CS-E4075 Special course on Gaussian processes: Session #2

Markus Heinonen

Aalto University

markus.o.heinonen@aalto.fi

Thursday 14.1.2021

Last session

Last time, we talked about

- The multivariate Gaussian distribution
- The interpretation of the parameters
- Marginalization
- Conditional distributions
- How to sample from the distribution

• Let x_1 and x_2 be a partitioning of $x = x_1 \cup x_2$, then

$$\rho(\mathbf{x}) = \rho(\mathbf{x}_1, \mathbf{x}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \middle| \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$$
(1)

• The conditional distribution of x_1 is given x_2 by:

$$p(\mathbf{x}_1|\mathbf{x}_2) = \mathcal{N}\left(\mathbf{x}_1|\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\left[\mathbf{x}_2 - \mathbf{m}_2\right] + \mathbf{m}_1, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\right)$$
(2)

• Let x_1 and x_2 be a partitioning of $x = x_1 \cup x_2$, then

$$\rho(\mathbf{x}) = \rho(\mathbf{x}_1, \mathbf{x}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \middle| \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}\right)$$
(1)

• The conditional distribution of x_1 is given x_2 by:

$$p(\mathbf{x}_1|\mathbf{x}_2) = \mathcal{N}\left(\mathbf{x}_1|\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}[\mathbf{x}_2 - \mathbf{m}_2] + \mathbf{m}_1, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\right)$$
(2)

• Let x_1 and x_2 be a partitioning of $x = x_1 \cup x_2$, then

$$\rho(\mathbf{x}) = \rho(\mathbf{x}_1, \mathbf{x}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \middle| \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right) \tag{1}$$

• The conditional distribution of x_1 is given x_2 by:

$$p(\mathbf{x}_1|\mathbf{x}_2) = \mathcal{N}\left(\mathbf{x}_1|\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}[\mathbf{x}_2 - \mathbf{m}_2] + \mathbf{m}_1, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\right)$$
(2)

• Let x_1 and x_2 be a partitioning of $x = x_1 \cup x_2$, then

$$\rho(\mathbf{x}) = \rho(\mathbf{x}_1, \mathbf{x}_2) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \middle| \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right) \tag{1}$$

• The conditional distribution of x_1 is given x_2 by:

$$p(\mathbf{x}_1|\mathbf{x}_2) = \mathcal{N}\left(\mathbf{x}_1|\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\left[\mathbf{x}_2 - \mathbf{m}_2\right] + \mathbf{m}_1, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}\right)$$
(2)

Gaussian processes for regression

Running example

• Suppose we are given a data set of house prices in Helsinki

• Goal: Build a model using the data set and predict the average price for a house of $70m^2$ and $160m^2$

Road map for today

1 The Bayesian linear model

Gaussian processes: definition & properties

Questions

General setup for linear regression

- We are given a data set: $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$
- House example: y_n = house price and x_n = house area
- Goal: Learn some function f such that

$$y_n = f(\mathbf{x}_n) + \epsilon_n \tag{3}$$

General setup for linear regression

- We are given a data set: $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$
- House example: y_n = house price and x_n = house area
- Goal: Learn some function f such that

$$y_n = f(\mathbf{x}_n) + \epsilon_n \tag{3}$$

• Assuming f is a linear model:

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_D x_D = \sum_i w_i x_i = \mathbf{w}^T \mathbf{x}$$
 (4)

General setup for linear regression

- We are given a data set: $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$
- House example: y_n = house price and x_n = house area
- Goal: Learn some function f such that

$$y_n = f(\mathbf{x}_n) + \epsilon_n \tag{3}$$

• Assuming *f* is a linear model:

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_D x_D = \sum_i w_i x_i = \mathbf{w}^T \mathbf{x}$$
 (4)

• Linear models are linear wrt. parameters, not the data:

$$f(\mathbf{x}) = w_1 \phi_1(x_1) + w_2 \phi_2(x_2) + \ldots + w_{D'} \phi_{D'}(x_{D'}) = \mathbf{w}^T \phi(\mathbf{x}),$$
 (5)

where $\phi_i(\cdot)$ can be non-linear **feature** functions.

(ロ) (個) (注) (注) 注 り(@

6/34

Question

Which of the following models are linear models and why?

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2^2 + w_3 \sin(x_3)$$
 (Model 1)

$$f(\mathbf{x}) = w_1 x_1 + w_2^2 x_2 + w_3^3 x_3$$
 (Model 2)

$$f(\mathbf{x}) = \left(\mathbf{w}^{\mathsf{T}}\mathbf{x}\right)^2 \tag{Model 3}$$

$$f(\mathbf{x}) = w_1 \exp(x_1) + w_2 \sqrt{x_2} + w_3$$
 (Model 4)

$$f(\mathbf{x}) = w_1 x_1 + w_2^2 x_2^2 + w_3^3 x_3^3$$
 (Model 5)

Slope and intercept

- The models so far have not included an intercept or bias term
- Most often we want to incorporate an intercept/bias term

$$f(\mathbf{x}) = \mathbf{w}_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D \tag{6}$$

• By assuming $x_0 = 1$, we can write

$$f(\mathbf{x}) = w_0 \cdot 1 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D \tag{7}$$

$$= w_0 \cdot x_0 + w_1 x_1 + w_2 x_2 + \dots w_D x_D \tag{8}$$

$$= \mathbf{w}^{\mathsf{T}} \mathbf{x} \tag{9}$$

• The model

$$y_n = f(\mathbf{x}_n) + \epsilon = \mathbf{w}^T \mathbf{x}_n + \epsilon, \qquad \epsilon \sim \mathcal{N}\left(0, \sigma_{obs}^2\right)$$
 (10)

The model

$$y_n = f(\mathbf{x}_n) + \epsilon = \mathbf{w}^T \mathbf{x}_n + \epsilon, \qquad \epsilon \sim \mathcal{N}\left(0, \sigma_{obs}^2\right)$$
 (10)

• Likelihood for one data point

$$p(y_n|\mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(y_n \middle| f(\mathbf{x}_n), \sigma_{obs}^2\right) = \mathcal{N}\left(y_n \middle| \mathbf{w}^T \mathbf{x}_n, \sigma_{obs}^2\right)$$
(11)

The model

$$y_n = f(\mathbf{x}_n) + \epsilon = \mathbf{w}^T \mathbf{x}_n + \epsilon, \qquad \epsilon \sim \mathcal{N}\left(0, \sigma_{obs}^2\right)$$
 (10)

Likelihood for one data point

$$p(y_n|\mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(y_n | f(\mathbf{x}_n), \sigma_{obs}^2\right) = \mathcal{N}\left(y_n | \mathbf{w}^T \mathbf{x}_n, \sigma_{obs}^2\right)$$
(11)

• Likelihood for all data points

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{w}^T \mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(\mathbf{y} | \mathbf{X}\mathbf{w}, \sigma_{obs}^2 \mathbf{I}\right)$$
(12)

9/34

The model

$$y_n = f(\mathbf{x}_n) + \epsilon = \mathbf{w}^T \mathbf{x}_n + \epsilon, \qquad \epsilon \sim \mathcal{N}\left(0, \sigma_{obs}^2\right)$$
 (10)

Likelihood for one data point

$$p(y_n|\mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(y_n \middle| f(\mathbf{x}_n), \sigma_{obs}^2\right) = \mathcal{N}\left(y_n \middle| \mathbf{w}^T \mathbf{x}_n, \sigma_{obs}^2\right)$$
(11)

Likelihood for all data points

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{w}^{T}\mathbf{x}_n,\mathbf{w}) = \mathcal{N}\left(\mathbf{y}|\mathbf{X}\mathbf{w},\sigma_{obs}^{2}\mathbf{I}\right)$$
(12)

- ullet Since the data is assumed constant, the likelihood is a function of parameters $oldsymbol{w}$
- The prediction vector $\mathbf{f} = \mathbf{X}\mathbf{w}$

<ロ > < 回 > < 回 > < 亘 > < 亘 > □ ≥ の < ⊙ へ ⊙ へ ○

Markus Heinonen Gaussian processes

9 / 34

The model

$$y_n = f(\mathbf{x}_n) + \epsilon = \mathbf{w}^T \mathbf{x}_n + \epsilon, \qquad \epsilon \sim \mathcal{N}\left(0, \sigma_{obs}^2\right)$$
 (10)

Likelihood for one data point

$$p(y_n|\mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(y_n | f(\mathbf{x}_n), \sigma_{obs}^2\right) = \mathcal{N}\left(y_n | \mathbf{w}^T \mathbf{x}_n, \sigma_{obs}^2\right)$$
(11)

Likelihood for all data points

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{w}^{T} \mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(\mathbf{y} | \mathbf{X} \mathbf{w}, \sigma_{obs}^{2} \mathbf{I}\right)$$
(12)

- ullet Since the data is assumed constant, the likelihood is a function of parameters $oldsymbol{w}$
- The prediction vector $\mathbf{f} = \mathbf{X}\mathbf{w}$
- Next step: we introduce a prior distribution p(w) for the weights w

(ロ) (個) (意) (意) (意) (意) の(で)

9 / 34

- The prior p(w) contains our prior knowledge about w before we see any data
- Bayes rule gives us the posterior distribution

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood}$$
 (13)

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})}$$
(14)

- The prior p(w) contains our prior knowledge about w before we see any data
- Bayes rule gives us the posterior distribution

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood}$$
 (13)

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})}$$
(14)

Marginal likelihood (or evidence)

$$p(\mathbf{y}) = \int p(\mathbf{y}, \mathbf{w}) d\mathbf{w} = \int p(\mathbf{y}|\mathbf{w}) p(\mathbf{w}) d\mathbf{w} = \mathbb{E}_{p(\mathbf{w})} p(\mathbf{y}|\mathbf{w})$$

- The prior p(w) contains our prior knowledge about w before we see any data
- Bayes rule gives us the posterior distribution

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood}$$
 (13)

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})}$$
(14)

Marginal likelihood (or evidence)

$$p(\mathbf{y}) = \int p(\mathbf{y}, \mathbf{w}) d\mathbf{w} = \int p(\mathbf{y}|\mathbf{w}) p(\mathbf{w}) d\mathbf{w} = \mathbb{E}_{p(\mathbf{w})} p(\mathbf{y}|\mathbf{w})$$

- The posterior p(w|y) captures everything we know about w after seing the data
- By convention we use p(w|y) instead of the rigorous form p(w|y,X)

Bayesian linear regression: the posterior distribution

ullet We select a Gaussian prior for $oldsymbol{w}$

$$p(\mathbf{w}) = \mathcal{N}\left(\mathbf{w}|0, \Sigma_{p}\right) \tag{15}$$

11/34

Bayesian linear regression: the posterior distribution

We select a Gaussian prior for w

$$p(\mathbf{w}) = \mathcal{N}\left(\mathbf{w} \middle| 0, \mathbf{\Sigma}_{p}\right) \tag{15}$$

• The parameter posterior distribution becomes

$$p(\mathbf{w}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{y})}$$
(16)

$$= \frac{\mathcal{N}\left(\mathbf{y} \middle| \mathbf{X} \mathbf{w}, \sigma_{obs}^{2} \mathbf{I}\right) \mathcal{N}\left(\mathbf{w} \middle| 0, \mathbf{\Sigma}_{p}\right)}{p(\mathbf{y})}$$
(17)

$$=\mathcal{N}\left(\boldsymbol{w}\big|\boldsymbol{\mu},\boldsymbol{A}^{-1}\right) \tag{18}$$

where

$$\mu = \frac{1}{\sigma_{obs}^2} \mathbf{A}^{-1} \mathbf{X}^T \mathbf{y} \qquad \mathbf{A} = \frac{1}{\sigma_{obs}^2} \mathbf{X}^T \mathbf{X} + \Sigma_{\rho}^{-1}$$
 (19)

• See Rasmussen book section 2.1.1 for derivation (book eq 2.7).

ㅁㅏ ◀鬪ㅏ ◀불ㅏ ◀불ㅏ - 불 - 쒸٩♡

11 / 34

Bayesian linear regression: the predictive distribution

• We often want to compute the predictive distribution (or predictive posterior) for the noisy observation y_* at new data point x_* , given as $p(y_*|y)$

Bayesian linear regression: the predictive distribution

- We often want to compute the predictive distribution (or predictive posterior) for the noisy observation y_* at new data point x_* , given as $p(y_*|y)$
- We obtain the predictive distribution by averaging/marginalizing over the posterior:

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|\mathbf{y}) d\mathbf{w}$$
 (20)

$$= \int \mathcal{N}\left(y_* | \boldsymbol{w}^T \boldsymbol{x}_*, \sigma_{obs}^2\right) \mathcal{N}\left(\boldsymbol{w} | \boldsymbol{\mu}, \boldsymbol{A}^{-1}\right) d\boldsymbol{w}$$
 (21)

$$= \mathcal{N}\left(y_* | \boldsymbol{\mu}^T \mathbf{x}_*, \sigma_{obs}^2 + \mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*\right)$$
 (22)

Bayesian linear regression: the predictive distribution

- We often want to compute the predictive distribution (or predictive posterior) for the noisy observation y_* at new data point x_* , given as $p(y_*|y)$
- We obtain the predictive distribution by averaging/marginalizing over the posterior:

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|\mathbf{y}) d\mathbf{w}$$
 (20)

$$= \int \mathcal{N}\left(y_* | \boldsymbol{w}^T \boldsymbol{x}_*, \sigma_{obs}^2\right) \mathcal{N}\left(\boldsymbol{w} | \boldsymbol{\mu}, \boldsymbol{A}^{-1}\right) d\boldsymbol{w}$$
 (21)

$$= \mathcal{N}\left(y_* | \boldsymbol{\mu}^T \boldsymbol{x}_*, \sigma_{obs}^2 + \boldsymbol{x}_*^T \boldsymbol{A}^{-1} \boldsymbol{x}_*\right)$$
 (22)

- The predictive distributions contains two sources of uncertainty:
 - 1 σ_{obs}^2 : measurement noise
 - $\mathbf{Q} \mathbf{A}^{-1}$: uncertainty of the weights \mathbf{w}
- $\mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*$: uncertainty of the weights \mathbf{w} projected to the data space

12 / 34

House price example: Posterior and predictive distributions

The posterior distribution is distribution over the parameter space

Gaussian processes

House price example: Posterior and predictive distributions

- The posterior distribution is distribution over the parameter space
- The posterior is compromise between prior and likelihood

13 / 34

House price example: Posterior and predictive distributions

- The posterior distribution is distribution over the parameter space
- The posterior is compromise between prior and likelihood
- The predictive distribution is a distribution over the output space

$$p(y^*|\mathbf{y}) = \mathcal{N}\left(y_*|\boldsymbol{\mu}^T \mathbf{x}_*, \sigma_{obs}^2 + \mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*\right)$$

13 / 34

Gaussian processes Thursday 14.1.2021

Question

Determine which of the following statements are true or false:

- Changing the prior distribution influences the posterior distribution
- Changing the prior distribution influences the likelihood
- Changing the prior distribution influences the marginal likelihood
- Changing the prior distribution influences the predictive distribution
- The variance of the predictive distribution only depends on the measurement noise

• Our goal is to learn the function *f*

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} \tag{23}$$

• Our goal is to learn the function f

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} \tag{23}$$

• Until now we have focused on the weights **w**

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y} | \mathbf{w}) p(\mathbf{w}) \tag{24}$$

• Our goal is to learn the function f

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} \tag{23}$$

• Until now we have focused on the weights **w**

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y} | \mathbf{w}) p(\mathbf{w})$$
 (24)

• Let's introduce $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)] \in \mathbb{R}^N$ to the model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{w}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{w}) p(\mathbf{w})$$
(25)

• Our goal is to learn the function f

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} \tag{23}$$

• Until now we have focused on the weights **w**

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y} | \mathbf{w}) p(\mathbf{w})$$
 (24)

• Let's introduce $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)] \in \mathbb{R}^N$ to the model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{w}) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f} | \mathbf{w}) p(\mathbf{w})$$
(25)

Our model is still the same

$$p(\mathbf{y}, \mathbf{w}) = \int p(\mathbf{y}, \mathbf{f}, \mathbf{w}) d\mathbf{f} = p(\mathbf{y} | \mathbf{w}) p(\mathbf{w})$$
 (26)

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

• The augmented model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{w}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{w})p(\mathbf{w})$$
(27)

• The augmented model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{w}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{w})p(\mathbf{w})$$
(27)

• What if we now marginalize over the weights

$$p(\mathbf{y}, \mathbf{f}) = \int p(\mathbf{y}, \mathbf{f}, \mathbf{w}) d\mathbf{w} = p(\mathbf{y}|\mathbf{f}) \underbrace{\int p(\mathbf{f}|\mathbf{w}) p(\mathbf{w}) d\mathbf{w}}_{p(\mathbf{f})}$$
(28)

• The augmented model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{w}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{w})p(\mathbf{w})$$
(27)

• What if we now marginalize over the weights

$$p(\mathbf{y}, \mathbf{f}) = \int p(\mathbf{y}, \mathbf{f}, \mathbf{w}) d\mathbf{w} = p(\mathbf{y}|\mathbf{f}) \underbrace{\int p(\mathbf{f}|\mathbf{w}) p(\mathbf{w}) d\mathbf{w}}_{p(\mathbf{f})}$$
(28)

We can decompose as likelihood and prior

$$p(\mathbf{y}, \mathbf{f}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f})$$
(29)

where

$$p(\mathbf{f}) = \int p(\mathbf{f}, \mathbf{w}) d\mathbf{w} = \int p(\mathbf{f} | \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$
 (30)

ullet Let's study the prior distribution on $oldsymbol{f}$

$$p(\mathbf{f}) = \int p(\mathbf{f}|\mathbf{w})p(\mathbf{w})d\mathbf{w} = \int p(\mathbf{f}|\mathbf{w})\mathcal{N}(\mathbf{w}|0, \Sigma_p) d\mathbf{w} = ?$$
(31)

• We could do the integral directly...

ullet Let's study the prior distribution on $oldsymbol{f}$

$$p(\mathbf{f}) = \int p(\mathbf{f}|\mathbf{w})p(\mathbf{w})d\mathbf{w} = \int p(\mathbf{f}|\mathbf{w})\mathcal{N}(\mathbf{w}|0, \Sigma_p) d\mathbf{w} = ?$$
(31)

- We could do the integral directly...
- But let's instead use the result from last week

$$\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{V}) \quad \Rightarrow \quad \mathbf{A}\mathbf{z} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$$
 (32)

ullet Let's study the prior distribution on $oldsymbol{f}$

$$p(\mathbf{f}) = \int p(\mathbf{f}|\mathbf{w})p(\mathbf{w})d\mathbf{w} = \int p(\mathbf{f}|\mathbf{w})\mathcal{N}(\mathbf{w}|0, \Sigma_p) d\mathbf{w} = ?$$
(31)

- We could do the integral directly...
- But let's instead use the result from last week

$$\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{V}) \quad \Rightarrow \quad \mathbf{A}\mathbf{z} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$$
 (32)

ullet We know that $oldsymbol{w} \sim \mathcal{N}\left(oldsymbol{w} \middle| 0, oldsymbol{\Sigma_p}
ight)$ and $oldsymbol{f} = oldsymbol{X}oldsymbol{w}$

$$\mathbb{E}[\mathbf{f}] = \mathbb{V}[\mathbf{f}] = \tag{33}$$

ullet Let's study the prior distribution on $oldsymbol{f}$

$$p(\mathbf{f}) = \int p(\mathbf{f} | \mathbf{w}) p(\mathbf{w}) d\mathbf{w} = \int p(\mathbf{f} | \mathbf{w}) \mathcal{N}(\mathbf{w} | 0, \Sigma_p) d\mathbf{w} = ?$$
(31)

- We could do the integral directly...
- But let's instead use the result from last week

$$\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{V}) \quad \Rightarrow \quad \mathbf{A}\mathbf{z} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$$
 (32)

ullet We know that $oldsymbol{w} \sim \mathcal{N}\left(oldsymbol{w} \middle| 0, oldsymbol{\Sigma_p}
ight)$ and $oldsymbol{f} = oldsymbol{X}oldsymbol{w}$

$$\mathbb{E}[\mathbf{f}] = \mathbf{X}0 + 0 = 0 \qquad \qquad \mathbb{V}[\mathbf{f}] = \tag{33}$$

Let's study the prior distribution on f

$$p(\mathbf{f}) = \int p(\mathbf{f} | \mathbf{w}) p(\mathbf{w}) d\mathbf{w} = \int p(\mathbf{f} | \mathbf{w}) \mathcal{N}(\mathbf{w} | 0, \Sigma_p) d\mathbf{w} = ?$$
(31)

- We could do the integral directly...
- But let's instead use the result from last week

$$\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{V}) \quad \Rightarrow \quad \mathbf{A}\mathbf{z} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$$
 (32)

ullet We know that $oldsymbol{w} \sim \mathcal{N}\left(oldsymbol{w} ig| 0, oldsymbol{\Sigma}_{oldsymbol{p}}
ight)$ and $oldsymbol{f} = oldsymbol{X}oldsymbol{w}$

$$\mathbb{E}[\mathbf{f}] = \mathbf{X}0 + 0 = 0 \qquad \qquad \mathbb{V}[\mathbf{f}] = \mathbf{X}\boldsymbol{\Sigma}_{p}\mathbf{X}^{T}$$
(33)

(□ > ∢∰ > ∢ ≣ > ∢ ≣ > ○ Q (°)

17 / 34

ullet Let's study the prior distribution on $oldsymbol{f}$

$$p(\mathbf{f}) = \int p(\mathbf{f} | \mathbf{w}) p(\mathbf{w}) d\mathbf{w} = \int p(\mathbf{f} | \mathbf{w}) \mathcal{N}(\mathbf{w} | 0, \Sigma_p) d\mathbf{w} = ?$$
(31)

- We could do the integral directly...
- But let's instead use the result from last week

$$\mathbf{z} \sim \mathcal{N}(\mathbf{m}, \mathbf{V}) \quad \Rightarrow \quad \mathbf{A}\mathbf{z} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{m} + \mathbf{b}, \mathbf{A}\mathbf{V}\mathbf{A}^T)$$
 (32)

ullet We know that $oldsymbol{w} \sim \mathcal{N}\left(oldsymbol{w} ig| 0, oldsymbol{\Sigma}_{oldsymbol{p}}
ight)$ and $oldsymbol{f} = oldsymbol{X}oldsymbol{w}$

$$\mathbb{E}[\mathbf{f}] = \mathbf{X}0 + 0 = 0 \qquad \qquad \mathbb{V}[\mathbf{f}] = \mathbf{X}\boldsymbol{\Sigma}_{p}\mathbf{X}^{T}$$
(33)

In other words

$$p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \middle| 0, \mathbf{X} \mathbf{\Sigma}_{p} \mathbf{X}^{T}\right)$$
(34)

17 / 34

18 / 34

Markus Heinonen Gaussian processes Thursday

18 / 34

18 / 34

Same distribution for ${\it f}$ in both cases but with two different representations

Weight view

- Prior on weights: p(w)
- Posterior of weights: p(w|y)

Function view

- Prior on function values: p(f)
- $p(\mathbf{y}, \mathbf{f}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f})$
- Posterior of function values: p(f|y)

シック モー・モト・モト・ロー

18 / 34

- ullet Prior on linear functions: $p(m{f}) = \mathcal{N}\left(m{f} \middle| 0, m{K} \right)$, where $m{K} = m{X} \Sigma_p m{X}^T$
- Let's have a closer look on the covariance between f_i and f_j

$$\mathbf{K}_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_i

$$\mathbf{K}_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E}\left[\left(\mathbf{w}^T \mathbf{x}_i - 0\right)\left(\mathbf{w}^T \mathbf{x}_j - 0\right)\right]$$
 (Why zero mean?)

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_i

$$\mathbf{K}_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E}\left[\left(\mathbf{w}^T \mathbf{x}_i - 0\right) \left(\mathbf{w}^T \mathbf{x}_j - 0\right)\right]$$
 (Why zero mean?)
$$= \mathbb{E}\left[\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j\right]$$

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_i

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E}\left[\left(\mathbf{w}^T \mathbf{x}_i - 0\right) \left(\mathbf{w}^T \mathbf{x}_j - 0\right)\right]$$

$$= \mathbb{E}\left[\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j\right]$$

$$= \mathbb{E}\left[\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j\right]$$

(Why zero mean?)

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_i

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E}\left[(\mathbf{w}^T \mathbf{x}_i - 0) (\mathbf{w}^T \mathbf{x}_j - 0)\right]$$

$$= \mathbb{E}\left[\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j\right]$$

$$= \mathbb{E}\left[\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j\right]$$

$$= \mathbf{x}_i^T \mathbb{E}\left[\mathbf{w} \mathbf{w}^T\right] \mathbf{x}_j$$

(Why zero mean?)

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_j

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E}\left[(\mathbf{w}^T \mathbf{x}_i - 0) (\mathbf{w}^T \mathbf{x}_j - 0)\right]$$

$$= \mathbb{E}\left[\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j\right]$$

$$= \mathbb{E}\left[\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j\right]$$

$$= \mathbf{x}_i^T \mathbb{E}\left[\mathbf{w} \mathbf{w}^T\right] \mathbf{x}_j$$

$$= \mathbf{x}_i^T \Sigma_p \mathbf{x}_j$$

(Why zero mean?)

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_j

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E} [(\mathbf{w}^T \mathbf{x}_i - 0) (\mathbf{w}^T \mathbf{x}_j - 0)]$$

$$= \mathbb{E} [\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j]$$

$$= \mathbb{E} [\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j]$$

$$= \mathbf{x}_i^T \mathbb{E} [\mathbf{w} \mathbf{w}^T] \mathbf{x}_j$$

$$= \mathbf{x}_i^T \Sigma_p \mathbf{x}_j$$

$$\equiv k(\mathbf{x}_i, \mathbf{x}_i)$$

(Why zero mean?)

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_j

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E} [(\mathbf{w}^T \mathbf{x}_i - 0) (\mathbf{w}^T \mathbf{x}_j - 0)]$$

$$= \mathbb{E} [\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j]$$

$$= \mathbb{E} [\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j]$$

$$= \mathbf{x}_i^T \mathbb{E} [\mathbf{w} \mathbf{w}^T] \mathbf{x}_j$$

$$= \mathbf{x}_i^T \Sigma_p \mathbf{x}_j$$

$$\equiv \mathbf{k} (\mathbf{x}_i, \mathbf{x}_j)$$

(Why zero mean?)

- The covariance function is called a kernel function
- What happens if we change the **covariance function** $k(x_i, x_j)$?

- Prior on linear functions: $p(f) = \mathcal{N}(f|0, K)$, where $K = X\Sigma_p X^T$
- Let's have a closer look on the covariance between f_i and f_j

$$K_{ij} = \operatorname{cov}(f_i, f_j) = \operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = \operatorname{cov}(\mathbf{w}^T \mathbf{x}_i, \mathbf{w}^T \mathbf{x}_j)$$

$$= \mathbb{E} \left[(\mathbf{w}^T \mathbf{x}_i - 0) (\mathbf{w}^T \mathbf{x}_j - 0) \right]$$

$$= \mathbb{E} \left[\mathbf{w}^T \mathbf{x}_i \mathbf{w}^T \mathbf{x}_j \right]$$

$$= \mathbb{E} \left[\mathbf{x}_i^T \mathbf{w} \mathbf{w}^T \mathbf{x}_j \right]$$

$$= \mathbf{x}_i^T \mathbb{E} \left[\mathbf{w} \mathbf{w}^T \right] \mathbf{x}_j$$

$$= \mathbf{x}_i^T \Sigma_p \mathbf{x}_j$$

$$\equiv \mathbf{k} (\mathbf{x}_i, \mathbf{x}_j)$$

(Why zero mean?)

- The covariance function is called a kernel function
- What happens if we change the **covariance function** $k(x_i, x_j)$?
- It would change $f(\cdot)$!

19 / 34

The form of the covariance function determines the characteristics of functions

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ り へ ②

Question

Consider the following covariance function:

$$k(\mathbf{x}_i, \mathbf{x}_j) = 1$$
 for all input pairs $(\mathbf{x}_i, \mathbf{x}_j)$ (35)

- **1** What is the marginal distribution of $f(x_i)$?
- ② What is the covariance between $f(x_i)$ and $f(x_j)$?
- **3** What is the correlation between $f(x_i)$ and $f(x_j)$?
- What kind of functions are represented by the kernel in eq. (35)?

21 / 34

The big picture: Summary so far

We started with a Bayesian linear model

$$p(\mathbf{y}, \mathbf{w}) = p(\mathbf{y}|\mathbf{w})p(\mathbf{w}) \tag{36}$$

② We introduced f into the model and marginalized over the weights w

$$p(\mathbf{y}, \mathbf{f}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{w})p(\mathbf{w})d\mathbf{w} = p(\mathbf{y}|\mathbf{f})p(\mathbf{f})$$
(37)

1 This gave us a prior for linear functions in function space $p(\mathbf{f})$, where the covariance function for \mathbf{f} was given by

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{\Sigma}_{\rho} \mathbf{x} \tag{38}$$

3 By changing the form of the covariance function k(x, x'), we can model much more interesting functions

Definitions

Definition: multivariate Gaussian distribution

A random vector $\mathbf{x} = [x_1, x_2, \cdots, x_D]$ is said to have the **multivariate Gaussian distribution** if all linear combinations of \mathbf{x} are Gaussian distributed:

$$y = a_1x_1 + a_2x_2 + \cdots + a_Dx_D \sim \mathcal{N}(m, v)$$

for all $\boldsymbol{a} \in \mathbb{R}^D$

Definition: Gaussian process

A **Gaussian process** is a collection of random variables index over space, any finite subset of which have a joint Gaussian distribution.

Characterization and notation

• A Gaussian process can be considered as a prior distribution over functions $f: \mathcal{X} \to \mathbb{R}$ (the domain or index space \mathcal{X} is typically \mathbb{R}^D)

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (39)

Characterization and notation

• A Gaussian process can be considered as a prior distribution over functions $f: \mathcal{X} \to \mathbb{R}$ (the domain or index space \mathcal{X} is typically \mathbb{R}^D)

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (39)

• A Gaussian process is completely characterized by its mean function m(x) and its covariance function k(x, x'), which define

$$\mathbb{E}\left[f(\mathbf{x})\right] = m(\mathbf{x}) \tag{40}$$

$$cov[f(\mathbf{x}), f(\mathbf{x}')] = k(\mathbf{x}, \mathbf{x}')$$
(41)

24 / 34

Characterization and notation

• A Gaussian process can be considered as a prior distribution over functions $f: \mathcal{X} \to \mathbb{R}$ (the domain or index space \mathcal{X} is typically \mathbb{R}^D)

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (39)

• A Gaussian process is completely characterized by its mean function m(x) and its covariance function k(x, x'), which define

$$\mathbb{E}\left[f(\mathbf{x})\right] = m(\mathbf{x}) \tag{40}$$

$$cov[f(\mathbf{x}), f(\mathbf{x}')] = k(\mathbf{x}, \mathbf{x}')$$
(41)

• The probability of any subset of function values $f = f(x_1), \dots, f(x_N)$ at any inputs x_1, \dots, x_N is

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{m}, \mathbf{K}) \tag{42}$$

where $\mathbf{m} = m(\mathbf{x}_1), \dots, m(\mathbf{x}_N)$ and $[\mathbf{K}]_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Markus Heinonen Gaussian processes Thu

Gaussian processes are consistent wrt. marginalization

• Assume the function *f* follows a Gaussian process distribution:

$$f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (43)

• The Gaussian process will induce a density for $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2)]$:

$$p(\mathbf{f}) = p(f_1, f_2) = \mathcal{N}\left(\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \middle| \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}\right)$$
(44)

Gaussian processes are consistent wrt. marginalization

• Assume the function *f* follows a Gaussian process distribution:

$$f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (43)

• The Gaussian process will induce a density for $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2)]$:

$$p(\mathbf{f}) = p(f_1, f_2) = \mathcal{N}\left(\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \middle| \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}\right)$$
(44)

• The induced density function for $f_1 = f(x_1)$ will always satisfy

$$p(f_1) = \mathcal{N}\left(f_1 \middle| m_1, K_{11}\right) \tag{45}$$

 In words: "Examination of a larger set of variables does not change the distribution of the smaller set"

Gaussian processes are consistent wrt. marginalization

• Assume the function f follows a Gaussian process distribution:

$$f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
 (43)

• The Gaussian process will induce a density for $\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2)]$:

$$p(\mathbf{f}) = p(f_1, f_2) = \mathcal{N}\left(\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \middle| \begin{bmatrix} m_1 \\ m_2 \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}\right)$$
(44)

ullet The induced density function for $f_1=f({\it x}_1)$ will always satisfy

$$p(f_1) = \mathcal{N}\left(f_1\big|m_1, K_{11}\right) \tag{45}$$

- In words: "Examination of a larger set of variables does not change the distribution of the smaller set"
- If $\mathcal{X} = \mathbb{R}^D$, the GP prior describes infinitely many random variable $\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^D\}$, but in practice we only have to deal with a finite subset corresponding to the data set at hand, and where we want to evaluate or 'test' the function

◆ロ → ◆回 → ◆ 注 → ◆ 注 ・ り へ ②

25/34

Gaussian process intuition

• Gaussian process implements the assumption:

$$\mathbf{x} \approx \mathbf{x}' \quad \Rightarrow \quad f(\mathbf{x}) \approx f(\mathbf{x}')$$
 (46)

• In other words: If the inputs are similar, the outputs should be similar as well.

Gaussian process intuition

• Gaussian process implements the assumption:

$$\mathbf{x} \approx \mathbf{x}' \quad \Rightarrow \quad f(\mathbf{x}) \approx f(\mathbf{x}') \tag{46}$$

- In other words: If the inputs are similar, the outputs should be similar as well.
- Using the squared exponential covariance function as example

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right) \tag{47}$$

• Then covariance between f(x) and f(x)' is given by

$$\operatorname{cov}\left[f(\mathbf{x}), f(\mathbf{x}')\right] = k\left(\mathbf{x}, \mathbf{x}'\right) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right)$$
(48)

Gaussian process intuition

Gaussian process implements the assumption:

$$\mathbf{x} \approx \mathbf{x}' \quad \Rightarrow \quad f(\mathbf{x}) \approx f(\mathbf{x}') \tag{46}$$

- In other words: If the inputs are similar, the outputs should be similar as well.
- Using the squared exponential covariance function as example

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2}\right)$$
(47)

• Then covariance between f(x) and f(x)' is given by

$$\operatorname{cov}\left[f(\boldsymbol{x}), f(\boldsymbol{x}')\right] = k\left(\boldsymbol{x}, \boldsymbol{x}'\right) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|^2}{2}\right) \tag{48}$$

Note: the covariance between outputs are given in terms of the inputs

(ロ) (個) (注) (注) 注 り(@

26 / 34

Goal: To predict to the price for a house with area $x_* = 70$ based on the training data $\{x_n, y_n\}_{n=1}^N$

- Model: $y_n = f(x_n)$, where f is an unknown function (no noise for now)
- We impose a GP prior on $f: \mathcal{GP}(m(x), k(x, x'))$
 - The prior is defined for all $x \in \mathbb{R}$
 - We choose to evaluate the model at 70 observed points and evaluation points
- We choose m(x) = 0 and k(x, x') to be the covariance function to be the squared exponential (and linear + bias term)
- The joint density for the training data becomes

$$p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \middle| 0, \mathbf{K}_{ff}\right) \tag{49}$$

where
$$\mathbf{f} = [f(x_1), f(x_2), \dots, f(x_N)]$$
 and $(\mathbf{K}_{ff})_{ii} = k(x_i, x_j)$

□ ト 4 問 ト 4 豆 ト 4 目 ト 9 Q P

• The joint density for the training data

$$p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \middle| 0, \mathbf{K}_{ff}\right) \tag{50}$$

• But what about the predictions for the new point x_* and the value of $f(x_*)$?

• The joint density for the training data

$$p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \middle| 0, \mathbf{K}_{ff}\right) \tag{50}$$

- But what about the predictions for the new point x_* and the value of $f(x_*)$?
- Let $f_* = f(x_*)$, then we can jointly model f and f_* (consistency property)

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & K_{f_*f_*} \end{bmatrix}\right)$$
(51)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• The joint density for the training data

Markus Heinonen

$$p(\mathbf{f}) = \mathcal{N}\left(\mathbf{f} \middle| 0, \mathbf{K}_{ff}\right) \tag{50}$$

- But what about the predictions for the new point x_* and the value of $f(x_*)$?
- Let $f_* = f(x_*)$, then we can jointly model f and f_* (consistency property)

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & K_{f_*f_*} \end{bmatrix}\right)$$
(51)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• Now we can use the rule for conditioning in Gaussian distributions to compute $p(f_*|f)$

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_* \middle| \mathbf{K}_{f_*f} \mathbf{K}_{ff}^{-1} \mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f} \mathbf{K}_{ff}^{-1} \mathbf{K}_{f_*f}^{T}\right)$$
(52)

Thursday 14.1.2021

28 / 34

4 D P 4 전 P

Gaussian processes

• The joint model for f and f_* is

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(53)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• Conditioning on **f** yields:

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{K}_{f_*f}^T\right)$$
(54)

• The joint model for f and f_* is

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & K_{f_*f_*} \end{bmatrix}\right)$$
(53)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• Conditioning on **f** yields:

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{K}_{f_*f}^T\right)$$
(54)

• The joint model for f and f_* is

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(53)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• Conditioning on **f** yields:

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{K}_{f_*f}^T\right)$$
(54)

(ロト 4 個 ト 4 意 ト 4 意 ト) 意 · 约 Q (で

• The joint model for f and f_* is

$$\rho(\mathbf{f}, f_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{ff_*} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(53)

where $K_{f_*f} = [k(x_*, x_1), k(x_*, x_2), \dots, k(x_*, x_N)]$ and $K_{f_*f_*} = k(x_*, x_*)$

• Conditioning on **f** yields:

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{K}_{f_*f}^T\right)$$
(54)

29 / 34

- Consider now the (realistic) noisy model: $y_n = f(x_n) + \epsilon_n$, where ϵ_n is Gaussian distributed
- Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}\left(\mathbf{y}|\mathbf{f}, \sigma_{obs}^2 \mathbf{I}\right)$$
 (55)

• The joint model for the noisy case becomes

$$p(\mathbf{y}, \mathbf{f}, f_*) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)$$
(56)

$$= \mathcal{N}\left(\mathbf{y} \middle| \mathbf{f}, \sigma_{obs}^{2} \mathbf{I}\right) \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_{*} \end{bmatrix} \mathbf{f} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{f_{*}f} \\ \mathbf{K}_{f_{*}f} & \mathbf{K}_{f_{*}f_{*}} \end{bmatrix}\right)$$
(57)

- Consider now the (realistic) noisy model: $y_n = f(x_n) + \epsilon_n$, where ϵ_n is Gaussian distributed
- Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}\left(\mathbf{y}|\mathbf{f}, \sigma_{obs}^2 \mathbf{I}\right)$$
 (55)

• The joint model for the noisy case becomes

$$p(\mathbf{y}, \mathbf{f}, f_*) = p(\mathbf{y} | \mathbf{f}) p(\mathbf{f}, f_*)$$
(56)

$$= \mathcal{N}\left(\mathbf{y} \middle| \mathbf{f}, \sigma_{obs}^{2} \mathbf{I}\right) \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ f_{*} \end{bmatrix} \mathbf{f} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{f_{*}f} \\ \mathbf{K}_{f_{*}f} & \mathbf{K}_{f_{*}f_{*}} \end{bmatrix}\right)$$
(57)

Marginalizing over f gives

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(58)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \mathbf{f} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(59)

30 / 34

• The joint distribution

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(60)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(61)

Once again, we can use the rule for conditioning

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(62)

The joint distribution

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(60)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(61)

Once again, we can use the rule for conditioning

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(62)

The joint distribution

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(60)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(61)

Once again, we can use the rule for conditioning

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(62)

• The joint distribution

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(60)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(61)

Once again, we can use the rule for conditioning

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(62)

• The joint distribution

$$p(\mathbf{y}, f_*) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, f_*)d\mathbf{f}$$
(60)

$$= \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ f_* \end{bmatrix} \middle| 0, \begin{bmatrix} \mathbf{K}_{ff} + \sigma_{obs}^2 \mathbf{I} & \mathbf{K}_{f_*f} \\ \mathbf{K}_{f_*f} & \mathbf{K}_{f_*f_*} \end{bmatrix}\right)$$
(61)

Once again, we can use the rule for conditioning

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(62)

Markus Heinonen Gaussian processes

Question

Posterior distribution in the noiseless case:

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\mathbf{K}_{ff}^{-1}\mathbf{K}_{f_*f}^{T}\right)$$
(63)

Posterior distribution for the noisy case $(y = f + \epsilon)$:

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(64)

Is the following statements true or false?:

- Gaussian processes can fit high non-linear functions, but the predictive means are given by a linear combination of the observations y.
- \bigcirc The variance of the posterior distribution is indepedent of the observations y.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

32/34

What did we do?

• The predictive function posterior is conveniently a single equation (.. for regression)

$$p(f_*|\mathbf{f}) = \mathcal{N}\left(f_*|\mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{y}, K_{f_*f_*} - \mathbf{K}_{f_*f}\left(\mathbf{K}_{ff} + \sigma_{obs}^2\mathbf{I}\right)^{-1}\mathbf{K}_{f_*f}^T\right)$$
(65)

- We ended up not optimizing any parameters, how is this possible?
- Problem: how to define the hyperparameters
 - The noise variance σ_{obs}^2
 - The kernel bandwidth or shape
- ⇒ Next lecture

End of todays lecture

Next lecture:

- Kernels and covariance functions
- Model selection and hyperparameters
- Read ch. 4.2 and ch. 5.1-5.4 in Gaussian process book (gaussianprocess.org/gpml)

Assignment:

- ullet Time to work on assignment #1 (deadline 20th of January)
- Should be handed in through the mycourses system
- In notebook format or in PDF with the same content