Computational Algebraic Geometry Geometry，Algebra and Algorithms

Kaie Kubjas

kaie．kubjas＠aalto．fi

January 11， 2021
$4 \square>4$ 司 >4 三 >4 三 $>$

Organization

Schedule:

- lectures Mo and We 14.15-16.00 (Kaie Kubjas)
- exercises Fr 12.15-14.00 (Muhammad Ardiyansyah)

Organization

Schedule:

- lectures Mo and We 14.15-16.00 (Kaie Kubjas)
- exercises Fr 12.15-14.00 (Muhammad Ardiyansyah)

Organization:

- lectures and exercises on zoom
- slides and recordings of lectures posted on MyCourses
- official announcements in MyCourses, rest of the communication in Zulip

Organization

Schedule:

- lectures Mo and We 14.15-16.00 (Kaie Kubjas)
- exercises Fr 12.15-14.00 (Muhammad Ardiyansyah)

Organization:

- lectures and exercises on zoom
- slides and recordings of lectures posted on MyCourses
- official announcements in MyCourses, rest of the communication in Zulip
Lecture materials:
- "Ideals, Varieties and Algorithms" by Cox, Little and O'Shea
- "Numerically solving polynomial systems with Bertini" by Bates, Hauenstein, Sommese and Wampler
- Further reading: "Nonlinear algebra" by Michalek and Sturmfels

Organization

Grade：
－five weekly homework assignments（50\％of the grade）
－homework is handed out on Tuesday and the deadline is one week later on Wednesday
－it is encouraged to discuss homework in small groups（2－3 persons），but everyone has to write down their solutions
－a final exam at the end of the course（ 50% of the grade）
－correcting mistakes gives 0.5 points

Organization

Grade:

- five weekly homework assignments (50\% of the grade)
- homework is handed out on Tuesday and the deadline is one week later on Wednesday
- it is encouraged to discuss homework in small groups (2-3 persons), but everyone has to write down their solutions
- a final exam at the end of the course (50\% of the grade)
- correcting mistakes gives 0.5 points

Optional extra homework:

- You can submit any exercise from "Nonlinear algebra" by Michalek and Sturmfels as extra homework.
- Each exercise gives 3 points.
- Sections 1-4 are most related to this course.

Exam

Suggestion: February 22 (Monday), 13:00-17:00

- the exam will be an open book exam
- if this time doesn't work for you, let me know before the lecture on Wednesday

What is this course about?

- An important goal is to learn basic theory and tools for investigating systems of polynomial equations, e.g.

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}=3 \\
x^{2}+y^{2}+z^{2}=2 \\
x+y+z=1
\end{array}
$$

What is this course about?

- An important goal is to learn basic theory and tools for investigating systems of polynomial equations, e.g.

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}=3 \\
x^{2}+y^{2}+z^{2}=2 \\
x+y+z=1
\end{array}
$$

- What does it mean to solve such a system?

What is this course about?

- An important goal is to learn basic theory and tools for investigating systems of polynomial equations, e.g.

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}=3 \\
x^{2}+y^{2}+z^{2}=2 \\
x+y+z=1
\end{array}
$$

- What does it mean to solve such a system?
- If the solution set is finite, then we can list all the solutions.

What is this course about?

- An important goal is to learn basic theory and tools for investigating systems of polynomial equations, e.g.

$$
\begin{aligned}
x^{3}+y^{3}+z^{3} & =3 \\
x^{2}+y^{2}+z^{2} & =2 \\
x+y+z & =1
\end{aligned}
$$

- What does it mean to solve such a system?
- If the solution set is finite, then we can list all the solutions.
- If the solution set is infinite, then we can aim to describe each irreducible component.

What is this course about？

－An important goal is to learn basic theory and tools for investigating systems of polynomial equations，e．g．

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}=3 \\
x^{2}+y^{2}+z^{2}=2 \\
x+y+z=1
\end{array}
$$

－What does it mean to solve such a system？
－If the solution set is finite，then we can list all the solutions．
－If the solution set is infinite，then we can aim to describe each irreducible component．
－To be able to solve simple problems computationally．

What is this course about?

- An important goal is to learn basic theory and tools for investigating systems of polynomial equations, e.g.

$$
\begin{array}{r}
x^{3}+y^{3}+z^{3}=3 \\
x^{2}+y^{2}+z^{2}=2 \\
x+y+z=1
\end{array}
$$

- What does it mean to solve such a system?
- If the solution set is finite, then we can list all the solutions.
- If the solution set is infinite, then we can aim to describe each irreducible component.
- To be able to solve simple problems computationally.
- To learn to recognize polynomial systems in applications.

Content

We will cover chapters 1-4 and 6 from "Ideals, Varieties and Algorithms":

- Chapter 1: Geometry, Algebra and Algorithms (1 week)
- Chapter 2: Groebner Bases (1.5 weeks)
- Chapter 3: Elimination Theory (1 week)
- Chapter 4: The Algebra-Geometry Dictionary (1.5 weeks)
- Chapter 6: Robotics (1 lecture)
- Additional topic: Numerical algebraic geometry (1 lecture)

Most results will be presented together with proofs.

Robotics

- suppose we have a robot arm in the plane consisting of two linked rods of lengths 1 and 2, with the longer rod anchored at the origin

Robotics

- suppose we have a robot arm in the plane consisting of two linked rods of lengths 1 and 2, with the longer rod anchored at the origin

- the "state" of the arm is completely described by the coordinates (x, y) and (z, w) indicated in the figure

Robotics

- the state can be regarded as a 4-tuple $(x, y, z, w) \in \mathbb{R}^{4}$

Robotics

- the state can be regarded as a 4-tuple $(x, y, z, w) \in \mathbb{R}^{4}$
- not all 4-tuples can occur as states of the arm

Robotics

- the state can be regarded as a 4-tuple $(x, y, z, w) \in \mathbb{R}^{4}$
- not all 4-tuples can occur as states of the arm
- the subset of possible states is the affine variety in \mathbb{R}^{4} defined by the equations

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
(x-z)^{2}+(y-w)^{2} & =1
\end{aligned}
$$

Today

- Polynomials and affine space
- Affine varieties
- Parametrizations of affine varieties

Today's lecture is based on Chapters 1.1-1.3 in "Ideals, Varieties and Algorithms".

Fields

We will study polynomials over a field.

Fields

We will study polynomials over a field.
Field is a set where we can define addition, subtraction, multiplication and division with the usual properties.

Fields

We will study polynomials over a field.
Field is a set where we can define addition, subtraction, multiplication and division with the usual properties.

Quiz

Which of the following are fields?

- \mathbb{Z}
- \mathbb{Q}
- \mathbb{R}
- \mathbb{C}

Fields

We will study polynomials over a field.
Field is a set where we can define addition, subtraction, multiplication and division with the usual properties.

Quiz

Which of the following are fields?

- \mathbb{Z}
- \mathbb{Q}
- \mathbb{R}
- \mathbb{C}

Example

The rational numbers \mathbb{Q}, the real numbers \mathbb{R} and the complex numbers \mathbb{C} are fields, but integers \mathbb{Z} is not a field.

Fields

Fields are important: linear algebra works over any field!
We will employ different fields for different purposes:

- The rational numbers \mathbb{Q} for doing computations.
- The real numbers \mathbb{R} for drawing pictures.
- The complex numbers \mathbb{C} for proving theorems.

Monomials

Definition

A monomial in x_{1}, \ldots, x_{n} is a product of the form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are nonnegative integers. The total degree of this monomial is $\alpha_{1}+\ldots+\alpha_{n}$.

Monomials

Definition

A monomial in x_{1}, \ldots, x_{n} is a product of the form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are nonnegative integers. The total degree of this monomial is $\alpha_{1}+\ldots+\alpha_{n}$.

Quiz

1. Are $x y^{2} z^{3}$ and $x y+y z+z x$ monomials?

Monomials

Definition

A monomial in x_{1}, \ldots, x_{n} is a product of the form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are nonnegative integers. The total degree of this monomial is $\alpha_{1}+\ldots+\alpha_{n}$.

Quiz

1. Are $x y^{2} z^{3}$ and $x y+y z+z x$ monomials?
2. What is the total degree of $x y^{2} z^{3}$?

Monomials

Definition

A monomial in x_{1}, \ldots, x_{n} is a product of the form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are nonnegative integers. The total degree of this monomial is $\alpha_{1}+\ldots+\alpha_{n}$.

Quiz

1. Are $x y^{2} z^{3}$ and $x y+y z+z x$ monomials?
2. What is the total degree of $x y^{2} z^{3}$?

- $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) n$-tuple of nonnegative integers

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

- the total degree $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$

Polynomials

Definition

A polynomial f in x_{1}, \ldots, x_{n} with coefficients in k is a finite linear combination (with coefficients in k) of monomials. We will write a polynomial f in the form

$$
f=\sum_{\alpha} a_{\alpha} x^{\alpha}, a_{\alpha} \in k
$$

The set of all polynomials in x_{1}, \ldots, x_{n} with coefficients in k is denoted by $k\left[x_{1}, \ldots, x_{n}\right]$.

Polynomials

Definition

A polynomial f in x_{1}, \ldots, x_{n} with coefficients in k is a finite linear combination (with coefficients in k) of monomials. We will write a polynomial f in the form

$$
f=\sum_{\alpha} a_{\alpha} x^{\alpha}, a_{\alpha} \in k
$$

The set of all polynomials in x_{1}, \ldots, x_{n} with coefficients in k is denoted by $k\left[x_{1}, \ldots, x_{n}\right]$.

Definition

- We call a_{α} the coefficient of the monomial x^{α}.
- If $a_{\alpha} \neq 0$, then we call $a_{\alpha} x^{\alpha}$ a term of f.
- The total degree of f, denoted $\operatorname{deg}(f)$, is the maximum $|\alpha|$ such that the coefficient a_{α} is nonzero.

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial xyz?

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial xyz?
- How many terms does f have?

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial xyz?
- How many terms does f have?
- What is the total degree of f ?

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial xyz?
- How many terms does f have?
- What is the total degree of f ?
- the sum and product of two polynomials is a polynomial

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial xyz?
- How many terms does f have?
- What is the total degree of f ?
- the sum and product of two polynomials is a polynomial
- we say that a polynomial f divides a polynomial g provided that $g=f h$ for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial $x y z$?
- How many terms does f have?
- What is the total degree of f ?
- the sum and product of two polynomials is a polynomial
- we say that a polynomial f divides a polynomial g provided that $g=f h$ for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$
- under addition and multiplication $k\left[x_{1}, \ldots, x_{n}\right]$ satisfies all the field axioms except for the existence of multiplicative inverses ($1 / x_{1}$ is not a polynomial)

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial $x y z$?
- How many terms does f have?
- What is the total degree of f ?
- the sum and product of two polynomials is a polynomial
- we say that a polynomial f divides a polynomial g provided that $g=f h$ for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$
- under addition and multiplication $k\left[x_{1}, \ldots, x_{n}\right]$ satisfies all the field axioms except for the existence of multiplicative inverses ($1 / x_{1}$ is not a polynomial)
- such a mathematical structure is called a commutative ring

Polynomials

Quiz

Let $f=2 x^{3} y^{2} z+\frac{3}{2} y^{3} z^{3}-3 x y z+y^{2}$.

- What is the coefficient of the monomial $x y z$?
- How many terms does f have?
- What is the total degree of f ?
- the sum and product of two polynomials is a polynomial
- we say that a polynomial f divides a polynomial g provided that $g=f h$ for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$
- under addition and multiplication $k\left[x_{1}, \ldots, x_{n}\right]$ satisfies all the field axioms except for the existence of multiplicative inverses ($1 / x_{1}$ is not a polynomial)
- such a mathematical structure is called a commutative ring
- we refer to $k\left[x_{1}, \ldots, x_{n}\right]$ as a polynomial ring

Affine space

Definition

Given a field k and a positive integer n, we define the n-dimensional affine space over k to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in k\right\} .
$$

Affine space

Definition

Given a field k and a positive integer n, we define the n-dimensional affine space over k to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in k\right\}
$$

Example

$k=\mathbb{R}$ and the n-dimensional affine space \mathbb{R}^{n}

Affine space

Definition

Given a field k and a positive integer n, we define the n-dimensional affine space over k to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in k\right\}
$$

Example

$k=\mathbb{R}$ and the n-dimensional affine space \mathbb{R}^{n}

- $k^{1}=k$ affine line and k^{2} affine plane

Affine space

Definition

Given a field k and a positive integer n, we define the n-dimensional affine space over k to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in k\right\}
$$

Example

$k=\mathbb{R}$ and the n-dimensional affine space \mathbb{R}^{n}

- $k^{1}=k$ affine line and k^{2} affine plane
- polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha} \in k\left[x_{1}, \ldots, x_{n}\right]$ gives a function

$$
\begin{aligned}
f: k^{n} & \rightarrow k \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto f\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Affine space

Definition

Given a field k and a positive integer n, we define the n-dimensional affine space over k to be the set

$$
k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in k\right\}
$$

Example

$k=\mathbb{R}$ and the n-dimensional affine space \mathbb{R}^{n}

- $k^{1}=k$ affine line and k^{2} affine plane
- polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha} \in k\left[x_{1}, \ldots, x_{n}\right]$ gives a function

$$
\begin{aligned}
f: k^{n} & \rightarrow k \\
\left(a_{1}, \ldots, a_{n}\right) & \mapsto f\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

- this makes it possible to link algebra and geometry

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

- all its coefficients a_{α} are zero

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

- all its coefficients a_{α} are zero

2. is f the zero function?

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

- all its coefficients a_{α} are zero

2. is f the zero function?

- $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

- all its coefficients a_{α} are zero

2. is f the zero function?

- $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$

These two statements are not equivalent in general.

Example

Let $k=\mathbb{F}_{2}$ and $f=x^{2}-x \in \mathbb{F}_{2}[x]$. It gives the zero function, but not the zero polynomial.

Zero polynomial vs zero function

"is $f=0$?" has two potential meanings

1. is f the zero polynomial?

- all its coefficients a_{α} are zero

2. is f the zero function?

- $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$

These two statements are not equivalent in general.

Example

Let $k=\mathbb{F}_{2}$ and $f=x^{2}-x \in \mathbb{F}_{2}[x]$. It gives the zero function, but not the zero polynomial.

Proposition

Let k be an infinite field, and let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f=0$ in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $f: k^{n} \rightarrow k$ is the zero function.

Proof: The zero polynomial cleanly gives the zero function.
Other direction: WNTS if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$, then f is the zn polynomial. We will use induction. $n=1: A$ vouzera plynomial in $k[x]$ of degree m has at west in roots (we will move thus mext time). We asses $f(a)=0$ for all $a \in k$.
Since k is infinite, this mans that f has infinitely many roots, hence f mess be the zero polynomial.
Induction step Assume that the statement holds for $n-1$. We can write f in the from

$$
f=\sum_{i=0}^{N} g_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i}
$$

when $g_{i} \in K\left[x_{1}, \ldots, x_{n-1}\right]$. We will show that each g_{i} is the zen polynomial in $n-1$ variables Let us fix $\left(a_{1}, \ldots, a_{n-1}\right) \in k^{n-1}$. We get the pl.
$f\left(a_{1}, \ldots, a_{n-1}, x_{n}\right) \in k\left[x_{n}\right]$. It follows from the case $n=1$ that $f\left(a_{1}, \ldots, a_{n-1}, x\right) \in K\left[x_{n}\right]$ is the zeno polynomial. Hence $g_{i}\left(a_{1}, \ldots, a_{n-1}\right)=0$ for all i. Since $\left(a_{1}, \ldots, a_{n-1}\right) \in k^{n-1}$ was chosen arbitrarily, g_{i} is the zee polynomial for all 1 . Hence f is the zuo polynomial.

Polynomial vs function

Corollary

Let k be an infinite field, and let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f=g$ in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $f: k^{n} \rightarrow k$ and $g: k^{n} \rightarrow k$ are the same function.

Polynomial vs function

Corollary

Let k be an infinite field, and let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f=g$ in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $f: k^{n} \rightarrow k$ and $g: k^{n} \rightarrow k$ are the same function.

Polynomials over the field of complex numbers \mathbb{C} have a special property:
Theorem
Every nonconstant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C}.

Polynomial vs function

Corollary

Let k be an infinite field, and let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f=g$ in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $f: k^{n} \rightarrow k$ and $g: k^{n} \rightarrow k$ are the same function.

Polynomials over the field of complex numbers \mathbb{C} have a special property:

Theorem

Every nonconstant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C}.
We say that a field k is algebraically closed if every nonconstant polynomial in $k[x]$ has a root in k.

Polynomial vs function

Corollary

Let k be an infinite field, and let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f=g$ in $k\left[x_{1}, \ldots, x_{n}\right]$ if and only if $f: k^{n} \rightarrow k$ and $g: k^{n} \rightarrow k$ are the same function.

Polynomials over the field of complex numbers \mathbb{C} have a special property:

Theorem

Every nonconstant polynomial $f \in \mathbb{C}[x]$ has a root in \mathbb{C}.
We say that a field k is algebraically closed if every nonconstant polynomial in $k[x]$ has a root in k.

Example

Thus \mathbb{R} is not algebraically closed ($x^{2}+1$ has no roots over \mathbb{R}), whereas by the previous theorem \mathbb{C} is algebraically closed.

Affine varieties

Definition

Let k be a field, and let f_{1}, \ldots, f_{s} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set

$$
\begin{aligned}
\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)\right. & =0 \\
& \text { for all } 1 \leq i \leq s\}
\end{aligned}
$$

We call $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ the affine variety defined by f_{1}, \ldots, f_{s}.

Examples

What is the variety $\mathbb{V}\left(x^{2}+y^{2}-1\right)$ in the plane \mathbb{R}^{2} ?

Examples

What is the variety $\mathbb{V}\left(x^{2}+y^{2}-1\right)$ in the plane \mathbb{R}^{2} ? It is the circle of radius 1 centered at the origin:

Examples

- the conic sections (circles, ellipses, parabolas, and hyperbolas) are affine varieties

Examples

- the conic sections (circles, ellipses, parabolas, and hyperbolas) are affine varieties
- graphs of polynomial funcions are affine varieties (the graph of $y=f(x)$ is $\mathbb{V}(y-f(x))$)

Examples

- the conic sections (circles, ellipses, parabolas, and hyperbolas) are affine varieties
- graphs of polynomial funcions are affine varieties (the graph of $y=f(x)$ is $\mathbb{V}(y-f(x)))$
- graphs of rational functions are affine varieties

Examples

- the conic sections (circles, ellipses, parabolas, and hyperbolas) are affine varieties
- graphs of polynomial funcions are affine varieties (the graph of $y=f(x)$ is $\mathbb{V}(y-f(x)))$
- graphs of rational functions are affine varieties

Example

The graph of $y=\frac{x^{3}-1}{x}$ gives the affine variety $\mathbb{V}\left(x y-x^{3}+1\right)$.

Examples

Paraboloid of revolution $\mathbb{V}\left(z-x^{2}-y^{2}\right)$:

Examples

Cone $\mathbb{V}\left(z^{2}-x^{2}-y^{2}\right)$:

Examples

Much more complicated surface is $\mathbb{V}\left(x^{2}-y^{2} z^{2}+z^{3}\right)$:

Examples

Twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$:

Dimension

- one equation in \mathbb{R}^{2} gave a curve

Dimension

- one equation in \mathbb{R}^{2} gave a curve
- one equation in \mathbb{R}^{3} usually gives a surface

Dimension

- one equation in \mathbb{R}^{2} gave a curve
- one equation in \mathbb{R}^{3} usually gives a surface
- twisted cubic: two equations in \mathbb{R}^{3} give a curve (dimension drops by two)

Dimension

- one equation in \mathbb{R}^{2} gave a curve
- one equation in \mathbb{R}^{3} usually gives a surface
- twisted cubic: two equations in \mathbb{R}^{3} give a curve (dimension drops by two)
- since each equation imposes an extra constraint, intuition suggests that each equation drops the dimension by one

Dimension

- one equation in \mathbb{R}^{2} gave a curve
- one equation in \mathbb{R}^{3} usually gives a surface
- twisted cubic: two equations in \mathbb{R}^{3} give a curve (dimension drops by two)
- since each equation imposes an extra constraint, intuition suggests that each equation drops the dimension by one
- however, the notion of dimension is more subtle than indicated by the above examples

Examples

What is the variety $\mathbb{V}(x z, y z)$?

Examples

What is the variety $\mathbb{V}(x z, y z)$? It is the union of the (x, y)-plane and the z-axis:

Linear varieties

Consider a system of m linear equations in n unknowns x_{1}, \ldots, x_{n} with coefficients in k :

$$
\begin{array}{r}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}
$$

Linear varieties

Consider a system of m linear equations in n unknowns x_{1}, \ldots, x_{n} with coefficients in k :

$$
\begin{array}{r}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}
$$

- the solutions form an affine variety in k^{n}, which we will call a linear variety

Linear varieties

Consider a system of m linear equations in n unknowns x_{1}, \ldots, x_{n} with coefficients in k :

$$
\begin{array}{r}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}
$$

- the solutions form an affine variety in k^{n}, which we will call a linear variety
- this variety need not have dimension $n-m$

Linear varieties

Consider a system of m linear equations in n unknowns x_{1}, \ldots, x_{n} with coefficients in k :

$$
\begin{array}{r}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}
$$

- the solutions form an affine variety in k^{n}, which we will call a linear variety
- this variety need not have dimension $n-m$
- the dimension is $n-r$, where r is the rank of the matrix $\left(a_{i j}\right)$

Linear varieties

Consider a system of m linear equations in n unknowns x_{1}, \ldots, x_{n} with coefficients in k :

$$
\begin{array}{r}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}
$$

- the solutions form an affine variety in k^{n}, which we will call a linear variety
- this variety need not have dimension $n-m$
- the dimension is $n-r$, where r is the rank of the matrix $\left(a_{i j}\right)$
- the dimension is determined by the number of independent equations

Lagrange multipliers

- we want to find the minimum and maximum values of $f(x, y, z)=x^{3}+2 x y z-z^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ being zero

Lagrange multipliers

- we want to find the minimum and maximum values of $f(x, y, z)=x^{3}+2 x y z-z^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ being zero
- Lagrange multipliers: at a local minimum or maximum $\nabla f=\lambda \nabla g$

Lagrange multipliers

- we want to find the minimum and maximum values of $f(x, y, z)=x^{3}+2 x y z-z^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ being zero
- Lagrange multipliers: at a local minimum or maximum $\nabla f=\lambda \nabla g$
- this gives us the following system

$$
\begin{aligned}
3 x^{2}+2 y z & =2 x \lambda \\
2 x z & =2 y \lambda \\
2 x y-2 z & =2 z \lambda \\
x^{2}+y^{2}+z^{2} & =1 .
\end{aligned}
$$

Lagrange multipliers

- we want to find the minimum and maximum values of $f(x, y, z)=x^{3}+2 x y z-z^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ being zero
- Lagrange multipliers: at a local minimum or maximum $\nabla f=\lambda \nabla g$
- this gives us the following system

$$
\begin{aligned}
3 x^{2}+2 y z & =2 x \lambda \\
2 x z & =2 y \lambda \\
2 x y-2 z & =2 z \lambda \\
x^{2}+y^{2}+z^{2} & =1 .
\end{aligned}
$$

- these equations define an affine variety in \mathbb{R}^{4}

Lagrange multipliers

- we want to find the minimum and maximum values of $f(x, y, z)=x^{3}+2 x y z-z^{2}$ subject to the constraint $g(x, y, z)=x^{2}+y^{2}+z^{2}-1$ being zero
- Lagrange multipliers: at a local minimum or maximum $\nabla f=\lambda \nabla g$
- this gives us the following system

$$
\begin{aligned}
3 x^{2}+2 y z & =2 x \lambda \\
2 x z & =2 y \lambda \\
2 x y-2 z & =2 z \lambda \\
x^{2}+y^{2}+z^{2} & =1 .
\end{aligned}
$$

- these equations define an affine variety in \mathbb{R}^{4}
- intuition suggests it consists of finitely many points

Properties

Lemma

If $V, W \subset k^{n}$ are affine varieties, then so are $V \cup W$ and $V \cap W$. Suppose $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ and $W=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$. Then

$$
\begin{aligned}
& V \cap W=\mathbb{V}\left(f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t}\right) \\
& V \cup W=\mathbb{V}\left(f_{i} g_{j}: 1 \leq i \leq s, 1 \leq j \leq t\right)
\end{aligned}
$$

Proof: "VUW@ $\mathbb{V}\left(f_{i} g_{j}\right)$ ".
If $\left(a_{1}, \ldots, a_{n}\right) \in V$, then $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$
$\forall i$. Hence $\left(f i g_{j}\right)\left(a_{1}, \ldots, a_{n}\right)=0 \quad \forall i, j$. Hence $\left(a_{1}, \ldots, a_{n}\right) \in Y\left(f_{i} \cdot g_{j}\right)$.
$" V\left(f_{i} g_{j}\right) \subseteq V \cup W "$
Let $\left(a_{1, \ldots, a_{n}}\right) \in \mathbb{Y}\left(f_{i} g_{j}\right)$. If $\left(a_{1}, \ldots, a_{n}\right) \in V$, then we are dome
If $\left(a_{1}, \ldots, a_{n}\right) \notin V_{1}$, then there christs f_{i} s.t. $f_{i}\left(a_{1}, \ldots, a_{4}\right) \neq 0$. Since $\left(f_{i} g_{j}\right)\left(a_{1}, \ldots, a_{n}\right)=0 \quad \forall j$, hence it must be that $g_{j}\left(a_{1}, \ldots, a_{n}\right)=0 \forall_{j}$. Hence $\left(a_{1}, \ldots, a_{n}\right) \in W$.

Interesting questions

Suppose we have $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

Interesting questions

Suppose we have $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

- (Consistency) Can we determine if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \neq \emptyset$, i.e. do the equations $f_{1}=\ldots=f_{s}=0$ have a common solution?

Interesting questions

Suppose we have $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

- (Consistency) Can we determine if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \neq \emptyset$, i.e. do the equations $f_{1}=\ldots=f_{s}=0$ have a common solution?
- (Finiteness) Can we determine if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ is finite, and if so, can we find all of the solutions explicitly?

Interesting questions

Suppose we have $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

- (Consistency) Can we determine if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \neq \emptyset$, i.e. do the equations $f_{1}=\ldots=f_{s}=0$ have a common solution?
- (Finiteness) Can we determine if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ is finite, and if so, can we find all of the solutions explicitly?
- (Dimension) Can we determine the "dimension" of $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) ?$

Parametrizations of affine varieties

Is there a way to "write down" the solutions of the system of polynomial equations $f_{1}=\ldots=f_{s}=0$?

Parametrizations of affine varieties

Is there a way to "write down" the solutions of the system of polynomial equations $f_{1}=\ldots=f_{s}=0$?

Example

Let $k=\mathbb{R}$ and consider the system of equations

$$
\begin{array}{r}
x+y+z=1 \\
x+2 y-z=3 .
\end{array}
$$

We use row operations to obtain the equivalent equations

$$
\begin{aligned}
& x+3 z=-1 \\
& y-2 z=2
\end{aligned}
$$

Letting $z=t$, this implies that all solutions are given by

$$
\begin{aligned}
& x=-1-3 t \\
& y=2+2 t \\
& z=t
\end{aligned}
$$

as t varies over \mathbb{R}.

Parametrizations of the unit circle

Consider the unit circle

$$
x^{2}+y^{2}=1
$$

A common way to parametrize the circle is using trigonometric functions:

$$
x=\cos (t), y=\sin (t)
$$

Parametrizations of the unit circle

Consider the unit circle

$$
x^{2}+y^{2}=1
$$

A common way to parametrize the circle is using trigonometric functions:

$$
x=\cos (t), y=\sin (t)
$$

There is also a more algebraic way to parametrize the circle:

$$
x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}
$$

Parametrizations of the unit circle

Consider the unit circle

$$
x^{2}+y^{2}=1
$$

A common way to parametrize the circle is using trigonometric functions:

$$
x=\cos (t), y=\sin (t)
$$

There is also a more algebraic way to parametrize the circle:

$$
x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}
$$

This parametrization does not describe the whole circle: the point $(-1,0)$ is not covered.

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. Two rational functions f / g and h / k are equal, provided that $k f=g h$ in $k\left[t_{1}, \ldots, t_{m}\right]$. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. Two rational functions f / g and h / k are equal, provided that $k f=g h$ in $k\left[t_{1}, \ldots, t_{m}\right]$. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- addition and multiplication are well defined and $k\left(t_{1}, \ldots, t_{m}\right)$ is a field

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. Two rational functions f / g and h / k are equal, provided that $k f=g h$ in $k\left[t_{1}, \ldots, t_{m}\right]$. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- addition and multiplication are well defined and $k\left(t_{1}, \ldots, t_{m}\right)$ is a field
- rational parametric description of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. Two rational functions f / g and h / k are equal, provided that $k f=g h$ in $k\left[t_{1}, \ldots, t_{m}\right]$. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- addition and multiplication are well defined and $k\left(t_{1}, \ldots, t_{m}\right)$ is a field
- rational parametric description of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

- require that V is the smallest variety containing these points

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. Two rational functions f / g and h / k are equal, provided that $k f=g h$ in $k\left[t_{1}, \ldots, t_{m}\right]$. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- addition and multiplication are well defined and $k\left(t_{1}, \ldots, t_{m}\right)$ is a field
- rational parametric description of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

- require that V is the smallest variety containing these points
- if r_{1}, \ldots, r_{n} are polynomials, then polynomial parametric representation

Parametric vs implicit form

- original defining equations $f_{1}=\ldots=f_{s}=0$ are called an implicit representation

Parametric vs implicit form

- original defining equations $f_{1}=\ldots=f_{s}=0$ are called an implicit representation
- it is easy to draw a parametric description of a curve on a computer

Parametric vs implicit form

- original defining equations $f_{1}=\ldots=f_{s}=0$ are called an implicit representation
- it is easy to draw a parametric description of a curve on a computer

- plotted not using $x^{2}-y^{2} z^{2}+z^{3}=0$ but

$$
x=t\left(u^{2}-t^{2}\right), y=u, z=u^{2}-t^{2}
$$

Parametric vs implicit form

- original defining equations $f_{1}=\ldots=f_{s}=0$ are called an implicit representation
- it is easy to draw a parametric description of a curve on a computer

- plotted not using $x^{2}-y^{2} z^{2}+z^{3}=0$ but

$$
x=t\left(u^{2}-t^{2}\right), y=u, z=u^{2}-t^{2}
$$

- if we want to know whether the point $(1,2,-1)$ is on the above surface, then implicit presentation is useful:

$$
1^{2}-2^{2}(-1)^{2}+(-1)^{3}=1-4-1=-4
$$

Parametric vs implicit form

Desirability of having both representations leads to the questions

Parametric vs implicit form

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?

Parametric vs implicit form

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?
- (Implicitization) Given a parametric representation of an affine variety, can we find the defining equations (i.e. can we find an implicit representation)?

Parametric vs implicit form

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?
- (Implicitization) Given a parametric representation of an affine variety, can we find the defining equations (i.e. can we find an implicit representation)?
- The answer to the first question is no. Those that can be parametrized are called unirational.

Parametric vs implicit form

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?
- (Implicitization) Given a parametric representation of an affine variety, can we find the defining equations (i.e. can we find an implicit representation)?
- The answer to the first question is no. Those that can be parametrized are called unirational.
- It is difficult to tell whether a given variety is unirational or not.

Parametric vs implicit form

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?
- (Implicitization) Given a parametric representation of an affine variety, can we find the defining equations (i.e. can we find an implicit representation)?
- The answer to the first question is no. Those that can be parametrized are called unirational.
- It is difficult to tell whether a given variety is unirational or not.
- We will learn in two weeks that the answer to the second question is always yes.

Implicitization example

Consider the parametric representation

$$
x=1+t, y=1+t^{2}
$$

Describes a curve, but we cannot be sure it describes an affine variety.

Implicitization example

Consider the parametric representation

$$
x=1+t, y=1+t^{2}
$$

Describes a curve, but we cannot be sure it describes an affine variety. Solve the first equation for t

$$
t=x-1
$$

Implicitization example

Consider the parametric representation

$$
x=1+t, y=1+t^{2}
$$

Describes a curve, but we cannot be sure it describes an affine variety. Solve the first equation for t

$$
t=x-1
$$

Substitute this into the second eqution

$$
y=1+(x-1)^{2}=x^{2}-2 x+2
$$

Implicitization example

Consider the parametric representation

$$
x=1+t, y=1+t^{2}
$$

Describes a curve, but we cannot be sure it describes an affine variety. Solve the first equation for t

$$
t=x-1
$$

Substitute this into the second eqution

$$
y=1+(x-1)^{2}=x^{2}-2 x+2
$$

Hence the parametric equations define the affine variety $\mathbb{V}\left(y-x^{2}+2 x-2\right)$.

Parametrization example 1

We will discuss how geometry can be used to parametrize varieties. Consider the unit circle $x^{2}+y^{2}=1$:

Parametrization example 1

We will discuss how geometry can be used to parametrize varieties. Consider the unit circle $x^{2}+y^{2}=1$:

- each nonvertical line through $(-1,0)$ will intersect the circle in a unique point (x, y) and y-axis at the point $(0, t)$

Parametrization example 1

We will discuss how geometry can be used to parametrize varieties. Consider the unit circle $x^{2}+y^{2}=1$:

- each nonvertical line through $(-1,0)$ will intersect the circle in a unique point (x, y) and y-axis at the point $(0, t)$

- geometric parametrization: given t, draw the line connecting $(-1,0)$ to $(0, t)$ and let (x, y) be the point where the line meets $x^{2}+y^{2}=1$

Parametrization example 1

- explicit formulas using slope:

$$
\frac{t-0}{0-(-1)}=\frac{y-0}{x-(-1)} \quad \Rightarrow \quad t=\frac{y}{x+1}
$$

Parametrization example 1

- explicit formulas using slope:

$$
\frac{t-0}{0-(-1)}=\frac{y-0}{x-(-1)} \quad \Rightarrow \quad t=\frac{y}{x+1}
$$

- substituting $y=t(x+1)$ into $x^{2}+y^{2}=1$ gives

$$
x=\frac{1-t^{2}}{1+t^{2}}
$$

Parametrization example 1

- explicit formulas using slope:

$$
\frac{t-0}{0-(-1)}=\frac{y-0}{x-(-1)} \quad \Rightarrow \quad t=\frac{y}{x+1}
$$

- substituting $y=t(x+1)$ into $x^{2}+y^{2}=1$ gives

$$
x=\frac{1-t^{2}}{1+t^{2}}
$$

- furthermore

$$
y=\frac{2 t}{1+t^{2}}
$$

Parametrization example 2

Consider the twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$:

Parametrization example 2

Consider the twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$:

- curve in \mathbb{R}^{3}

Parametrization example 2

Consider the twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$:

- curve in \mathbb{R}^{3}
- given a point on the curve, consider the tangent line

Parametrization example 2

Consider the twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$:

- curve in \mathbb{R}^{3}
- given a point on the curve, consider the tangent line

- taking tangent lines for all points gives the tangent surface of the twisted cubic

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$
- the tangent line is parametrized

$$
\left(t, t^{2}, t^{3}\right)+u\left(1,2 t, 3 t^{2}\right)=\left(t+u, t^{2}+2 t u, t^{3}+3 t^{2} u\right)
$$

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$
- the tangent line is parametrized

$$
\left(t, t^{2}, t^{3}\right)+u\left(1,2 t, 3 t^{2}\right)=\left(t+u, t^{2}+2 t u, t^{3}+3 t^{2} u\right)
$$

- a parametrization of the entire surface is

$$
x=t+u, y=t^{2}+2 t u, z=t^{3}+3 t^{2} u
$$

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$
- the tangent line is parametrized

$$
\left(t, t^{2}, t^{3}\right)+u\left(1,2 t, 3 t^{2}\right)=\left(t+u, t^{2}+2 t u, t^{3}+3 t^{2} u\right)
$$

- a parametrization of the entire surface is

$$
x=t+u, y=t^{2}+2 t u, z=t^{3}+3 t^{2} u
$$

- t tells where we are on the curve and u tells where we are on the tangent line

Parametrization example 2

- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$
- the tangent line is parametrized

$$
\left(t, t^{2}, t^{3}\right)+u\left(1,2 t, 3 t^{2}\right)=\left(t+u, t^{2}+2 t u, t^{3}+3 t^{2} u\right)
$$

- a parametrization of the entire surface is

$$
x=t+u, y=t^{2}+2 t u, z=t^{3}+3 t^{2} u
$$

- tells where we are on the curve and u tells where we are on the tangent line
- in the next weeks we will learn that the implicit representation is

$$
-4 x^{3} z+3 x^{2} y^{2}-4 y^{3}+6 x y z-z^{2}=0
$$

Bezier cubic

- engineers need curves and surfaces that are varied in shape, easy to describe, quick to draw

Bezier cubic

- engineers need curves and surfaces that are varied in shape, easy to describe, quick to draw
- complicated curves are created by joining simpler pieces

Bezier cubic

- engineers need curves and surfaces that are varied in shape, easy to describe, quick to draw
- complicated curves are created by joining simpler pieces
- for the pieces to join smoothly, the tangent directions must match up at the endpoints

Bezier cubic

- engineers need curves and surfaces that are varied in shape, easy to describe, quick to draw
- complicated curves are created by joining simpler pieces
- for the pieces to join smoothly, the tangent directions must match up at the endpoints
- the designer needs to control the starting and the end points of the curve and the tangent directions at the starting and ending points

Bezier cubic

- engineers need curves and surfaces that are varied in shape, easy to describe, quick to draw
- complicated curves are created by joining simpler pieces
- for the pieces to join smoothly, the tangent directions must match up at the endpoints
- the designer needs to control the starting and the end points of the curve and the tangent directions at the starting and ending points
- Bezier cubic (introduced by Renault auto designer P. Bezier) is given parametrically by the equations

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3} \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

for $0 \leq t \leq 1$ where x, y are constants specified by the design engineer

Bezier cubic

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3}, \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

- evaluating the above formulas at $t=0$ and $t=1$ gives

$$
(x(0), y(0))=\left(x_{0}, y_{0}\right),(x(1), y(1))=\left(x_{3}, y_{3}\right)
$$

Bezier cubic

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3} \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

- evaluating the above formulas at $t=0$ and $t=1$ gives

$$
(x(0), y(0))=\left(x_{0}, y_{0}\right),(x(1), y(1))=\left(x_{3}, y_{3}\right)
$$

- the tangent vectors at $t=0$ and $t=1$ are

$$
\left(x^{\prime}(0), y^{\prime}(0)\right)=3\left(x_{1}-x_{0}, y_{1}-y_{0}\right),\left(x^{\prime}(1), y^{\prime}(1)\right)=3\left(x_{3}-x_{2}, y_{3}-y_{2}\right)
$$

Bezier cubic

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3} \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

- evaluating the above formulas at $t=0$ and $t=1$ gives

$$
(x(0), y(0))=\left(x_{0}, y_{0}\right),(x(1), y(1))=\left(x_{3}, y_{3}\right)
$$

- the tangent vectors at $t=0$ and $t=1$ are

$$
\left(x^{\prime}(0), y^{\prime}(0)\right)=3\left(x_{1}-x_{0}, y_{1}-y_{0}\right),\left(x^{\prime}(1), y^{\prime}(1)\right)=3\left(x_{3}-x_{2}, y_{3}-y_{2}\right)
$$

- hence $\left(x^{\prime}(0), y^{\prime}(0)\right)$ is three times the vector from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$

Bezier cubic

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3} \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

- evaluating the above formulas at $t=0$ and $t=1$ gives

$$
(x(0), y(0))=\left(x_{0}, y_{0}\right),(x(1), y(1))=\left(x_{3}, y_{3}\right)
$$

- the tangent vectors at $t=0$ and $t=1$ are

$$
\left(x^{\prime}(0), y^{\prime}(0)\right)=3\left(x_{1}-x_{0}, y_{1}-y_{0}\right),\left(x^{\prime}(1), y^{\prime}(1)\right)=3\left(x_{3}-x_{2}, y_{3}-y_{2}\right)
$$

- hence $\left(x^{\prime}(0), y^{\prime}(0)\right)$ is three times the vector from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$
- by placing $\left(x_{1}, y_{1}\right)$ the designer can control the tangent direction at the beginning of the curve

Bezier cubic

$$
\begin{aligned}
& x=(1-t)^{3} x_{0}+3 t(1-t)^{2} x_{1}+3 t^{2}(1-t) x_{2}+t^{3} x_{3} \\
& y=(1-t)^{3} y_{0}+3 t(1-t)^{2} y_{1}+3 t^{2}(1-t) y_{2}+t^{3} y_{3}
\end{aligned}
$$

- evaluating the above formulas at $t=0$ and $t=1$ gives

$$
(x(0), y(0))=\left(x_{0}, y_{0}\right),(x(1), y(1))=\left(x_{3}, y_{3}\right)
$$

- the tangent vectors at $t=0$ and $t=1$ are

$$
\left(x^{\prime}(0), y^{\prime}(0)\right)=3\left(x_{1}-x_{0}, y_{1}-y_{0}\right),\left(x^{\prime}(1), y^{\prime}(1)\right)=3\left(x_{3}-x_{2}, y_{3}-y_{2}\right)
$$

- hence $\left(x^{\prime}(0), y^{\prime}(0)\right)$ is three times the vector from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$
- by placing $\left(x_{1}, y_{1}\right)$ the designer can control the tangent direction at the beginning of the curve
- the placement of $\left(x_{2}, y_{2}\right)$ controls the tangent direction at the end of the curve

Bezier cubic

Conclusion and next time

Today:

- monomials and polynomials
- polynomials as functions - link between algebra and geometry
- affine varieties
- rational parametric description and implicit representation

Conclusion and next time

Today:

- monomials and polynomials
- polynomials as functions - link between algebra and geometry
- affine varieties
- rational parametric description and implicit representation

Next time:

- ideals
- polynomials in one variable

