball containing T and the largest ball contained in T (in-
scribed ball). Parameters hT and ρT are the diameters of the these balls, respec-
tively.
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Figure 21: On the left: a circle with diameter 1. On the right: the image of this
circle after a mapping with A. All vectors x ∈ R2, ‖x‖ = 1 can be obtained by
connecting two points on the circle on the left. One such vector and its image are
visualized in red.

Definition 10.1. Let ρT be diameter of the largest ball contained in the element T .

Definition 10.2. Let hT be diameter of the smallest ball containing the element T .

Matrix
two-norm
in Youtube

Matrix two norm The two norm of A ∈ R2×2 is defined as

‖A‖ := max
x∈R2,‖x‖=1

‖Ax‖, (87)

in which ‖x‖ is the vector 2-norm, i.e., ‖x‖2 = xTx. Estimates for ‖AT ‖ and
‖A−1

T ‖ are based on a geometric interpretation of (87). The norm (87) is defined
simply as follows: map any vector of length one with A and compute the length of
the longest resulting vector. With this geometric interpretation in mind, we obtain
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Figure 22: On the left: inscribed circle on the reference element. On the right:
the image of this circle on the global element after the affine mapping and a circle
containing the global element.

Theorem 10.4. Let triangle T ∼
[
n1 n2 n3

]
, T̂ be the reference element sat-

isfying (83), AT ∈ R2×2, bT ∈ R2, and FT (x) = ATx+ bT satisfy FT (n̂i) = ni
for i ∈ {1, 2, 3}. Then there holds that

‖AT ‖ ≤
hT
ρ
T̂

and ‖A−1
T ‖ ≤

h
T̂

ρT
.

Proof in
YoutubeProof. We will give the proof only for ‖AT ‖. The result for ‖A−1

T ‖ follows from
identical arguments. By the definition of the norm (87) we have

‖AT ‖ = max
x∈R2,‖x‖=1

‖ATx‖.

To use the geometric argument, we make a change of variables z = ρ
T̂
x. This

gives

‖AT ‖ =
1

ρ
T̂

max
z∈R2,‖z‖=ρT̂

‖ATz‖.

All vectors of length ρ
T̂

are generated as follows: Let C be inscribed circle of the
reference triangle and u1,u2 ∈ R2 points on opposite sides of the it’s boundary,
as in Fig. 21. Then any z ∈ R2 satisfying ‖z‖ = ρT̂ is obtained as z = u1 − u2.
By direct computation, there holds that

ATz = ATu1 + bT −ATu2 − bT = FT (u1)− FT (u2).

As FT (u1), FT (u2) ∈ T , it holds that ‖ATz‖ ≤ hT and the result follows imme-
diately. See Figure 22.

Using Theorem 10.4 we obtain more usefull form of the approximation result Final es-
timate
and shape
regularity
in Youtube

of Theorem 10.3.

Corollary 10.1. Let T ∈ Th. Then there holds that

|u− πu|H1(T ) ≤ C
h2
T

ρT
|u|H2(T ).
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Figure 23: On the left: inscribed circle on the global element. On the right: the
image of this circle on the reference element after the inverse affine mapping and a
circle containing the reference element.

Figure 24: A badly shaped triangle. For this triangle, the ratio of hKρ−1
K is very

large, which leads to large constants in the error estimates. This means that on a
mesh containing such elements, error can be very large.

for any u ∈ H2(T ) and C independent of u and T .

Proof. By Theorems 10.4 and 10.3

|u− πu|H1(T ) ≤ C
hT̂
ρ2
T̂

h2
T

ρT
|u|H2(T ).

Since the reference element will always remain the same, we include the term
hT̂ρ

−2

T̂
to the constant C.

The upper bound stated in Corollary 10.1 depends on the shape of the triangle
T . If the triangle is very flat, the term h2

Tρ
−1
T can be large, regardless of the size of

the triangle, see Figure 24.

Shape regularity

Usually, the convergence of finite element solution is considered using a series of
refining meshes. In such a case, the interest is on the behavior of the error with
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Figure 25: Division of a single triangle in the uniform mesh refinement.

respect to the mesh size h
h = max

T∈Th
hT .

The series of meshes is sometimes referred as a family of triangulations {Th}.
Above we noticed that the shape of the triangles has an effect on the error behavior,
or at least on the approximation properties. Hence it is natural to place restrictions
on the mesh, such as, to require that the family of triangulations is shape-regular.

Definition 10.3. A family of triangulations {Th} is called shape-regular, if there
exists γ > 0 such that

hTρ
−1
T ≤ γ for all T ∈ Th and Th ∈ {Th}

The shape-regularity assumption guarantees, that the ratio hKρ−1
K stays bounded

when the mesh size h varies, and the FE-error in the energy norm is characterised
as

|u− uh|E ≤ Ch|u|2.

forC independent of h and u. Identical estimate holds in theH1(Ω)-norm but with
different constant C.

Example 10.1. The simplest example of a shape-regular family of triangulations is
one generated by uniformly refining an initial triangulation. In the refinement, each
triangle K is divided into four triangles with same shape, as in Figure 25. Since
the shape of the triangles remains unchanged in the process, the family is clearly
shape-regular. The mesh parameter h behaves as hn = 2−nh0, where n is the
number of refinements and h0 is the mesh parameter for the initial triangulation.
The first three triangulations of such a family are visualized in Figure 26.

10.2 Problems

P45. (2p) Download a simple Matlab finite element solver util.zip. Proceed as fol-
lows:

(a) Run demo_solver.
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Figure 26: First three triangulations of family generated with uniform refinement.

(b) Modify the demo_solver.m to solve PDEs

−∆u = 1, −∆u+ u = 1, and −∇ ·
[
1 0
0 5

]
∇u = 1

on Ω = (0, 1)2 with zero Dirichlet boundary condition.

(c) Test commands refine_tri and plot_2Dtri_mesh

YOU MAY USE THIS CODE AS A BASIS IN THE FOLLOWING PROB-
LEMS

P46. (1p) Let Ω ⊂ R2 and ‖ · ‖E be the energy norm associated to the bilinear form
a : H1

0 (Ω)×H1
0 (Ω) 7→ R satisfying Assumptions 7.1 for V = H1

0 (Ω). Show
that

(a) There exits α, β > 0 independent of v such that

α‖v‖E ≤ ‖v‖H1(Ω) ≤ β‖v‖E

for all v ∈ H1
0 (Ω).

(b) There exist C independent of v such that

‖v‖E ≤ C‖∇v‖L2(Ω)

for any v ∈ H1
0 (Ω).

P47. (2p) Let Ω = (0, hx) × (0, hy) and consider the Poincare-Friedrichs (P-F)
inequality : There exists a constant C(Ω) > 0 independent of u such that

‖u‖L2(Ω) ≤ C(Ω)‖∇u‖L2(Ω) ∀u ∈ H1
0 (Ω). (88)

(a) Using the scaling argument, prove that C(Ω) ≤ Ĉ(Ω̂) max{hx, hy}, in
which Ĉ(Ω̂) is the constant in P-F for the domain Ω̂ = (0, 1)× (0, 1).

(b) The smallest possible constant C(Ω) in the P-F inequality can be char-
acterized as

C(Ω)−2 = min
u∈H1

0 (Ω)
G(u),
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in which G(u) = (∇u,∇u)
(u,u) .

Show that C(Ω)−2 is the smallest eigenvalue λi of the problem: find
(λi, ϕi) ∈ (R, H1

0 (Ω)) such that

(∇ϕi,∇v) = λi(ϕi, v) ∀v ∈ H1
0 (Ω).

Hint: the minimum is located at the critical point u that can be char-
acterized as d

dtG(u + tv)|t=0 = 0 for all v ∈ H1
0 (Ω). Also, note that

each eigenvalue satisfies λi = (∇vi,∇vi)
(vi,vi)

, in which vi is the eigenvector
corresponding to λi.

(c) Use your finite element solver to approximate the constant C(Ω) for dif-
ferent values of hx ∈ (0, 1) and hy ∈ (0, 1). Plot the constant as a
function of hx and hy. How good is your estimate?
Hint: The eigenvalue problem that you need to solve is Ax = λMx,
in which A is the system matrix and M the mass matrix. The smallest
eigenvalue can be solved with command the eigs(A,M,1,’SM’).

P48. (2p) Let Ω ⊂ R2, T be a conforming triangular partition of Ω, and Vh the first
order FE-space over T .

(a) Let vh ∈ Vh and v ∈ H1(Ω). Write a Matlab function for evaluating
‖∇(v − vh)‖L2(Ω) and ‖v − vh‖L2(Ω).

(b) Test your implementation on Ω = (0, 1)2. Use the mesh

p =

[
0 1 1 0
0 0 1 1

]
, t =

1 2
2 3
4 4

 ,
and functions vh = π(x+ 1)(y − 1), v = (x+ 1)(y − 1).

P49. (2p) Study the convergence of FE-method. Let Ω = (0, 1)2 and T0 be defined
as

p =

[
0 1 1 0
0 0 1 1

]
t =

1 2
2 3
4 4

 .
Proceed as follows:

(a) Generate a sequence of triangular partitions T0, T1, . . . as follows: For
i ∈ N, the partition Ti is obtained from Ti−1 using uniform refinement.
Plot first few partitions. Hint : use util.zip

(b) Verify that the exact solution to (64) with K = I , and f = 2y(1− y) +
2x(1− x) is u = x(1− x)y(1− y).

(c) Solve (64) with K = I , and f = 2y(1− y) + 2x(1−x) on {T1, T2, . . .}
using your FE-solver. For each partition, compute the error in energy
norm.
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(d) Use an appropriate plot to study the dependency of FE-error in L2(Ω)
and H1(Ω) norms on h. You may use longest edge in the mesh instead
of the largest radius of the circumcircle.

10.3 Regularity of the solution
Regularity
in YoutubeConsider the weak form of the Poisson’s equation: find u ∈ H1

0 (Ω) satisfying∫
Ω
∇u · ∇v =

∫
Ω
fv for all v ∈ H1

0 (Ω). (89)

The FE-error analysis relied on additional H2(Ω)-regularity of the solution u,
this is, we assumed that u ∈ H2(Ω), i.e.,

|u|H2(Ω) <∞.

In this Section we discuss how this regularity assumption depends on the do-
main Ω and the load function f . Detailed regularity analysis of elliptic PDEs
is beyond the scope of this course, we refer interested readers to Lawrence
C. Evans: Partial Differential Equations or Pierre Grisvard: Singularities in
boundary value problems.

We have the following Theorem.

Theorem 10.5. Assume that Ω ⊂ R2 satisfies Assumptions 9.1 and is convex.
Then the solution u ∈ H1

0 (Ω) to problem (89) with f ∈ L2(Ω) is H2-regular
and satisfies

‖u‖H2(Ω) ≤ C‖f‖L2(Ω)

for some C independent of f .

The weak form of Poisson’s equation (89) is an instance of the abstract prob-
lem treated in Section 8.1: Find u ∈ H1

0 (Ω) satisfying

a(u, v) = L(v) for all v ∈ H1
0 (Ω).

This problem is well defined, if the load functional L(v) : H1
0 (Ω) 7→ R satis-

fies Assumption 7.1, i.e., there exists CL independent of v such that

|L(v)| ≤ CL‖v‖H1(Ω) for all v ∈ H1
0 (Ω).

It is possible to construct a load functional L(v) that cannot be expressed as∫
Ω fv for any v ∈ H1

0 , and the corresponding solution u is not in H2(Ω)
regardless of the domain Ω.

Assuming the load function f ∈ L2(Ω), the regularity of the solution depends
on the geometric properties of Ω. Let Ω satisfy Assumptions 9.1, or Ω is a
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simply connected polyhedral domain without holes. If Ω is in addition convex
the solution u ∈ H2(Ω). For non-convex polyhedral domains, the behavior
of the solution depends on the angle between two boundary segments. Let
v ∈ R2 be the intersection point of two boundary segments. Near v, the
solution behaves as

O(rα), α =
π

ω
,

in which ω is the angle between the two segments measured inside the domain
and r is the radial coordinate from the intersection point. This is, there exists
k1, k2 > 0 such that

k1r
α ≤ u(v + r

[
cosϕ
sinϕ

]
) ≤ k2r

α

for sufficiently small r and such ϕ that v + r

[
cosϕ
sinϕ

]
∈ Ω.

If ω > π, the u solution behaves asO(rα), α < 1. Hence the second derivative
behaves as O(rα−2), α < 1, and∫ 1

0
(rα−2)2 r dr =

∫ 1

0
r2α−3 dr →∞, α < 1,

which shows that the second derivative is not square integrable, thus, u /∈
H2(Ω). To characterize such a solution, fractional Sobolev spaces Hs, s ∈ R,
have been defined to fill the gap between e.g. H1 and H2. These spaces are
out of the scope of the current course. Intuitively speaking, a polynomial xα

belongs to the space Hs−δ, δ > 0, if α > s− 1. Accordingly, the function rα

belongs to the Sobolev space H1+α−δ(Ω), δ > 0.

The FE-error estimate was based on local interpolation error estimate. Assume
that u ∈ H2(Ω). Then the local interpolation error satisies

|u− πu|H1(T ) ≤ ChT |u|H2(T )

for every triangle T ∈ Th. Combining this estimate with Cea’s Lemma led to
error estimate for the FE-solution. If u ∈ H1+s(Ω), s ≤ 1, similar estimate
holds. In particular,

|u− πu|H1(T ) ≤ ChsT |u|H1+s(T ) ∀u ∈ H1+s(Ω).

Combining this estimate with Cea’s Lemma led to error estimate for the FE-
solution. The convergence of the first order finite element method is of order
O(hs) for functions with H1+s(Ω) regularity.

Example 10.2. A simple example of the effects of regularity to convergence of
FEM is the L-shaped domain, (−1, 1)2 \ (−1, 0)× (0, 1). The angle between
the segments at (0, 0) is ω = 3π

2 . Hence, for f ∈ L2, the solution behaves
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Figure 27: The solution with load f = 1. On left: in the whole domain. Two on
the right: solution on the line y = −x with red line and reference O(r2/3) with
dotted black line. Clearly, the solution behaves as r2/3 near the corner.

as O(r2/3) close to the origin. Due to this, the solution u ∈ H5/3−δ, δ > 0.
Hence the first order finite element solution convergences with the rate of h2/3.
The solution with load f = 1 is visualized in Figure 27. In the same figure is
also the behavior of this solution close to the singular point (0, 0) .

10.4 Problems

P50. (2p) Let Ω = (0, 1)2 and consider the problem : Find u ∈ H1
0 (Ω) such that∫

Ω
∇uT∇v = −

∫
Ω

(
ψ′′(x)ψ(y) + ψ′′(y)ψ(x)

)
v, (90)

where ψ(t) = t(1 − t). The exact solution to the above problem is u =
ψ(x)ψ(y). Study the effect of element shape to convergence of FE-solution.
Proceed as follows :

(a) Download mesh generation functions make_bad_LA2_mesh.m,
make_bad_LA_mesh.m, and make_good_LA_mesh.m.

(b) Implement a function for evaluating the error between exact and FE-
solution to (90).

(c) Solve the problem using sequence of meshes generated using function
given in (a) with parameter values N ∈ {1, 2, 3, 4, 5, 6}. For each mesh,
evaluate the error and mesh size h (longest edge in the mesh).

(d) Plot the errors on loglog - scale as a function of h. What do you observe?

P51. (2p) Let the parameter ω ∈ (0, 2π) and define the domain Ω in polar coordi-
nates as

Ω := { (r, θ) | 0 ≤ r < 1 and 0 < θ < ω }. (91)
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(a) Create a mesh T0 for the domain Ω. Hint: you can specify the domain Ω
to Matlab pdetool as B(0, 1) \ T , where B(0, 1) is the unit circle and
T a triangle (or rectangle) with appropriately chosen corner points.

(b) Refine the mesh T0. If you generated the mesh using Matlab PDE-tool,
use the command refinemesh.m. Otherwise, use function refine_tri
as follows: after each refinement, locate all nodes on the boundary ΓC :=
∂Ω \ { (r, θ) | 0 < r < 1 and θ ∈ {0, ω} }. To obtain accurate approxi-
mation of Ω, move these nodes manually to the surface of the circle with
radius 1.

(c) Test your workflow by generating meshes corresponding to ω ∈ {π2 , π,
3π
2 ,

7π
4 }.

Return your code and example pictures of your meshes.

P52. (4p) Let the parameter ω ∈ (0, 2π), domain Ω be as defined in (91), and
f(θ) := sin π

ωθ. Consider the problem: Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω).

Study the effect of ω to FE-convergence rate. Proceed as follows:

(a) Show that:
‖∇u−∇v‖2L2(Ω) = 2 (J(v)− J(u)) . (92)

for any v ∈ H1
0 (Ω).

(b) Solve the problem using FEM on family of refining meshes. For each
mesh, compute the error in the energy norm using (92) and reference
energies J(u) listed in Table 2.

Table 2: Reference energies J(u) for P52
ω J(u)
π
2 −0.006135923100600
π −0.021816615503775
3π
2 −0.041417468112674

7π
4 −0.051965862140141

Plot the error as a function of the mesh size h (longest edge in the mesh)
using the loglog-scale. How does the convergence rate depend on ω ?
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THE END
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A Mathematics toolbox

In this section, we recall the definitions of vector space, function space, basis,
as well as differentiable and integrable functions. These definitions are use-
ful for understanding the finite element method. In addition, we recall how
integrals are approximately computed over one dimensional interval.

A.1 Function space and basis

Finite element solver finds an approximate solution to a PDE from a set of
functions. This set is a finite dimensional function space, thus, it can defined
to the solver by its basis. In this section, we recall the definitions of func-
tion space and basis. For simplicity, we limit the discussion to a simple one
dimensional case.

Let a, b ∈ R, a < b and consider the interval I = (a, b). In this note, we are
concerned with sets of functions f : I 7→ R. The sum and multiplication of
functions is understood point-wise: let f, g : I 7→ R, α ∈ R, and define

(f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x)

for each x ∈ I .

Function space Let S be a set of functions from interval I to scalars, this is

S ⊂ {f : I 7→ R}.

Let f, g ∈ S and α ∈ R. If

f + g ∈ S and αf ∈ S,

the set S is closed under addition and multiplication by scalar. Set S satisfying
these properties is called as vector space. Vector spaces are a central structure
in mathematics and appear in many context. A familiar example of a vector
space is Rn.

In the following, vector spaces of functions as are called as function spaces.

Example A.1. The set of degree n polynomials from (0, 1) 7→ R is defined as

Pn :=


n∑
j=0

ajx
j | aj ∈ R for j ∈ {0, . . . , n}

 .

Let α ∈ R and f, g ∈ Pn. Then there exists coefficients aj , bj ∈ R for j ∈
{0, . . . , n} such that

f(x) =

n∑
j=0

ajx
j and g(x) =

n∑
i=0

bjx
j .
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The sum of f and g satisfies

(f + g)(x) = f(x) + g(x) =
n∑
j=0

(aj + bj)x
j

for any x ∈ (a, b), hence, f + g ∈ Pn. Similarly,

(αf)(x) = αf(x) =

n∑
j=0

αajx
j ∈ Pn.

Thus, the set Pn is closed under addition and multiplication by a scalar and
it is a function space.

Linear independence. Let the set V be a vector space, {v1, . . . , vn} ⊂ V ,
and α ∈ Rn. We call the set {v1, . . . , vn} as linearly independent, if

n∑
j=1

αjvj = 0⇒ αj = 0 for j ∈ {1, . . . , n}. (93)

This is, any vj cannot be written as a weighted sum, or linear combination, of
elements in {v1, . . . , vn} \ vj .

Example A.2. Consider R3 and let

v1 =

1
1
0

 ,v2 =

0
1
1

 , and v3 =

1
4
3

 .
Study if the set {v1,v2,v3} is linearly independent. This is, investigate which
α ∈ R3 satisfies the condition

α1v1 + α2v2 + α3v3 = 0. (94)

Define the matrix A ∈ R3×3 as

A =
[
v1 v2 v3

]
=

1 0 1
1 1 4
0 1 3

 .
Using the definition of matrix-vector product, Equation (94) is rewritten as
Aα = 0. Recall that the equation Aα = 0 has only the zero solution α = 0
if detA 6= 0, and infinitely many nonzero solutions if detA = 0. By direct
calculation

det

1 0 1
1 1 4
0 1 3

 = 0,

and there exists nonzero solution α to (94). Thus, {v1,v2,v3} are linearly
dependent.
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Example A.3. Consider the space of degree 4 polynomials P 4, and the set

S = {1− t2, 1 + t3, t2 + t3} ⊂ P 4.

Study, if S is linearly independent. This is, investigate which α ∈ R3 satisfies

α1(1− t2) + α2(1 + t3) + α3(t2 + t3) = 0.

Regrouping the terms gives

(α1 + α2) + (α3 − α1) t2 + (α2 + α3) t3 = 0.

The above equation is satisfied when
α1 + α2 = 0

α3 − α1 = 0

α2 + α3 = 0

or

 1 1 0
−1 0 1
0 1 1

α = 0. (95)

The determinant of the coefficient matrix in (95) is zero. Hence, there exists
nonzero solutions α to (95), and we conclude that the set of functions S is
linearly dependent.

Basis A basis of vector space V is a linearly indepedent set {q1, . . . , qn} ⊂
V such that any v ∈ V can be written as

v =
n∑
j=1

αjqj for some coefficient vector α ∈ Rn.

The coefficient vector α ∈ Rn is called as the coordinate of v in the basis
{q1, . . . , qn}. There exists several basis for the same space. The number of
elements in each possible basis is the same, and called as the dimension of V .

In program code, function spaces are defined using their to basis. We will only
use finite-dimensional function spaces that have a finite number of basis vec-
tors. A familiar example of a basis are the cartesian unit vectors {e1, . . . , en}
in Rn satisfying ei ∈ Rn and

(ei)j =

{
1 i = j

0 otherwise
.

Example A.4. Each of the sets

{1, t}, {1− t, 1 + t}, {1, 1− t}, and {t, t− 1}

is an example of a basis for the space of first order polynomials P 1. Clearly,
the dimension of this space is two, i.e., dim(P 1) = 2.
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A.2 Derivative and Integral

When working with partial differential equations, it is important to have ex-
act definition for derivative and integral as well as differentiable and inte-
grable functions. These concepts are discussed very briefly in this section.
We also define function spaces of differentiable and integrable functions that
are widely used in mathematical literature dealing with PDEs. For simplicity,
the discussion is limited to functions from interval I ⊂ R to real numbers.

Derivative Let I = (a, b) ⊂ R and f : I 7→ R. Recall, that the function f is
differentiable at x0 ∈ I with derivative f ′(x0), if the limit

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
(96)

is a real number. The function f is said to be differentiable on the open set I ,
if it is differentiable at every x0 ∈ I . If this is the case, Eq. (96) defines the
derivative function f ′ : I 7→ R by specifying it’s pointwise values. One can
now ask, for what kind of functions is this process well defined ?

In PDE theory, the differentiation process is used to define sets of functions
whose derivatives have desired properties. Particularly, one is interested in
functions that have one or several continuous derivatives over interval I . In-
terestingly, f ′ can be well defined on I but not a continuous function. If f is
differentiable on I and the derivative function f ′ is continuous in I , we call f
as continuously differentiable.

The set of continuously differentiable functions from I to real numbers is de-
noted by C1(I). The set C1(I) is a function space, this is, let f, g ∈ C1(I)
and α ∈ R. Then

(f + g) ∈ C1(I) and (αf) ∈ C1(I).

Similarly, function f is said to be n-times continuously differentiable if each
f (n−1), is continuously differentiable. The space of n-times continously dif-
ferentiable functions is denoted by Cn(I). Functions that have infinitely many
derivatives form the space C∞(I). The space C∞0 (I) denotes the function
space of those functions in C∞ that are non-zero only on some closed subset
of I . Particularly, v ∈ C([0, 1]) ∩ C∞0 (0, 1) satisfies v(0) = v(1) = 0.

Integral When writing the integral∫ b

a
f dx,

we intuitively think about the area under the graph of function f , see Fig. 28.
However, it is not straightforward to give a mathematically exact definition for
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Figure 28: From left: example of definite integral, approximation by midpoint rule,
approximation by trapezoidal rule

integral or design a process that computes the area. A natural idea is define a
sequence of improving approximations {si} ⊂ R to

∫ b
a f dx and define the

integral as a limit of si, when i→∞. The Riemann and Lebesque integration
theories are based on such ideas. For example, the intuitive idea of Riemann
integration theory is to define the sequence of approximations by bars as in
Fig. 29. The challenge is to prove the convergence of the sequence {si}, espe-
cially for irregular functions f .

In the theory of PDEs, functions are often often approximated by a sequence
of smooth functions. For example, consider function f that is approximated by
pointwise converging sequence {fn} ⊂ C∞0 (0, 1) as in Fig. 30. Many proofs
in PDE theory require evaluation of limits such as

lim
n→∞

∫ b

a
(f ′n − f ′)2 dx. (97)

Recall that the integration process itself is defined by taking a limit. Hence, it
is not automatic that the order of limit and integral in (97) can be exchanged.

The Lebesque integration theory gives tools for investigating when the limit
and integral can be exchanged. Such tools do not exist in Riemann integration
theory. Due to this, PDE theory uses Lebesque integration process, however,
it is not in the focus of this lecture note. We do not pay attention to limiting
processes such as one in (97).

The Lebesque integral is used to define function spaces that are essential for us.
Namely, we use the function space L2(0, 1) consisting of all square integrable
functions, i.e.

L2(0, 1) := {f : (0, 1) 7→ R |
∫ 1

0
f2 dx <∞ }.

In the above expression, the integral is to be understood in the sense of Lebesque.
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Figure 29: A sequence of improving approximations to definite integral
∫ 1

0 f dx.
The sequence is defined by applying the midpoint rule over each interval.

Numerical Integration The finite element solver evaluates integrals approx-
imately using numerical integration rules. The information on the applied in-
tegration rule is expressed by a pair of vectors (w, t) ∈ RM × RM . Given a
pair (w, t) ∈ RM × RM associated to I = (a, b), we approximate∫ b

a
f(x) dx ≈

M∑
k=1

f(tk)wk. (98)

Let h := b − a. Two simple examples of numerical integration methods are
the trapezoidal rule,

ttr =

[
a
b

]
wtr =

h

2

[
1
1

]
(99)

and the midpoint rule

tmp =
1

2
(a+ b) wmp = h. (100)

Both of these rules are based on geometric approximation of the function over
(a, b), see Fig. 28. The midpoint rule is used in our example implementation
of one dimensional finite element solver.
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Figure 30: Dashed lines denote three first terms form a sequence of improving
smooth approximations of function f indicated by solid line.
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