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Last session

Last time, we talked about

@ The multivariate Gaussian distribution -
4 p=0.9
@ The interpretation of the parameters 2
o <0
e Marginalization
-2
e Conditional distributions
4 2 o 2 4

How to sample from the distribution



Conditioning one more time

@ Let x; and x» be a partitioning of x = x3 U xp, then
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@ The conditional distribution of x; is given x by:
p(x1|x2) = N (x1|B1225) [x2 — mo] + my, By — 812857 501) (2)
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Gaussian processes for regression

Running example

@ Suppose we are given a data set of house prices in Helsinki
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@ Goal: Build a model using the data set and predict the average price for a house of 70m?
and 160m?



Road map for today

© The Bayesian linear model

@ The linear model as special case of a Gaussian
process

© Gaussian processes: definition & properties

@ Questions
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General setup for linear regression
@ We are given a data set: D = {x,,,y,,},’Y:1

@ House example: y, = house price and x, = house area

@ Goal: Learn some function f such that

Yn = f(xn) + €n (3)
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General setup for linear regression
@ We are given a data set: D = {x,,,y,,}N

n=1

@ House example: y, = house price and x, = house area

@ Goal: Learn some function f such that
Yo = f(xn) + €n (3)
@ Assuming f is a linear model:
f(x)=wix; + waxo + ...+ wpxp = Z wix; = w' x (4)

@ Linear models are linear wrt. parameters, not the data:
fF(x) = widr (x1) + wad2 (x2) + ... + wprdpr (xp/) = w’ p (x), (5)

where ¢; (-) can be non-linear feature functions.



Question

Which of the following models are linear models and why?

f(x) = wixy + waxs + wasin (x3) (Model 1)
f(x) = wixi + wixs + wixs (Model 2)
f(x) = (wa)2 (Model 3)
f(x) = wiexp(x1) + way/x2 + w3 (Model 4)
f(x) = wix1 + wixg + w33 (Model 5)



Slope and intercept

@ The models so far have not included an intercept or bias term

@ Most often we want to incorporate an intercept/bias term
f(X) = Wy + wixy + woexo + ... WpXp (6)

@ By assuming xo = 1, we can write

f(x) = wo- 14+ wixy + waxo + ... wpxp (7)
=Wwp - Xo + wixy + waxa + ... WpXp (8)
= WTX (9)



Bayesian linear regression

@ The model

Yo =f(x,)+e= w'x,+e, e~N (0, Ugbs) (10)
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Bayesian linear regression

@ The model

Yo =f(x,)+e= w'x,+e, e~N (0, Uf,bs) (10)

@ Likelihood for one data point
P(YnlXn, w) = N (y,,|f(x,,),crgbs) =N (y,,|wa,,, Uczabs) (11)

@ Likelihood for all data points
p(y|X, w) Hp(yn|W Xp, W) = N(Y‘vaagbsl) (12)

@ Since the data is assumed constant, the likelihood is a function of parameters w
@ The prediction vector f = Xw

@ Next step: we introduce a prior distribution p (w) for the weights w



Bayesian linear regression

@ The prior p(w) contains our prior knowledge about w before we see any data

@ Bayes rule gives us the posterior distribution

likelihood x prior

posterior = marginal likelihood (13)
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Bayesian linear regression

@ The prior p(w) contains our prior knowledge about w before we see any data

@ Bayes rule gives us the posterior distribution

likelihood x prior

posterior = marginal likelihood (13)
wly) — POW)p(w)

@ Marginal likelihood (or evidence)

p() = [ ply.w)dw = [ plylw)p(w)dw = Eyuyply|w)

@ The posterior p(w’y) captures everything we know about w after seing the data

v, X)

@ By convention we use p(w|y) instead of the rigorous form p(w



Bayesian linear regression: the posterior distribution

@ We select a Gaussian prior for w




Bayesian linear regression: the posterior distribution

@ We select a Gaussian prior for w

p(w) =N (w

0, %) (15)
@ The parameter posterior distribution becomes

ply|w)p(w)

= 16
p(wly) o) (16)
2

_ N (y|Xw, o2, 1) N (w]0,X,) (a7)

p(y)
=N (w|p, A7) (18)

where
= %A*ley A= %XTX +3,° (19)
Uobs Uobs

@ See Rasmussen book section 2.1.1 for derivation (book eq 2.7).
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Bayesian linear regression: the predictive distribution

@ We often want to compute the predictive distribution (or predictive posterior) for the noisy
observation y, at new data point x., given as p(y.|y)

@ We obtain the predictive distribution by averaging/marginalizing over the posterior:

p(y-]y) :/p(y*lx*,W)p(le)dW (20)
- /N(y*|wa*,a§bs)N(w|p,7A_1)dw (21)
=N (vl 0, 05 + x] A7 x,) (22)

@ The predictive distributions contains two sources of uncertainty:

2 . i
Q 0;,.: measurement noise

@ A~': uncertainty of the weights w

@ x] A~lx,: uncertainty of the weights w projected to the data space



House price example: Posterior and predictive distributions

@ The posterior distribution is distribution over the parameter

space
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House price example: Posterior and predictive distributions

@ The posterior distribution is distribution over the parameter

space

@ The posterior is compromise between prior and likelihood
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House price example: Posterior and predictive distributions

@ The posterior distribution is distribution over the parameter

space

@ The posterior is compromise between prior and likelihood

@ The predictive distribution is a distribution over the output

space
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Question

Determine which of the following statements are true or false:

© Changing the prior distribution influences the posterior distribution
© Changing the prior distribution influences the likelihood

© Changing the prior distribution influences the marginal likelihood
© Changing the prior distribution influences the predictive distribution

© The variance of the predictive distribution only depends on the measurement noise
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f(x)=w'x (23)
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Switching focus from parameters to functions (1)

@ Our goal is to learn the function f
f(x)=w'x (23)
@ Until now we have focused on the weights w
p(y.w) = p(y|w)p(w) (24)
o Let's introduce f = [f(x1), f(x2),...,f(xn)] € RN to the model
p(y, £, w) = p(y|F)p(f|w)p(w) (25)
@ Our model is still the same
ply.w) = [ ply.F.w)df = ply|w)p(w) (26)
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Switching focus from parameters to functions (II)

@ The augmented model

p(y, f,w) = p(y|f)p(F|w)p(w) (27)

@ What if we now marginalize over the weights

py.F) = [ by F.wdw = ply|) [ p(F|w)p(w)cw (28)

p(f)

@ We can decompose as likelihood and prior

ply, F) = p(y|F)p(f) (29)

where
() = [ o w)dw = [ p(F|w)p(w)dw (30)
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@ Let's study the prior distribution on f
p(f) = /p(f|w)p(w)dw = /p(f|w)]\/(w|0, 3,) dw =? (31)

@ We could do the integral directly...
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Switching focus from parameters to functions (lII)
@ Let's study the prior distribution on f
p(f) = /p(f|w)p(w)dw = /p(f|w)]\/(w|0, 3,) dw =?
@ We could do the integral directly...
@ But let's instead use the result from last week

z~N(mV) = Az+b~N(Am+b AVAT)

® We know that w ~ N (w|0,%,) and f = Xw
E[f]=X0+0=0 V[fl=XZ,XT

@ In other words

p(f) = N (f]0, XS, XT)

Markus Heinonen Gaussian processes
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Weight view vs. function view
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Weight view vs. function view
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Weight view vs. function view
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Weight view vs. function view
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Weight view vs. function view

f~ N0, X3,XT)
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Same distribution for £ in both cases but with two different representations

Weight view Function view
@ Prior on weights: p (w) @ Prior on function values: p(f)
° p(y,w) = p(y|w)p(w) o ply;f) = p(ylF)p(f)
@ Posterior of weights: p(wly) @ Posterior of function values: p(f|y)
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A closer look at the covariance matrix

@ Prior on linear functions: p(f) = N (|0, K), where K = XX, XT

@ Let's have a closer look on the covariance between f; and f;
Kij = cov (f;, f;) = cov (f(x;), f(x;)) = cov (wa,-, waj)
=E [(WTX,' -0) (Wij —0)] (Why zero mean?)
"xj]

X

=3 [wa,-w
=E [x,-Twa
=x'E [wa] X;
= x| Zpx;
= k (x;, xj)

@ The covariance function is called a kernel function

@ What happens if we change the covariance function & (x;, x;)?

@ It would change f(-) !



Covariance functions

Linear Squared exponential | White noise
HX,*XJ _
k(xi, x;) = xT Zpx; k(xi,x;) = exp 300 k(xi, x;) = 6 (xi — x;)
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Linear Squared exponential | White noise
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Covariance functions
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Markus Heinonen
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Covariance functions

Linear Squared exponential | White noise
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Covariance functions

Linear Squared exponential | White noise
[l x;—x; _
k(xi, x;) = xT Zpx; k(xi,x;) = exp | — 300 k(xi, x;) = 6 (xi — x;)
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The form of the covariance function determines the characteristics of functions



Question

@ Consider the following covariance function:
k(xi,xj) =1 for all input pairs (x;, x;) (35)

© What is the marginal distribution of f(x;)?

@ What is the covariance between f(x;) and f(x;)?

© What is the correlation between f(x;) and f(x;)?

© What kind of functions are represented by the kernel in eq. (35)7



The big picture: Summary so far

© We started with a Bayesian linear model

p(y, w) = p(y|w)p(w) (36)

@ We introduced f into the model and marginalized over the weights w

ply,f) = /p(y\f)p(fIW)p(W)dW = p(y|f)p(f) (37)

© This gave us a prior for linear functions in function space p(f), where the covariance
function for f was given by

k(x,x") = x"2,x (38)
© By changing the form of the covariance function k(x, x"), we can model much more

interesting functions



Definitions

Definition: multivariate Gaussian distribution

A random vector x = [x1, X2, - - , xp] is said to have the multivariate Gaussian distribution if all
linear combinations of x are Gaussian distributed:

y=aix1+ ayo+ -+ apxp ~ N (m,v)

for all a € RP

Definition: Gaussian process

A Gaussian process is a collection of random variables index over space, any finite subset of which
have a joint Gaussian distribution.




Characterization and notation

@ A Gaussian process can be considered as a prior distribution over functions f : X — R (the
domain or index space X is typically RP)

f(x) ~GP(m(x),k(x,x")) (39)
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Characterization and notation

@ A Gaussian process can be considered as a prior distribution over functions f : X — R (the
domain or index space X is typically RP)

f(x) ~GP(m(x),k(x,x")) (39)

@ A Gaussian process is completely characterized by its mean function m(x) and its covariance
function k (x, x’), which define

E[f(x)] = m(x) (40)
cov[f(x), f(x')] = k (x,x") (41)
@ The probability of any subset of function values f = f(xy),...,f(xy) at any inputs xq, ..., xy is
p(f) = N(f|m, K) (42)
where m = m(x,),..., m(xn) and [K]; = k(xi, x;)



Gaussian processes are consistent wrt. marginalization

@ Assume the function f follows a Gaussian process distribution:
f~GP(m(x), k(x x)) (43)

@ The Gaussian process will induce a density for f = [f(x1), f(x2)]:
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Gaussian processes are consistent wrt. marginalization

@ Assume the function f follows a Gaussian process distribution:
f~GP(m(x),k(x,x")) (43)
@ The Gaussian process will induce a density for f = [f(x1), f(x2)]:
o) = el ) = (| ] || ] [fn fez)) (44)
@ The induced density function for f; = f(xy) will always satisfy
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@ In words: " Examination of a larger set of variables does not change the distribution of the smaller
set”



Gaussian processes are consistent wrt. marginalization
@ Assume the function f follows a Gaussian process distribution:
f~GP(m(x), k(x x)) (43)

@ The Gaussian process will induce a density for f = [f(x1), f(x2)]:

fil | [m| |[Ku K
£) = p(f. ) = 44
p(f) = p(f, ) N(L—J { {mz} ’ [Kzl K22]) (44)
@ The induced density function for f; = f(xy) will always satisfy
p(f) =N (fi|my, K1) (45)

@ In words: " Examination of a larger set of variables does not change the distribution of the smaller
set”

@ If X =RP, the GP prior describes infinitely many random variable {f(x) : x € RP}, but in
practice we only have to deal with a finite subset corresponding to the data set at hand, and
where we want to evaluate or ‘test’ the function



Gaussian process intuition

@ Gaussian process implements the assumption:
x~x = f(x)=f(x) (46)

@ In other words: If the inputs are similar, the outputs should be similar as well.
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Gaussian process intuition

Gaussian process implements the assumption:
x~x = f(x)=f(x) (46)

@ In other words: If the inputs are similar, the outputs should be similar as well.

@ Using the squared exponential covariance function as example
W2
k(x,x") = exp <—HX2XH) (47)
@ Then covariance between f(x) and f(x)’ is given by

cov[f(x), F(x')] = k (x,x") = exp (‘Hx_z)(/”) (48)

@ Note: the covariance between outputs are given in terms of the inputs



Back to our house price example (1)

Goal: To predict to the price for a house with area Sos :
x, = 70 based on the training data {xn,yn},’,\l:1 o .7,

*  Data points

40 60 80 100 120 140 160
Area [m?]

@ Model: y, = f(x,), where f is an unknown function (no noise for now)

@ We impose a GP prior on f: GP (m(x), k (x,x"))

e The prior is defined for all x € R
o We choose to evaluate the model at 70 observed points and evaluation points

@ We choose m(x) = 0 and k (x, x") to be the covariance function to be the squared exponential
(and linear 4 bias term)

@ The joint density for the training data becomes
p(f) = N (f|0, Ky) (49)
where f = [f (x1),f (x2),...,f (xn)] and (Kg); = k (xi, x;)



Back to our house price example (II)

@ The joint density for the training data

p(F) = N (F|0, Kr) (50)

@ But what about the predictions for the new point x, and the value of f(x,)?
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Back to our house price example (II)

@ The joint density for the training data

p(F) = N (|0, Ky) (50)
@ But what about the predictions for the new point x, and the value of f(x,)?

@ Let f. = f(x.), then we can jointly model f and f, (consistency property)

([ )

where Kr, ¢ = [k(x«, x1), k(xe, X2), - - ., k(x, xn)] and Ky, g, = k(X, X4)

@ Now we can use the rule for conditioning in Gaussian distributions to compute p(f.|f)

p(fIF) =N (f|KerKz'y, Ker. — Ke Kz 'K ) (52)



Back to our house price example (IlI)

@ The joint model for f and f, is

SR LA =

where Kr ¢ = [k(xi, x1), k(Xs,%2), . .., k(xx, xn)] and Kr g, = k(xs, %)

@ Conditioning on f yields:

p(flF) =N (f|KecKz'y, Ker. — KKz 'K ) (54)
10
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Back to our house price example (IlI)

@ The joint model for f and f, is

SR LA =

where Kr ¢ = [k(xi, x1), k(Xs,%2), . .., k(xx, xn)] and Kr g, = k(xs, %)

@ Conditioning on f yields:
p(flF) = N (f.|Kee Kz 'y, Ker, — Ke Kz 'K ) (54)
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Back to our house price example (IlI)

@ The joint model for f and f, is

SR LA =

where Kr ¢ = [k(xi, x1), k(Xs,%2), . .., k(xx, xn)] and Kr g, = k(xs, %)

@ Conditioning on f yields:
p(flF) = N (f.|Kee Kz 'y, Ker, — Ke Kz 'K ) (54)
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Back to our house price example (IlI)

@ The joint model for f and f, is

SR LA =

where Kr ¢ = [k(xi, x1), k(Xs,%2), . .., k(xx, xn)] and Kr g, = k(xs, %)

@ Conditioning on f yields:
p(flF) = N (f.|Kee Kz 'y, Ker, — Ke Kz 'K ) (54)

—— Gaussian process (no noise)

40 60 80 100 120 140 160
Area [m?]



Back to our house price example (V)

@ Consider now the (realistic) noisy model: y, = f(x,) + €5, where €, is Gaussian distributed
@ Gaussian likelihood:
p(ylf) =N (y|f.o%s) (55)
@ The joint model for the noisy case becomes
ply.f.f.) = p(y|f)p(f,f) (56)
_J\/(y}f,ogbsl)/\/<[ﬂ 0, [,’ész ;éf;D (57)

T



Back to our house price example (V)

@ Consider now the (realistic) noisy model: y, = f(x,) + €5, where €, is Gaussian distributed
@ Gaussian likelihood:
p(ylf) =N (y|f.o%s) (55)
@ The joint model for the noisy case becomes
ply.f.f.) = p(y|f)p(f,f) (56)
_N(yv,agbsl)/\/(m 0, [,’ész ;éf:D (57)

T

@ Marginalizing over f gives
ply. )= [ plylFIp(F £)0F (58)

N ([ﬂ £lo, [Kff;; 02ps! K&f]) (59)

£ f Kr.t.
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Back to our house price example (V)

@ The joint distribution

ply.£) = [ ply|Pplf. £)af (60)
(e[ %) o

@ Once again, we can use the rule for conditioning

—1 -1
p(flf) =N (f*|Kf*f (Kir + 0opsl) y: Ker. — Ko (Kir + 05ps1) Kfz—f) (62)
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Back to our house price example (V)

@ The joint distribution

ply.£) = [ ply|FIp(F £)0F (60)
y Kir + 02l K.t
_ 0 obs 61
N ([fJ . [ K, ¢ K.t (61)
@ Once again, we can use the rule for conditioning
—1 -1
P(f*\f):N(ﬂ|Kf*f(Kff+0§bs’) ¥, Ker. — Ker (Kir + 021) Kfz—f) (62)
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Back to our house price example (V)

@ The joint distribution

ply.£) = [ ply|Pplf. £)af (60)
(e[ %) o

@ Once again, we can use the rule for conditioning

p(f|f) =N (f*|Kf*f (Ke + Uﬁbs’)fly, Ke.r. — Ker (K + Ugbs’fl Kfz—f) (62)
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Back to our house price example (V)

@ The joint distribution

ply.£) = [ ply|Pplf. £)af (60)
:N<m 0, {Kff;;ibs’ ;{‘::D (61)

@ Once again, we can use the rule for conditioning

p(f.|f) =N (ﬁk|Kf*f (Kir + 0250) 'y, Ker, — Ker (K + 020) Kfff) (62)
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Back to our house price example (V)

@ The joint distribution

Py )= [ ol F)p(F. £ )f (60)
y K+ 02,1 Krr
= 0 obs 61
N([fj o [ K, ¢ K.t (61)
@ Once again, we can use the rule for conditioning
-1 —1
p(f*‘f):N(ﬁk|Kf*f(Kff+o—¢2)bsl) Y, Ker. — Krr (Kir + 0ossl) Kfz—f) (62)
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Question

Posterior distribution in the noiseless case:
pUEIF) = N (£ KKy, Kir. — Ki K K] ) (63)
Posterior distribution for the noisy case (y = f + ¢):

pEly) = N (£ Ker (Kir + 0%sl) "y, Kior = Kior (Kir + 02:0) KT )  (64)

Is the following statements true or false?:

© Gaussian processes can fit high non-linear functions, but the predictive means are given by
a linear combination of the observations y.

@ The variance of the posterior distribution is indepedent of the observations y.



What did we do?
@ The predictive function posterior is conveniently a single equation (.. for regression)
—1 -1
p(flf) =N (f*\Kf*f (Kir + 05psl) v, Ker. — Ker (Ko + 05ps1) Kfz:f) (65)

@ We ended up not optimizing any parameters, how is this possible?
@ Problem: how to define the hyperparameters
o The noise variance 02,

o The kernel bandwidth or shape
@ = Next lecture

Data
Gaussian process
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End of todays lecture

Next lecture:

@ Kernels and covariance functions
@ Model selection and hyperparameters

@ Read ch. 4.2 and ch. 5.1-5.4 in Gaussian process book (gaussianprocess.org/gpml)

Assignment:

e Time to work on assignment #1 (deadline 20th of January)
@ Should be handed in through the mycourses system

@ In notebook format or in PDF with the same content



