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Agenda for today

1 Motivation for Gaussian processes

2 Course content, format, and evaluation

3 Warm up for Gaussian processes: Review of the multivariate Gaussian distribution

4 First assignment
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Gaussian processes in a nutshell

It’s all about learning functions from data

Suppose we are given a data set D = {xn, yn}Nn=1

Gaussian processes (GPs) can

... fit non-linear functions to data

... make predictions for new inputs

... provide sensible uncertainties

... adjust model complexity to data (nonparametric)
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Gaussian process paradigm

What functions are probable before seeing the data?

How smooth function do we expect?

What functions are probable after seeing the data?

What is the probability of a single function, ie. p(f (x))

How does the function correlate, ie. cov [f (x), f (x ′)]
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Functions with different domains

The real line

Higher dimensions

A sphere

Finland

A human brain
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Gaussian pro
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Multitude of Gaussian processes applications
Regression (supervised learning)

Time series analysis / dynamical models
EEG brain imaging
Survival analysis for cancer data
Predicting rainfall
Robot dynamics
Spatial modelling

Classification (supervised learning)

Image recognition
Brain decoding

Dimensionality reduction (unsupervised learning)

Optimization of black box functions (Bayesian optimization)

Numerical integration (Bayesian quadrature)

Solving differential equations (probabilistic numerics)

Experimental design / active learning

Reinforcement learning
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Course content

The goal of the course is to introduce you to Gaussian processes, and to most important
research advances

We will cover

1 ... Gaussian process regression & classification

2 ... model selection

3 ... approximate inference & how to speed up GPs

4 ... spatio-temporal modelling

5 ... latent modelling

6 ... deep learning

7 ... dynamical modelling

Markus Heinonen Gaussian processes Monday 11.1.2021 8 / 33



Format of the course

The course will be based on

12 lectures
5 python notebook assignments
(optional) project work + presentation in groups of 1-4 persons

To pass the course, you need to

complete and hand in exercises for 5 ECTS
attend exercise sessions
do project work for extra 2 ECTS
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Course plan

Lectures

Lecture 1: Warm up: Properties of the multivariate normal distribution

Lecture 2: Linear Gaussian models and intro to Gaussian processes

Lecture 3: Kernels and model selection

Lecture 4: Inducing points method (.. or how to make GPs faster)

Lecture 5: Latent modelling

Lecture 6: Kernel learning (.. how to make GPs more flexible)

Lecture 7: Convolution GPs (.. or how to handle images)

Lecture 8: Deep GPs

Lecture 9: Bayesian modelling

Lecture 10: Spatio-temporal models

Lecture 11: Dynamical modelling
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Course material

Lecture slides

Exercises

The book ”Gaussian Processes for Machine Learning” by Rasmussen and Williams, MIT
press, 2006, gaussianprocess.org/gpml (Free to download)
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Assignments
Five assignments

Released on mondays

Deadline to complete and return following week wednesday (at mycourses)

Present solutions at exercise session (following week) wednesday (12-14) and friday
(12-14) [choose one]

First sessions on jan 20th and 22th

Deadlines

Assignment 1: due jan 20th (noon), sessions 20th/22th

Assignment 2: due jan 27th (noon), sessions 27th/29th

Assignment 3: due feb 3rd (noon), sessions 3rd/5th

Assignment 4: due feb 10th (noon), sessions 10th/12th

Assignment 5: due feb 17th (noon), sessions 17th/19th

Grading

max 3 points per assignment, 1 extra point to attend either exercise session

No exam
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Relation to other courses

Designed as a 2nd / 1st year machine learning Msc course

Prerequisite assumed: basics of ML, eg.:

CS-C3240 Machine Learning

CS-E4710 Machine Learning: Supervised methods

(CS-E3210 Machine learning: Basic principles)

Similar level courses

CS-E5710 Bayesian Data Analysis (.. GPs are Bayesian)

CS-E4820 Machine Learning: Advanced Probabilistic Methods (.. GPs are probabilistic)
[Period III]

CS-E4830 Kernel Methods in Machine Learning (.. GPs are probabilistic kernel methods)
[Period IV]

CS-E4890 Deep Learning (.. GPs can do probabilistic deep learning)

CS-E4800 Artificial Intelligence (.. GPs are often practical for applied modelling)
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The properties of the multivariate Gaussian
distribution
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The multivariate Gaussian distribution

Definition A random vector x = [x1, x2, · · · , xD ]T is said to have the multivariate Gaussian
distribution if all linear combinations of x are Gaussian distributed:

y = aTx = a1x1 + a2x2 + · · ·+ aDxD ∼ N (m, v) (1)

for all a ∈ RD , where a 6= 0

The multivariate Gaussian density for a variable x ∈ RD :

N (x |µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

[
−1

2
(x − µ)TΣ−1(x − µ)

]
∈ R≥0 (2)

logN (x |µ,Σ) = −D

2
log 2π − 1

2
log |Σ| − 1

2
(x − µ)TΣ−1(x − µ) ∈ R (3)

Completely described by its parameters:

µ ∈ RD is the mean vector

Σ ∈ RD×D is the covariance matrix (positive definite)

(Σ)ij is the covariance between the i ’th and j ’th elements xi and xj of x
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Interpretation of the covariance matrix - 2D examples

The diagonal of the covariance controls the scaling/marginal variances

µ =

[
0
0

]
Σ =

[
a 0
0 b

]
(4)

Questions:
1 If Σ is diagonal, then x1 and x2 are uncorrelated? True or false?
2 If Σ is diagonal, then x1 and x2 are independent? True or false?
3 What is the volume (integral) of density?
4 Which of the four densities has the highest peak and why?
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The density at the mode

The density is given by

N
(
x
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 exp

[
−1

2
(x − µ)T Σ−1 (x − µ)

]
(5)

The mode (highest density value) is achieve at x = µ

N
(
µ
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 (6)

The determinant of the covariance is∣∣Σ∣∣ = det

[
a ρ
ρ b

]
= ab − ρ2 (7)

Therefore

N
(
µ
∣∣µ,Σ) = (2π)−

D
2
∣∣Σ∣∣− 1

2 =
(2π)−

D
2√

ab − ρ2
(8)
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Interpretation of the covariance matrix

The off-diagonals control the covariances:

(Σ)ij = cov (xi , xj) = E [xixj ]− µiµj (9)

µ =

[
0
0

]
Σ =

[
1 ρ
ρ 1

]
(10)

Question:

Which of the four densities has the highest peak and why?
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Interpretation of the covariance matrix

Covariance matrices must be symmetric:

(Σ)ij = cov (xi , xj) = cov (xj , xi ) = (Σ)ji (11)

Consider the following set of covariance matrices:

Σ =

[
a c
c b

]
(12)

c is the covariance between x1 and x2. Can c take any values?

∣∣ρ∣∣ =
∣∣ c
√
a
√
b

∣∣ ≤ 1 ⇒
∣∣c∣∣ ≤ √a√b (13)

Σ must be positive definite
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Interpretation of the covariance matrix

Determine which of the following 5 matrices are valid covariance matrices and match them to
the set of samples below.

Σ1 =

[
3 −2
−2 3

]
Σ2 =

[
3 2

1.5 3

]
Σ3 =

[
1 1
1 3

]
Σ4 =

[
1 −2
−2 3

]
Σ5 =

[
3 1.5

1.5 1

]

Discuss with your neighbor for 3 minutesMarkus Heinonen Gaussian processes Monday 11.1.2021 20 / 33



The multivariate Gaussian: Basic properties

Gaussian distributions are closed under addition:

x1 ∼ N (m1,V1) , x2 ∼ N (m2,V2) ⇒ x1 + x2 ∼ N (m1 + m2,V1 + V2) (14)

For any finite number of independent variables:

xi ∼ N (mi ,Vi ) ⇒
∑
i

xi ∼ N

(∑
i

mi ,
∑
i

Vi

)
(15)

Gaussian distributions are closed under affine transformations:

x ∼ N (m,V ) , ⇒ Ax + b ∼ N
(
Am + b,AVAT

)
(16)

Manipulating Gaussian distributions often boils down to linear algebra

‘Matrix cookbook’ (section 8) and Rasmussen book (Appendix A)
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Question

... how to use the following two results

xi ∼ N (mi ,Vi ) ⇒
∑
i

xi ∼ N

(∑
i

mi ,
∑
i

Vi

)
(17)

x ∼ N (m,V ) ⇒ Ax + b ∼ N
(
Am + b,AVAT

)
, (18)

to calculate the distribution of Y in the following linear model?

Y = µ + Xw + ε, (19)

where

w ∼ N (m,V ) ε ∼ N
(
0, σ2I

)
(20)
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Sampling from the multivariate Gaussian distribution

x ∼ N (m,V ) ⇒ Ax + b ∼ N
(
Am + b,AVAT

)
(21)

Suppose we know how to generate samples from a standardized univariate Gaussian distribution

How can we use the above result to generate samples from an arbitrary multivariate Gaussian
distribution y ∼ N (m,V )?

1 Compute the matrix square root of V = LLT

2 Generate a sample of x such that xi ∼ N (0, 1), i.e. x ∼ N (0, I )
3 Compute y = Lx + m

Why does it work?

y = Lx + m ∼ N
(
L0 + m,LILT

)
= N (m,V ) (22)
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2 Generate a sample of x such that xi ∼ N (0, 1), i.e. x ∼ N (0, I )
3 Compute y = Lx + m

Why does it work?

y = Lx + m ∼ N
(
L0 + m,LILT

)
= N (m,V ) (22)
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The multivariate Gaussian: Marginalization

Gaussian densities are closed on marginalization

Let x1 and x2 be a partitioning of x = x1 ∪ x2, then

p(x1, x2) = N
([

x1
x2

] ∣∣ [m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(23)

then

p(x1) =

∫
p(x1, x2)dx2 = N (x1|m1,Σ11) (24)

and

p(x2) =

∫
p(x1, x2)dx1 = N (x2|m2,Σ22) (25)

The same is true for any partitioning
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Marginalization example in 2D

x ∼ N
([

0
2

]
,

[
1 1
1 3

])

x1 ∼ N (0, 1)

x2 ∼ N (2, 3)
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Conditioning

Gaussian densities are closed under conditioning!

Recall the definition of conditioning:

p(A|B) =
p(A ∩ B)

p(B)
(26)

Let x1 and x2 be a partitioning of x = x1 ∪ x2, then

p(x1, x2) = N
([

x1
x2

] ∣∣ [m1

m2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(27)

The conditional of x1 is given x2 by:

p(x1|x2) = N
(
x1|Σ12Σ

−1
22 [x2 −m2] + m1,Σ11 −Σ12Σ

−1
22 Σ21

)
(28)

x1 is a random variable, x2 is assigned a fixed value
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 1
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 1

The conditional disitribution

p(x1|x2) = N

(
x1| −

√
2

2
,

1

2

)
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 2
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 2

The conditional disitribution

p(x1|x2) = N
(
x1|0,

1

2

)
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 3
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Conditioning example in 2D

2D example

µ =

[
0
2

]
Σ =

[
1 0.8

0.8 1

]
Assume we observe x2 = 3

The conditional disitribution

p(x1|x2) = N

(
x1|
√

2

2
,

1

2

)
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Visualizing samples in higher dimensions

Visualizations in 2D

Σ =

[
1 0.8

0.8 1

]
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Visualizing samples in higher dimensions

Visualizations in 5D

Σ =


1 0.81 0.82 0.83 0.84

0.81 1 0.81 0.82 0.83

0.82 0.81 1 0.81 0.82

0.83 0.82 0.81 1 0.81

0.84 0.83 0.82 0.81 1
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Visualizing samples in higher dimensions

Visualizations in 10D

Σ =



1 0.81 0.82 . . . 0.89

0.81 1 0.81
...

0.82 0.81 1
...

...
. . .

...
0.89 . . . . . . . . . 1
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Back to conditioning

So far, we have seen samples from the distribution p (x) = N
(
x
∣∣0,Σ)

We can also write p (x) = p(x1, x2:10)

We now observe x1 = 0

Let’s sample from the conditional distribution p(x2:10
∣∣x1 = 0)
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Back to conditioning II
Let’s now consider a case with x ∈ R100 dimensions with 5 observations

Informally: We can think functions as vectors with infinite dimensions

Using conditining in Gaussian distributions, we can do non-linear regression!
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The end of todays lecture

Next thursday 14th, 10pm

We will introduce Gaussian processes more formally
Read Chapter 1 & 2 of the Gaussian process book gaussianprocess.org/gpml

Time to work: first assignment

Released today, deadline jan 20th, 12:00 (midday)
Reviews the basics of Bayesian inference and Gaussians
Must be handed in through MyCourses
Q&A sessions on 20th and 22th (grants extra point for being present!)
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