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Organization

Schedule:
I lectures Mo and We 14.15-16.00 (Kaie Kubjas)
I exercises Fr 12.15-14.00 (Muhammad Ardiyansyah)

Organization:
I lectures and exercises on zoom
I slides and recordings of lectures posted on MyCourses
I official announcements in MyCourses, rest of the

communication in Zulip
Lecture materials:
I “Ideals, Varieties and Algorithms” by Cox, Little and O’Shea
I “Numerically solving polynomial systems with Bertini” by

Bates, Hauenstein, Sommese and Wampler
I Further reading: “Nonlinear algebra” by Michalek and

Sturmfels
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Organization

Grade:
I five weekly homework assignments (50% of the grade)
I homework is handed out on Tuesday and the deadline is

one week later on Wednesday
I it is encouraged to discuss homework in small groups (2-3

persons), but everyone has to write down their solutions
I a final exam at the end of the course (50% of the grade)
I correcting mistakes gives 0.5 points

Optional extra homework:
I You can submit any exercise from “Nonlinear algebra” by

Michalek and Sturmfels as extra homework.
I Each exercise gives 3 points.
I Sections 1-4 are most related to this course.
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Exam

Suggestion: February 22 (Monday), 13:00-17:00

I the exam will be an open book exam
I if this time doesn’t work for you, let me know before the

lecture on Wednesday
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What is this course about?

I An important goal is to learn basic theory and tools for
investigating systems of polynomial equations, e.g.

x3 + y3 + z3 = 3,

x2 + y2 + z2 = 2,
x + y + z = 1.

I What does it mean to solve such a system?
I If the solution set is finite, then we can list all the solutions.
I If the solution set is infinite, then we can aim to describe

each irreducible component.
I To be able to solve simple problems computationally.
I To learn to recognize polynomial systems in applications.
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Content

We will cover chapters 1-4 and 6 from “Ideals, Varieties and
Algorithms”:
I Chapter 1: Geometry, Algebra and Algorithms (1 week)
I Chapter 2: Groebner Bases (1.5 weeks)
I Chapter 3: Elimination Theory (1 week)
I Chapter 4: The Algebra-Geometry Dictionary (1.5 weeks)
I Chapter 6: Robotics (1 lecture)
I Additional topic: Numerical algebraic geometry (1 lecture)

Most results will be presented together with proofs.
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Robotics

I suppose we have a robot arm in the plane consisting of
two linked rods of lengths 1 and 2, with the longer rod
anchored at the origin

I the “state” of the arm is completely described by the
coordinates (x , y) and (z,w) indicated in the figure
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Robotics

I the state can be regarded as a 4-tuple (x , y , z,w) ∈ R4

I not all 4-tuples can occur as states of the arm
I the subset of possible states is the affine variety in R4

defined by the equations

x2 + y2 = 4

(x − z)2 + (y − w)2 = 1.



8/44

Robotics

I the state can be regarded as a 4-tuple (x , y , z,w) ∈ R4

I not all 4-tuples can occur as states of the arm

I the subset of possible states is the affine variety in R4

defined by the equations

x2 + y2 = 4

(x − z)2 + (y − w)2 = 1.



8/44

Robotics

I the state can be regarded as a 4-tuple (x , y , z,w) ∈ R4

I not all 4-tuples can occur as states of the arm
I the subset of possible states is the affine variety in R4

defined by the equations

x2 + y2 = 4

(x − z)2 + (y − w)2 = 1.



9/44

Today

I Polynomials and affine space
I Affine varieties
I Parametrizations of affine varieties

Today’s lecture is based on Chapters 1.1-1.3 in “Ideals,
Varieties and Algorithms”.
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Fields

We will study polynomials over a field.

Field is a set where we can define addition, subtraction,
multiplication and division with the usual properties.

Quiz
Which of the following are fields?
I Z
I Q
I R
I C

Example

The rational numbers Q, the real numbers R and the complex
numbers C are fields, but integers Z is not a field.
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Fields

Fields are important: linear algebra works over any field!

We will employ different fields for different purposes:
I The rational numbers Q for doing computations.
I The real numbers R for drawing pictures.
I The complex numbers C for proving theorems.
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Monomials

Definition
A monomial in x1, . . . , xn is a product of the form

xα1
1 xα2

2 · · · x
αn
n

where α1, α2, . . . , αn are nonnegative integers. The total
degree of this monomial is α1 + . . .+ αn.

Quiz

1. Are xy2z3 and xy + yz + zx monomials?
2. What is the total degree of xy2z3?

I α = (α1, α2, . . . , αn) n-tuple of nonnegative integers

xα = xα1
1 xα2

2 · · · x
αn
n

I the total degree |α| = α1 + . . .+ αn
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Polynomials

Definition
A polynomial f in x1, . . . , xn with coefficients in k is a finite
linear combination (with coefficients in k ) of monomials. We will
write a polynomial f in the form

f =
∑
α

aαxα,aα ∈ k .

The set of all polynomials in x1, . . . , xn with coefficients in k is
denoted by k [x1, . . . , xn].

Definition

I We call aα the coefficient of the monomial xα.
I If aα 6= 0, then we call aαxα a term of f .
I The total degree of f , denoted deg(f ), is the maximum |α|

such that the coefficient aα is nonzero.
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Polynomials

Quiz
Let f = 2x3y2z + 3

2y3z3 − 3xyz + y2.
I What is the coefficient of the monomial xyz?

I How many terms does f have?
I What is the total degree of f ?

I the sum and product of two polynomials is a polynomial
I we say that a polynomial f divides a polynomial g provided

that g = fh for some h ∈ k [x1, . . . , xn]

I under addition and multiplication k [x1, . . . , xn] satisfies all
the field axioms except for the existence of multiplicative
inverses (1/x1 is not a polynomial)

I such a mathematical structure is called a commutative ring
I we refer to k [x1, . . . , xn] as a polynomial ring
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Affine space

Definition
Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}.

Example

k = R and the n-dimensional affine space Rn

I k1 = k affine line and k2 affine plane
I polynomial f =

∑
α aαxα ∈ k [x1, . . . , xn] gives a function

f : kn → k
(a1, . . . ,an) 7→ f (a1, . . . ,an)

I this makes it possible to link algebra and geometry



15/44

Affine space

Definition
Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}.

Example

k = R and the n-dimensional affine space Rn

I k1 = k affine line and k2 affine plane
I polynomial f =

∑
α aαxα ∈ k [x1, . . . , xn] gives a function

f : kn → k
(a1, . . . ,an) 7→ f (a1, . . . ,an)

I this makes it possible to link algebra and geometry



15/44

Affine space

Definition
Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}.

Example

k = R and the n-dimensional affine space Rn

I k1 = k affine line and k2 affine plane

I polynomial f =
∑

α aαxα ∈ k [x1, . . . , xn] gives a function

f : kn → k
(a1, . . . ,an) 7→ f (a1, . . . ,an)

I this makes it possible to link algebra and geometry



15/44

Affine space

Definition
Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}.

Example

k = R and the n-dimensional affine space Rn

I k1 = k affine line and k2 affine plane
I polynomial f =

∑
α aαxα ∈ k [x1, . . . , xn] gives a function

f : kn → k
(a1, . . . ,an) 7→ f (a1, . . . ,an)

I this makes it possible to link algebra and geometry



15/44

Affine space

Definition
Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k}.

Example

k = R and the n-dimensional affine space Rn

I k1 = k affine line and k2 affine plane
I polynomial f =

∑
α aαxα ∈ k [x1, . . . , xn] gives a function

f : kn → k
(a1, . . . ,an) 7→ f (a1, . . . ,an)

I this makes it possible to link algebra and geometry



16/44

Zero polynomial vs zero function

“is f = 0?” has two potential meanings

1. is f the zero polynomial?
I all its coefficients aα are zero

2. is f the zero function?
I f (a1, . . . ,an) = 0 for all (a1, . . . ,an) ∈ kn

These two statements are not equivalent in general.

Example

Let k = F2 and f = x2 − x ∈ F2[x ]. It gives the zero function,
but not the zero polynomial.

Proposition

Let k be an infinite field, and let f ∈ k [x1, . . . , xn]. Then f = 0 in
k [x1, . . . , xn] if and only if f : kn → k is the zero function.
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Polynomial vs function

Corollary

Let k be an infinite field, and let f ,g ∈ k [x1, . . . , xn]. Then f = g
in k [x1, . . . , xn] if and only if f : kn → k and g : kn → k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f ∈ C[x ] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k [x ] has a root in k .

Example

Thus R is not algebraically closed (x2 + 1 has no roots over R),
whereas by the previous theorem C is algebraically closed.



17/44

Polynomial vs function

Corollary

Let k be an infinite field, and let f ,g ∈ k [x1, . . . , xn]. Then f = g
in k [x1, . . . , xn] if and only if f : kn → k and g : kn → k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f ∈ C[x ] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k [x ] has a root in k .

Example

Thus R is not algebraically closed (x2 + 1 has no roots over R),
whereas by the previous theorem C is algebraically closed.



17/44

Polynomial vs function

Corollary

Let k be an infinite field, and let f ,g ∈ k [x1, . . . , xn]. Then f = g
in k [x1, . . . , xn] if and only if f : kn → k and g : kn → k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f ∈ C[x ] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k [x ] has a root in k .

Example

Thus R is not algebraically closed (x2 + 1 has no roots over R),
whereas by the previous theorem C is algebraically closed.



17/44

Polynomial vs function

Corollary

Let k be an infinite field, and let f ,g ∈ k [x1, . . . , xn]. Then f = g
in k [x1, . . . , xn] if and only if f : kn → k and g : kn → k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f ∈ C[x ] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k [x ] has a root in k .

Example

Thus R is not algebraically closed (x2 + 1 has no roots over R),
whereas by the previous theorem C is algebraically closed.



18/44

Affine varieties

Definition
Let k be a field, and let f1, . . . , fs be polynomials in k [x1, . . . , xn].
Then we set

V(f1, . . . , fs) = {(a1, . . . ,an) ∈ kn : fi(a1, . . . ,an) = 0
for all 1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs.
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Examples

What is the variety V(x2 + y2 − 1) in the plane R2?

It is the
circle of radius 1 centered at the origin:
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Examples

I the conic sections (circles, ellipses, parabolas, and
hyperbolas) are affine varieties

I graphs of polynomial funcions are affine varieties (the
graph of y = f (x) is V(y − f (x)))

I graphs of rational functions are affine varieties

Example

The graph of y = x3−1
x gives the affine variety V(xy − x3 + 1).
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Examples

Paraboloid of revolution V(z − x2 − y2):
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Examples

Cone V(z2 − x2 − y2):
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Examples

Much more complicated surface is V(x2 − y2z2 + z3):
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Examples

Twisted cubic V(y − x2, z − x3):



25/44

Dimension

I one equation in R2 gave a curve

I one equation in R3 usually gives a surface
I twisted cubic: two equations in R3 give a curve (dimension

drops by two)
I since each equation imposes an extra constraint, intuition

suggests that each equation drops the dimension by one
I however, the notion of dimension is more subtle than

indicated by the above examples
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Examples

What is the variety V(xz, yz)?

It is the union of the (x , y)-plane
and the z-axis:



26/44

Examples

What is the variety V(xz, yz)? It is the union of the (x , y)-plane
and the z-axis:



27/44

Linear varieties

Consider a system of m linear equations in n unknowns
x1, . . . , xn with coefficients in k :

a11x1 + . . .+ a1nxn = b1

...
am1x1 + . . .+ amnxn = bm

I the solutions form an affine variety in kn, which we will call
a linear variety

I this variety need not have dimension n −m
I the dimension is n− r , where r is the rank of the matrix (aij)

I the dimension is determined by the number of independent
equations
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Lagrange multipliers

I we want to find the minimum and maximum values of
f (x , y , z) = x3 + 2xyz − z2 subject to the constraint
g(x , y , z) = x2 + y2 + z2 − 1 being zero

I Lagrange multipliers: at a local minimum or maximum
∇f = λ∇g

I this gives us the following system

3x2 + 2yz = 2xλ
2xz = 2yλ

2xy − 2z = 2zλ

x2 + y2 + z2 = 1.

I these equations define an affine variety in R4

I intuition suggests it consists of finitely many points
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Properties

Lemma
If V ,W ⊂ kn are affine varieties, then so are V ∪W and V ∩W.
Suppose V = V(f1, . . . , fs) and W = V(g1, . . . ,gt). Then

V ∩W = V(f1, . . . , fs,g1, . . . ,gt)

V ∪W = V(figj : 1 ≤ i ≤ s,1 ≤ j ≤ t)
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Interesting questions

Suppose we have f1, . . . , fs ∈ k [x1, . . . , xn]. Then

I (Consistency) Can we determine if V(f1, . . . , fs) 6= ∅, i.e. do
the equations f1 = . . . = fs = 0 have a common solution?

I (Finiteness) Can we determine if V(f1, . . . , fs) is finite, and
if so, can we find all of the solutions explicitly?

I (Dimension) Can we determine the “dimension” of
V(f1, . . . , fs)?
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Parametrizations of affine varieties

Is there a way to “write down” the solutions of the system of
polynomial equations f1 = . . . = fs = 0?

Example
Let k = R and consider the system of equations

x + y + z = 1

x + 2y − z = 3.

We use row operations to obtain the equivalent equations

x + 3z = −1

y − 2z = 2.

Letting z = t , this implies that all solutions are given by

x = −1 − 3t,

y = 2 + 2t,

z = t

as t varies over R.
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Parametrizations of the unit circle

Consider the unit circle

x2 + y2 = 1.

A common way to parametrize the circle is using trigonometric
functions:

x = cos(t), y = sin(t).

There is also a more algebraic way to parametrize the circle:

x =
1− t2

1 + t2 , y =
2t

1 + t2 .

This parametrization does not describe the whole circle: the
point (−1,0) is not covered.



32/44

Parametrizations of the unit circle

Consider the unit circle

x2 + y2 = 1.

A common way to parametrize the circle is using trigonometric
functions:

x = cos(t), y = sin(t).

There is also a more algebraic way to parametrize the circle:

x =
1− t2

1 + t2 , y =
2t

1 + t2 .

This parametrization does not describe the whole circle: the
point (−1,0) is not covered.



32/44

Parametrizations of the unit circle

Consider the unit circle

x2 + y2 = 1.

A common way to parametrize the circle is using trigonometric
functions:

x = cos(t), y = sin(t).

There is also a more algebraic way to parametrize the circle:

x =
1− t2

1 + t2 , y =
2t

1 + t2 .

This parametrization does not describe the whole circle: the
point (−1,0) is not covered.



33/44

Rational parametrizations

Definition
A rational function in t1, . . . , tm with coefficients in k is a
quotient f/g of two polynomials f ,g ∈ k [t1, . . . , tm], where g is
not the zero polynomial. Two rational functions f/g and h/k are
equal, provided that kf = gh in k [t1, . . . , tm]. The set of all
rational functions is denoted k(t1, . . . , tm).

I addition and multiplication are well defined and k(t1, . . . , tm) is a
field

I rational parametric description of V consists of
r1, . . . , rn ∈ k(t1, . . . , tm) such that

x1 = r1(t1, . . . , tm), · · · , xn = rn(t1, . . . , tm)

lie in V
I require that V is the smallest variety containing these points
I if r1, . . . , rn are polynomials, then polynomial parametric

representation
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Parametric vs implicit form

I original defining equations f1 = . . . = fs = 0 are called an
implicit representation

I it is easy to draw a parametric description of a curve on a
computer

I plotted not using x2 − y2z2 + z3 = 0 but

x = t(u2 − t2), y = u, z = u2 − t2.

I if we want to know whether the point (1,2,−1) is on the
above surface, then implicit presentation is useful:
12 − 22(−1)2 + (−1)3 = 1− 4− 1 = −4



34/44

Parametric vs implicit form

I original defining equations f1 = . . . = fs = 0 are called an
implicit representation

I it is easy to draw a parametric description of a curve on a
computer

I plotted not using x2 − y2z2 + z3 = 0 but

x = t(u2 − t2), y = u, z = u2 − t2.

I if we want to know whether the point (1,2,−1) is on the
above surface, then implicit presentation is useful:
12 − 22(−1)2 + (−1)3 = 1− 4− 1 = −4



34/44

Parametric vs implicit form

I original defining equations f1 = . . . = fs = 0 are called an
implicit representation

I it is easy to draw a parametric description of a curve on a
computer

I plotted not using x2 − y2z2 + z3 = 0 but

x = t(u2 − t2), y = u, z = u2 − t2.

I if we want to know whether the point (1,2,−1) is on the
above surface, then implicit presentation is useful:
12 − 22(−1)2 + (−1)3 = 1− 4− 1 = −4



34/44

Parametric vs implicit form

I original defining equations f1 = . . . = fs = 0 are called an
implicit representation

I it is easy to draw a parametric description of a curve on a
computer

I plotted not using x2 − y2z2 + z3 = 0 but

x = t(u2 − t2), y = u, z = u2 − t2.

I if we want to know whether the point (1,2,−1) is on the
above surface, then implicit presentation is useful:
12 − 22(−1)2 + (−1)3 = 1− 4− 1 = −4



35/44

Parametric vs implicit form

Desirability of having both representations leads to the
questions

I (Parametrization) Does every affine variety have a rational
parametric description?

I (Implicitization) Given a parametric representation of an
affine variety, can we find the defining equations (i.e. can
we find an implicit representation)?

I The answer to the first question is no. Those that can be
parametrized are called unirational.

I It is difficult to tell whether a given variety is unirational or
not.

I We will learn in two weeks that the answer to the second
question is always yes.
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Implicitization example

Consider the parametric representation

x = 1 + t , y = 1 + t2.

Describes a curve, but we cannot be sure it describes an affine
variety.

Solve the first equation for t

t = x − 1.

Substitute this into the second eqution

y = 1 + (x − 1)2 = x2 − 2x + 2.

Hence the parametric equations define the affine variety
V(y − x2 + 2x − 2).
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Hence the parametric equations define the affine variety
V(y − x2 + 2x − 2).
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Parametrization example 1

We will discuss how geometry can be used to parametrize
varieties. Consider the unit circle x2 + y2 = 1:

I each nonvertical line through (−1,0) will intersect the
circle in a unique point (x , y) and y -axis at the point (0, t)

I geometric parametrization: given t , draw the line
connecting (−1,0) to (0, t) and let (x , y) be the point
where the line meets x2 + y2 = 1
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Parametrization example 1

I explicit formulas using slope:

t − 0
0− (−1)

=
y − 0

x − (−1)
⇒ t =

y
x + 1

I substituting y = t(x + 1) into x2 + y2 = 1 gives

x =
1− t2

1 + t2

I furthermore
y =

2t
1 + t2
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Parametrization example 2

Consider the twisted cubic V(y − x2, z − x3):

I curve in R3

I given a point on the curve, consider the tangent line

I taking tangent lines for all points gives the tangent surface
of the twisted cubic
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Parametrization example 2

I the twisted cubic has parametrization

x = t , y = t2, z = t3

I the tangent vector to the curve at a point is (1,2t ,3t2)
I the tangent line is parametrized

(t , t2, t3) + u(1,2t ,3t2) = (t + u, t2 + 2tu, t3 + 3t2u)

I a parametrization of the entire surface is

x = t + u, y = t2 + 2tu, z = t3 + 3t2u

I t tells where we are on the curve and u tells where we are
on the tangent line

I in the next weeks we will learn that the implicit
representation is

−4x3z + 3x2y2 − 4y3 + 6xyz − z2 = 0
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Bezier cubic

I engineers need curves and surfaces that are varied in
shape, easy to describe, quick to draw

I complicated curves are created by joining simpler pieces
I for the pieces to join smoothly, the tangent directions must

match up at the endpoints
I the designer needs to control the starting and the end

points of the curve and the tangent directions at the
starting and ending points

I Bezier cubic (introduced by Renault auto designer P.
Bezier) is given parametrically by the equations

x = (1− t)3x0 + 3t(1− t)2x1 + 3t2(1− t)x2 + t3x3,

y = (1− t)3y0 + 3t(1− t)2y1 + 3t2(1− t)y2 + t3y3

for 0 ≤ t ≤ 1 where x , y are constants specified by the
design engineer
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Bezier cubic

x = (1− t)3x0 + 3t(1− t)2x1 + 3t2(1− t)x2 + t3x3,

y = (1− t)3y0 + 3t(1− t)2y1 + 3t2(1− t)y2 + t3y3

I evaluating the above formulas at t = 0 and t = 1 gives

(x(0), y(0)) = (x0, y0), (x(1), y(1)) = (x3, y3)

I the tangent vectors at t = 0 and t = 1 are

(x ′(0), y ′(0)) = 3(x1−x0, y1−y0), (x ′(1), y ′(1)) = 3(x3−x2, y3−y2)

I hence (x ′(0), y ′(0)) is three times the vector from (x0, y0)
to (x1, y1)

I by placing (x1, y1) the designer can control the tangent
direction at the beginning of the curve

I the placement of (x2, y2) controls the tangent direction at
the end of the curve
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Conclusion and next time

Today:
I monomials and polynomials
I polynomials as functions - link between algebra and

geometry
I affine varieties
I rational parametric description and implicit representation

Next time:
I ideals
I polynomials in one variable
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