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Organization

Schedule:
» lectures Mo and We 14.15-16.00 (Kaie Kubjas)
» exercises Fr 12.15-14.00 (Muhammad Ardiyansyah)
Organization:
» lectures and exercises on zoom
» slides and recordings of lectures posted on MyCourses
» official announcements in MyCourses, rest of the
communication in Zulip
Lecture materials:
» “ldeals, Varieties and Algorithms” by Cox, Little and O’Shea
» “Numerically solving polynomial systems with Bertini” by
Bates, Hauenstein, Sommese and Wampler

» Further reading: “Nonlinear algebra” by Michalek and
Sturmfels



Organization

Grade:

>
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>

five weekly homework assignments (50% of the grade)

homework is handed out on Tuesday and the deadline is
one week later on Wednesday

it is encouraged to discuss homework in small groups (2-3
persons), but everyone has to write down their solutions

a final exam at the end of the course (50% of the grade)
correcting mistakes gives 0.5 points



Organization

Grade:
» five weekly homework assignments (50% of the grade)

» homework is handed out on Tuesday and the deadline is
one week later on Wednesday

» it is encouraged to discuss homework in small groups (2-3
persons), but everyone has to write down their solutions

» a final exam at the end of the course (50% of the grade)
» correcting mistakes gives 0.5 points
Optional extra homework:

» You can submit any exercise from “Nonlinear algebra” by
Michalek and Sturmfels as extra homework.

» Each exercise gives 3 points.
» Sections 1-4 are most related to this course.



Exam

Suggestion: February 22 (Monday), 13:00-17:00

» the exam will be an open book exam

» if this time doesn’t work for you, let me know before the
lecture on Wednesday



What is this course about?

» An important goal is to learn basic theory and tools for
investigating systems of polynomial equations, e.g.
x}+y3+28=3,
X2y y?422=2,
X+y+z=1.
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What is this course about?

» An important goal is to learn basic theory and tools for
investigating systems of polynomial equations, e.g.

x}+y3+28=3,
X2y y?422=2,
X+y+z=1.

» What does it mean to solve such a system?

» [f the solution set is finite, then we can list all the solutions.
» |f the solution set is infinite, then we can aim to describe
each irreducible component.

» To be able to solve simple problems computationally.
» To learn to recognize polynomial systems in applications.



Content

We will cover chapters 1-4 and 6 from “Ideals, Varieties and
Algorithms”:

» Chapter 1: Geometry, Algebra and Algorithms (1 week)
Chapter 2: Groebner Bases (1.5 weeks)
Chapter 3: Elimination Theory (1 week)
Chapter 4: The Algebra-Geometry Dictionary (1.5 weeks)
Chapter 6: Robotics (1 lecture)

» Additional topic: Numerical algebraic geometry (1 lecture)
Most results will be presented together with proofs.

>
>
>
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Robotics

» suppose we have a robot arm in the plane consisting of
two linked rods of lengths 1 and 2, with the longer rod
anchored at the origin




Robotics

» suppose we have a robot arm in the plane consisting of
two linked rods of lengths 1 and 2, with the longer rod
anchored at the origin

» the “state” of the arm is completely described by the
coordinates (x, y) and (z, w) indicated in the figure



> the state can be regarded as a 4-tuple (x, y, z, w) € R*
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> the state can be regarded as a 4-tuple (x, y, z, w) € R*
» not all 4-tuples can occur as states of the arm
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Robotics

> the state can be regarded as a 4-tuple (x, y, z, w) € R*
» not all 4-tuples can occur as states of the arm

> the subset of possible states is the affine variety in R*
defined by the equations

X2+y2:4
(X~ 2P+ (y—wP =1.



Today

» Polynomials and affine space
» Affine varieties
» Parametrizations of affine varieties

Today’s lecture is based on Chapters 1.1-1.3 in “Ideals,
Varieties and Algorithms”.



We will study polynomials over a field.
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Field is a set where we can define addition, subtraction,
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Fields

We will study polynomials over a field.
Field is a set where we can define addition, subtraction,
multiplication and division with the usual properties.
Quiz
Which of the following are fields?

> 7

> Q

> R

» C

The rational numbers Q, the real numbers R and the complex
numbers C are fields, but integers Z is not a field.

=} F = = E DaAw



Fields

Fields are important: linear algebra works over any field!

We will employ different fields for different purposes:
» The rational numbers Q for doing computations.
» The real numbers R for drawing pictures.

» The complex numbers C for proving theorems.



A monomial in xy, ..., x is a product of the form

aq,,00
Xy Xy

.. an
Xn

where a1, o, . . ., ap are nonnegative integers. The total
degree of this monomial is oy + ... + ap.
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A monomial in xy, ..., x is a product of the form
(0% @y
X11X22___Xgln
where a1, o, . . ., ap are nonnegative integers. The total
degree of this monomial is oy + ... + ap.

1. Are xy?z® and xy + yz + zx monomials?
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Monomials

Definition
A monomial in xq,. .., X, is a product of the form
o O n
X X% - Xy
where a1, ap, . . ., ap are nonnegative integers. The total

degree of this monomial is ay + ... + ap.
Quiz

1. Are xy?z® and xy + yz + zx monomials?
2. What is the total degree of xy?z3?



Monomials

Definition
A monomial in xq,. .., X, is a product of the form
o O n
X X% - Xy
where a1, ap, . . ., ap are nonnegative integers. The total

degree of this monomial is ay + ... + ap.
Quiz
1. Are xy?z® and xy + yz + zx monomials?

2. What is the total degree of xy?z3?

» o= (aq,ap,...,an) n-tuple of nonnegative integers
(6% (0%
Xa:X11X22”.X,C7¥n

» the total degree |a| = a1 + ...+ an



Polynomials

Definition

A polynomial fin x4, ..., x, with coefficients in k is a finite
linear combination (with coefficients in k) of monomials. We will
write a polynomial f in the form

f= Zaaxa,aa € k.
o

The set of all polynomials in x1, . .., x, with coefficients in k is
denoted by k[x1, ..., X].



Polynomials

Definition

A polynomial fin x4, ..., x, with coefficients in k is a finite
linear combination (with coefficients in k) of monomials. We will
write a polynomial f in the form

f= Zaaxa,aa € k.
o

The set of all polynomials in x1, . .., x, with coefficients in k is
denoted by k[x1, ..., X].

Definition

» We call a, the coefficient of the monomial x<.
» If a, # 0, then we call a,x* a term of f.

» The total degree of f, denoted deg(f), is the maximum |«|
such that the coefficient a, is nonzero.



Let f =2x3y?z + 3y32% — 3xyz + y2.

» What is the coefficient of the monomial xyz ?
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Let f =2x3y?z + 3y32% — 3xyz + y2.

» What is the coefficient of the monomial xyz ?
» How many terms does f have?

» What is the total degree of f?
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Polynomials

Quiz

Letf=2x3y2z + 3y32% — 3xyz + y2.
» What is the coefficient of the monomial xyz ?
» How many terms does f have?
» What is the total degree of f?

» the sum and product of two polynomials is a polynomial



Polynomials

Quiz

Letf=2x3y2z + 3y32% — 3xyz + y2.
» What is the coefficient of the monomial xyz ?
» How many terms does f have?
» What is the total degree of f?

» the sum and product of two polynomials is a polynomial

» we say that a polynomial f divides a polynomial g provided
that g = fh for some h € k[x1,..., Xa]
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the sum and product of two polynomials is a polynomial
we say that a polynomial f divides a polynomial g provided
that g = fh for some h € k[x1,..., Xa]

under addition and multiplication k[x1, ..., X,] satisfies all
the field axioms except for the existence of multiplicative
inverses (1/xy is not a polynomial)
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Polynomials

Quiz
Letf=2x3y2z + 3y32% — 3xyz + y2.

>
>
| 2

What is the coefficient of the monomial xyz ?
How many terms does f have?
What is the total degree of f?

the sum and product of two polynomials is a polynomial

we say that a polynomial f divides a polynomial g provided
that g = fh for some h € k[x1,..., Xa]

under addition and multiplication k[x1, ..., X,] satisfies all
the field axioms except for the existence of multiplicative
inverses (1/xy is not a polynomial)

such a mathematical structure is called a commutative ring
we refer to k[xi, ..., Xp] as a polynomial ring



Given a field k and a positive integer n, we define the

n-dimensional affine space over k to be the set

k"={(ai,...,an): ai,...,an € k}.
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Given a field k and a positive integer n, we define the
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Affine space

Definition

Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

k"= {(a1,...,an) : ai,

...,an € k}.
k = R and the n-dimensional affine space R”

» k' = k affine line and k? affine plane
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Affine space

Definition

Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

k" ={(ai,...,an): a1,

...,an € k}.
k = R and the n-dimensional affine space R”

» k' = k affine line and k? affine plane
» polynomial f =" a.x“ € K[xy,

., Xp] gives a function
f:k" =k
(a‘lv' '7an) = f(a17

.\ an)
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Affine space

Definition

Given a field k and a positive integer n, we define the
n-dimensional affine space over k to be the set

k"= {(a1,...,an) : ai,...,an € k}.

k = R and the n-dimensional affine space R”

» k' = k affine line and k? affine plane
» polynomial f =)  a.x“ € k[x,

., Xn] gives a function
f:k" =k
(ar,...,an) = Hai,...,an)

» this makes it possible to link algebra and geometry



“‘is f = 0?” has two potential meanings
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“‘is f = 0?” has two potential meanings
1. is f the zero polynomial?
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“‘is f = 0?” has two potential meanings
1. is f the zero polynomial?

» all its coefficients a, are zero
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Zero polynomial vs zero function
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Zero polynomial vs zero function

“‘is f = 0?” has two potential meanings
1.

is f the zero polynomial?

» all its coefficients a, are zero
2. is f the zero function?
> f(a1,

.,an) =0forall (ay,

...,ap) €K"
These two statements are not equivalent in general.
Let k = Fp and f = x2 — x € F5[x]. It gives the zero function,
but not the zero polynomial.
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Zero polynomial vs zero function

“‘is f = 0?” has two potential meanings
1. is f the zero polynomial?
» all its coefficients a, are zero
2. is f the zero function?
» f(a1,...,ap)=0forall (ay,...,a,) € k"
These two statements are not equivalent in general.

Let k = Fp and f = x2 — x € F5[x]. It gives the zero function,
but not the zero polynomial.

Proposition

Let k be an infinite field, and let f € k[xy,...,xn]. Thenf =10 in
K[x1,...,xn] ifand only if f : K™ — k is the zero function.

[m] [ = =
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Let k be an infinite field, and let f,g € k[xy,...,Xn]. Thenf =g
in k[xy, ..
same function.

., Xp] ifandonly iff : K" — k and g : K" — k are the
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Polynomial vs function

Corollary

Let k be an infinite field, and let f,g € K[x1,...,Xa]. Thenf =g
ink[xy,...,xp] ifandonly iff : K" — k and g : kK" — k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f € C[x] has a root in C.
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Every nonconstant polynomial f € C[x] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k[x] has a root in k.



Polynomial vs function

Corollary

Let k be an infinite field, and let f,g € K[x1,...,Xa]. Thenf =g
ink[xy,...,xp] ifandonly iff : K" — k and g : kK" — k are the
same function.

Polynomials over the field of complex numbers C have a special
property:

Theorem
Every nonconstant polynomial f € C[x] has a root in C.

We say that a field k is algebraically closed if every
nonconstant polynomial in k[x] has a root in k.

Thus R is not algebraically closed (x2 + 1 has no roots over R),
whereas by the previous theorem C is algebraically closed.




Affine varieties

Definition
Let k be a field, and let f, ..., fs be polynomials in k[x1, ..., Xs].
Then we set

V(fy,....fs)={(a1,...,an) € k" : fi(ay,...,an) =0
forall 1 <i<s}.

We call V(fi, ..., fs) the affine variety defined by f;,..., fs.



What is the variety V(x? + y? — 1) in the plane R2?

> AFr « =
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What is the variety V(x2 + y? — 1) in the plane R?? It is the
circle of radius 1 centered at the origin:

16F

(2.1

0.0

=051

15
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» the conic sections (circles, ellipses, parabolas, and
hyperbolas) are affine varieties

«40)>» «Fr « =»
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Examples

» the conic sections (circles, ellipses, parabolas, and
hyperbolas) are affine varieties
» graphs of polynomial funcions are affine varieties (the

graph of y = f(x) is V(y — f(x)))
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» the conic sections (circles, ellipses, parabolas, and
hyperbolas) are affine varieties

» graphs of polynomial funcions are affine varieties (the
graph of y = f(x) is V(y — f(x)))

» graphs of rational functions are affine varieties



Examples

» the conic sections (circles, ellipses, parabolas, and
hyperbolas) are affine varieties

» graphs of polynomial funcions are affine varieties (the
graph of y = f(x) is V(y — f(x)))

» graphs of rational functions are affine varieties

The graph of y = ¥=1 gives the affine variety V(xy — x3 + 1).

X
|
I \/
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Examples

Paraboloid of revolution V(z — x2 — y?):

21/44
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i 22,2, 53
Much more complicated surface is V(x= — y<z= + z°)
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Twisted cubic V(y — x2,z — x°):
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» one equation in R? gave a curve
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» one equation in R? gave a curve

» one equation in R3 usually gives a surface
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Dimension

> one equation in R? gave a curve
» one equation in R3 usually gives a surface

> twisted cubic: two equations in R3 give a curve (dimension
drops by two)



Dimension

v

one equation in R? gave a curve

one equation in R3 usually gives a surface

twisted cubic: two equations in R3 give a curve (dimension
drops by two)

since each equation imposes an extra constraint, intuition
suggests that each equation drops the dimension by one



Dimension

v

one equation in R? gave a curve

one equation in R3 usually gives a surface

twisted cubic: two equations in R3 give a curve (dimension
drops by two)

since each equation imposes an extra constraint, intuition
suggests that each equation drops the dimension by one

however, the notion of dimension is more subtle than
indicated by the above examples



What is the variety V(xz, yz)?

> AFr « =
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and the z-axis:

What is the variety V(xz, yz)? It is the union of the (x, y)-plane

1.0
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Consider a system of m linear equations in n unknowns
X1, ..., Xn wWith coefficients in k:

a11X1 + ...+ aipnxn = by

amX1 + ...+ a@mnXn = bm

«O> < Fr «=>
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Linear varieties

Consider a system of m linear equations in n unknowns
X1,...,Xpn with coefficients in k:

a1 Xy + ...+ ainXn = by

amiX1 + ...+ amnXn = bm

» the solutions form an affine variety in k", which we will call
a linear variety
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» this variety need not have dimension n — m



Linear varieties

Consider a system of m linear equations in n unknowns
X1,...,Xpn with coefficients in k:

a1 Xy + ...+ ainXn = by

amiX1 + ...+ amnXn = bm

» the solutions form an affine variety in k", which we will call
a linear variety

» this variety need not have dimension n — m
» the dimension is n— r, where r is the rank of the matrix (a;)



Linear varieties

Consider a system of m linear equations in n unknowns

X, ..

v

., Xp with coefficients in k:

a1 Xy + ...+ ainXn = by

amiX1 + ...+ amnXn = bm

the solutions form an affine variety in k", which we will call
a linear variety

this variety need not have dimension n — m
the dimension is n—r, where r is the rank of the matrix (a;)

the dimension is determined by the number of independent
equations



» we want to find the minimum and maximum values of

f(x,y,z) = x3 + 2xyz — z? subject to the constraint
9(x,y,2) = x? + y? + z2 — 1 being zero
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Lagrange multipliers

» we want to find the minimum and maximum values of
f(x,y,z) = x3 + 2xyz — z? subject to the constraint
g(x,y,2) = x°> + y? + 22 — 1 being zero

» Lagrange multipliers: at a local minimum or maximum
Vf=AVg
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» we want to find the minimum and maximum values of
f(x,y,z) = x3 + 2xyz — z? subject to the constraint
g(x,y,2) = x°> + y? + 22 — 1 being zero

» Lagrange multipliers: at a local minimum or maximum
Vf=AVg

» this gives us the following system

3x2 + 2yz = 2x\

2xz =2y

2xy — 2z =27\
X2+ y? 422 =1.



Lagrange multipliers

» we want to find the minimum and maximum values of
f(x,y,z) = x3 + 2xyz — z? subject to the constraint
g(x,y,2) = x°> + y? + 22 — 1 being zero

» Lagrange multipliers: at a local minimum or maximum
Vf=AVg

» this gives us the following system
3x2 + 2yz = 2x\
2xz =2y
2xy — 2z =27\
X2+ y? 422 =1.

» these equations define an affine variety in R*



Lagrange multipliers

» we want to find the minimum and maximum values of
f(x,y,z) = x3 + 2xyz — z? subject to the constraint
g(x,y,2) = x°> + y? + 22 — 1 being zero

» Lagrange multipliers: at a local minimum or maximum
Vf=AVg

» this gives us the following system
3x2 + 2yz = 2x\
2xz =2y
2xy — 2z =27\
X2+ y? 422 =1.

» these equations define an affine variety in R*
» intuition suggests it consists of finitely many points



., fs)and W =V(gy,

If V. W c K" are affine varieties, then soare VUW and VN W.
Suppose V = V(fy,..

..., 0t). Then
VAW =V(f,....fs,G1,...,01)

VUW=V(figi:1<i<s1<j<t)
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Suppose we have fq,

. fs € k[xi,...,xa]. Then
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Interesting questions

Suppose we have fi,..., fs € K[X1,...,Xp]. Then

» (Consistency) Can we determine if V(f;, ..., fs) # 0, i.e. do
the equations f; = ... = fg = 0 have a common solution?



Interesting questions

Suppose we have fi,..., fs € K[X1,...,Xp]. Then
» (Consistency) Can we determine if V(f;, ..., fs) # 0, i.e. do
the equations f; = ... = fg = 0 have a common solution?
» (Finiteness) Can we determine if V(f, ..., fs) is finite, and
if so, can we find all of the solutions explicitly?



Interesting questions

Suppose we have fi,..., fs € K[X1,...,Xp]. Then
» (Consistency) Can we determine if V(f;, ..., fs) # 0, i.e. do
the equations f; = ... = fg = 0 have a common solution?
» (Finiteness) Can we determine if V(f, ..., fs) is finite, and
if so, can we find all of the solutions explicitly?

» (Dimension) Can we determine the “dimension” of
V(fi,...,fs)?



Is there a way to “write down” the solutions of the system of
polynomial equations f; = ... = f; =07?
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Parametrizations of affine varieties

Is there a way to “write down” the solutions of the system of
polynomial equations f; = ... = fs = 07?

Let kK = R and consider the system of equations

X+y+z=1
xX+2y —z=23.

We use row operations to obtain the equivalent equations

X +3z=—1
y—2z=2.

Letting z = t, this implies that all solutions are given by
x=—1-3t,

y=2+2t,
z=t

as t varies over R.




Parametrizations of the unit circle

Consider the unit circle
X2+ y?=1.

A common way to parametrize the circle is using trigpnometric
functions:
x = cos(t), y = sin(t).
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Parametrizations of the unit circle

Consider the unit circle
X2+ y?=1.

A common way to parametrize the circle is using trigpnometric
functions:
x = cos(t), y = sin(t).

There is also a more algebraic way to parametrize the circle:

X_1—t2 2t
“ireY Tire

This parametrization does not describe the whole circle: the
point (—1,0) is not covered.



Rational parametrizations

Definition
A rational function in ¢, ..., t; with coefficients in k is a
quotient f/g of two polynomials f, g € k[ty, ..., tn], where g is

not the zero polynomial. Two rational functions f/g and h/k are
equal, provided that kf = ghiin k[t, ..., tn]. The set of all
rational functions is denoted k(ty, ..., tn).
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Rational parametrizations

Definition
A rational function in ¢, ..., t; with coefficients in k is a
quotient f/g of two polynomials f, g € k[ty, ..., tn], where g is

not the zero polynomial. Two rational functions f/g and h/k are
equal, provided that kf = ghiin k[t, ..., tn]. The set of all

rational functions is denoted k(ty, ..., tn).
» addition and multiplication are well defined and k(t,...,ty) is a
field
» rational parametric description of V consists of
My...,r € k(t,...,tn) such that
Xt =11t tm)y s Xn = Moty .o tm)
liein V

» require that V is the smallest variety containing these points

» ifry,..., r, are polynomials, then polynomial parametric
representation



» original defining equations fi = ... = f; = 0 are called an
implicit representation
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x=tu -8, y=uz=10>-t.



Parametric vs implicit form

| 2

| 2

original defining equations f; = ... = f; = 0 are called an
implicit representation

it is easy to draw a parametric description of a curve on a
computer

plotted not using x? — y222 + z3 = 0 but
x=tu -8, y=uz=10>-t.

if we want to know whether the point (1,2, 1) is on the
above surface, then implicit presentation is useful:
12 - 22(—1)2 + (13 =1-4-1=-4



Desirability of having both representations leads to the
questions
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Parametric vs implicit form

Desirability of having both representations leads to the
questions

» (Parametrization) Does every affine variety have a rational
parametric description?

» (Implicitization) Given a parametric representation of an
affine variety, can we find the defining equations (i.e. can
we find an implicit representation)?

» The answer to the first question is no. Those that can be
parametrized are called unirational.

» |t is difficult to tell whether a given variety is unirational or
not.

» We will learn in two weeks that the answer to the second
question is always yes.
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Describes a curve, but we cannot be sure it describes an affine
variety.
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Implicitization example

Consider the parametric representation
Xx=1+ty=1+¢

Describes a curve, but we cannot be sure it describes an affine
variety. Solve the first equation for ¢

t=x-—1.
Substitute this into the second eqution
y=1+(x—-12=x2-2x+2.

Hence the parametric equations define the affine variety
V(y — x2 4+ 2x — 2).



We will discuss how geometry can be used to parametrize
varieties. Consider the unit circle x% + y? = 1:
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Parametrization example 1

We will discuss how geometry can be used to parametrize
varieties. Consider the unit circle x2 + y2 = 1:
» each nonvertical line through (—1, 0) will intersect the
circle in a unique point (x, y) and y-axis at the point (0, t)

Y
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Parametrization example 1

We will discuss how geometry can be used to parametrize
varieties. Consider the unit circle x2 + y2 = 1:
» each nonvertical line through (—1, 0) will intersect the
circle in a unique point (x, y) and y-axis at the point (0, t)

Y

1

(x.y)
0.1
» geometric parametrization: given t, draw the line

connecting (—1,0) to (0, t) and let (x, y) be the point
where the line meets x2 + y? = 1

(-1,0)




» explicit formulas using slope:

t-0 y—0

0—(—1)  x—(-1)
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» explicit formulas using slope:

t-0 y—0
0- (1) x—(-1) = !

Y

Tx+1
> substituting y = t(x + 1) into x2 + y? = 1 gives
M
BRI
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Parametrization example 1

» explicit formulas using slope:

t-0  y-0 B
0 (1) x—(=1) — 'Txid

> substituting y = t(x + 1) into x? + y? = 1 gives
1-12

Tire

» furthermore
2t

Y=1ve




Consider the twisted cubic V(y — x2, z — x3):
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Consider the twisted cubic V(y — x2, z — x3):
> curve in RS
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Consider the twisted cubic V(y — x2, z — x3):
» curve in R3

» given a point on the curve, consider the tangent line
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Parametrization example 2

Consider the twisted cubic V(y — x2, z — x3):
> curve in R3
» given a point on the curve, consider the tangent line

2

» taking tangent lines for all points gives the tangent surface
of the twisted cubic




» the twisted cubic has parametrization

x=ty=t#z="1
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» the twisted cubic has parametrization

x=ty=t#z=1¢

» the tangent vector to the curve at a point is (1, 2t, 3t2)
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» the twisted cubic has parametrization

x=ty=tz="¢

> the tangent vector to the curve at a point is (1, 2t, 31%)
» the tangent line is parametrized

(t, 2, 83) + u(1,2t,3t%) = (t + u, 2 + 2tu, £ 4 3t20)
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x=ty=tz="¢

> the tangent vector to the curve at a point is (1, 2t, 31%)
» the tangent line is parametrized

(t, 2, 83) + u(1,2t,3t%) = (t + u, 2 + 2tu, £ 4 3t20)
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on the tangent line



Parametrization example 2

» the twisted cubic has parametrization

x=ty=tz="¢

> the tangent vector to the curve at a point is (1, 2t, 31%)
» the tangent line is parametrized

(t, 2, 83) + u(1,2t,3t%) = (t + u, 2 + 2tu, £ 4 3t20)
» a parametrization of the entire surface is
X=t+uy="t+2tuz=1t+3u

» t tells where we are on the curve and u tells where we are
on the tangent line

» in the next weeks we will learn that the implicit
representation is

—4x3z +3x2y? —4y3 + 6xyz — 22 =0



» engineers need curves and surfaces that are varied in
shape, easy to describe, quick to draw
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the designer needs to control the starting and the end
points of the curve and the tangent directions at the
starting and ending points



Bezier cubic

| 2

>
>

engineers need curves and surfaces that are varied in
shape, easy to describe, quick to draw

complicated curves are created by joining simpler pieces

for the pieces to join smoothly, the tangent directions must
match up at the endpoints

the designer needs to control the starting and the end
points of the curve and the tangent directions at the
starting and ending points

Bezier cubic (introduced by Renault auto designer P.
Bezier) is given parametrically by the equations

(1 — 1)3x0 + 3t(1 — )2x; + 32(1 — )Xo + 33,
(1— 1%y +3t(1 — )?y1 +3t2(1 — t)y2 + 5

X
y
for 0 < t <1 where x, y are constants specified by the
design engineer



x=(1-13%x +3t(1 — t)°x1 + 32(1 — )xo + X3,

y =010 +3t(1 - )21 + 3201 — t)yo + s
» evaluating the above formulas at t =0 and t = 1 gives

(x(0),(0)) = (x0, ¥0), (x(1), (1)) = (X3 ¥3)
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Bezier cubic

x=(1-13x+3t(1 — 1)°x1 + 32(1 — )xz2 + 3x3,
y=(01—1%0+3t(1 - 1201 +3t5(1 — t)y2 + Ly
» evaluating the above formulas at t = 0 and t = 1 gives

(x(0), ¥(0)) = (x0, ¥0), (x(1), ¥(1)) = (x3, ¥3)

» the tangent vectorsatt=0and t =1 are
(X'(0),¥'(0)) = 3(x1—x0, y1—¥0), (X'(1), ¥’ (1)) = 3(xa—X2, y3—Y2)



Bezier cubic

x=(1-13x+3t(1 — 1)°x1 + 32(1 — )xz2 + 3x3,
y=(01—1%0+3t(1 - 1201 +3t5(1 — t)y2 + Ly
» evaluating the above formulas at t = 0 and t = 1 gives

(x(0), ¥(0)) = (x0, ¥0), (x(1), ¥(1)) = (x3, ¥3)

» the tangent vectorsatt=0and t =1 are
(X'(0),¥'(0)) = 3(x1—x0, y1—¥0), (X'(1), ¥’ (1)) = 3(xa—X2, y3—Y2)

» hence (x’(0), y’(0)) is three times the vector from (xo, ¥o)
to (x1,¥1)



Bezier cubic
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Bezier cubic

x=(1-13x+3t(1 — 1)°x1 + 32(1 — )xz2 + 3x3,
y=(01—1%0+3t(1 - 1201 +3t5(1 — t)y2 + Ly
» evaluating the above formulas at t = 0 and t = 1 gives

(x(0), ¥(0)) = (x0, ¥0), (x(1), ¥(1)) = (x3, ¥3)

» the tangent vectorsatt=0and t =1 are
(X'(0),¥'(0)) = 3(x1—x0, y1—¥0), (X'(1), ¥’ (1)) = 3(xa—X2, y3—Y2)

» hence (x’(0), y’(0)) is three times the vector from (xo, ¥o)
to (x1,¥1)

» by placing (x1, y1) the designer can control the tangent
direction at the beginning of the curve

» the placement of (xo, y») controls the tangent direction at
the end of the curve
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Today:
» monomials and polynomials

» polynomials as functions - link between algebra and
geometry

» affine varieties
» rational parametric description and implicit representation



Conclusion and next time

Today:
» monomials and polynomials

» polynomials as functions - link between algebra and
geometry

» affine varieties

» rational parametric description and implicit representation
Next time:

» ideals

» polynomials in one variable



