Welcome to Differential and Integral Calculus II

Welcome to Differential and Integral Calculus II

Practicalities

- MyCourses
- Open access textbooks
- Zulip chat - quick look at basics
- Grades and expectation
- How to do well in this course
- Teaching Assistants (TAs)

What's new?

- Functions of more than one variable
- 3D thinking
- Connecting geometric thinking to calculus
- Many new concepts
- Learn beautiful and useful math

What's old

- You already know how to algebra, differentiate and integrate.
- You have all the basic skills you need
- This is a very standard course so lots of material available. Many standard textbooks.

TODAY

\diamond General definition of a parametric equation (vector valued function). Physical interpretation of position as a function of time.
\diamond Examples of parametric equations. Line, circle, parabola.
\triangleleft Parametrize the parabola in two ways and mentione that there are infinity-many ways to parametrize the same curve.
\diamond Figure out the general formula for the parametric equation of a line in $R^{\wedge} 3$
\triangleleft Write the limit definition of the derivative of a vector valued function. Indicate graphically why this is the tangent vector. With a bit of algebra, show that this limit definition reduces to taking the derivative in each component separately.
\diamond Find the tangent vector to a circle and get the result we expect.
\diamond Find the formula for arc length from first principles using the definition of the definite integral. (More details will be given in the next lecture)
\checkmark The physical interpretation of arc length being the integral of speed makes the formula very intuitive.

Where to find this material (see MC for textbook links)

1. Adams and Essex 11.1-11.3
2. Corral, 1.8, 1.9
3. Guichard, 13.1-13.3
4. Active Calculus. 9.5-9.8

Vector-valued functions (1)
Recall
The most famaliar functions are

The graph of a function is:

$$
\left\{(x, y) \mid y=x^{2}\right\}=\operatorname{subset}
$$

$$
\begin{aligned}
\text { Domain } & =\mathbb{R}=\{x \quad \mid-\infty<x \leqslant \infty \\
\text { Range } & =a \| \text { positive } x \text { values } \\
& =\{x \mid x \geqslant 0\}
\end{aligned}
$$

What is a vector?
magnitude + direction
Examples: velocity, force, electric field
ATTENTION" Vectors do not have a base point
These are all the kame vector

Notation

$$
\begin{aligned}
& \vec{l}=\langle 1,0,0\rangle \\
& \vec{j}=\langle 0,1,0\rangle \\
& \vec{k}=\langle 0,0,1\rangle
\end{aligned}
$$

$$
\vec{V}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\langle a, b, c\rangle=a \vec{i}+b \vec{j}+c \vec{k}
$$

\rightarrow Matrix Algebra course

$$
\|\vec{v}\|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

Vector-valued functions (2)
Warning! We use \mathbb{R}^{3} for both the set of points and the set of vectors

A function

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{n} \text { is }
$$ called a vector-valued function

Note: In this course we mostly deal with $R^{\wedge} 2$ and $R^{\wedge} 3$. Most of the new ideas already appear in these dimensions. Going to higher dimensions ($n>3$) is not conceptully different

Examples
(1)

$$
\begin{aligned}
\vec{r}(t)=\overrightarrow{O P}(t)= & \langle x(t), y(t)\rangle \\
= & x(t) \vec{i}+y(t) \vec{j} \\
= & \text { Position as a } \\
& \text { function of time }
\end{aligned}
$$

(2) Similarly,

$$
\begin{aligned}
& \vec{v}(t)=\text { velocity } \\
& \vec{a}(t)=\text { acceleration }
\end{aligned}
$$

Vector-valued functions (3)
Exmaples: (1) Line, (2) Circle, (3) Parabola
(1) Line $y=f(x)=3 x+2$

Let $x=t$ This works

Then $y=3 t+2$

$$
\begin{aligned}
& y=3 t+2 \\
& r
\end{aligned}(t)=\langle t, 3 t+2\rangle
$$

(2) Circle of radius ' a ' centered at $(0,0)$

$$
x=a \cos \theta, y=a \sin \theta
$$ Using t instead of θ, $\vec{r}(t)=\langle a \cos t, a \sin t\rangle$

$$
=a\langle\cos (t), \sin (t)\rangle
$$

For 1 revolution $0 \leqslant t \leqslant 2 \pi$
For continual revolution $-\infty<t<\infty$
Note. $x^{2}+y^{2}=a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=a^{2}$
which is the familiar equation of the circle
(3) $y=x^{2}$
(a) $x=t, y=t^{2},-\infty<t<\infty$

(b) $x=\sin (t), y=\sin ^{2}(t)$

- $\lll \infty$
x oscillates between - I and I

Sub $x=\sin (t)$ into y, get $y=x^{2}$

Lines in 3D
Lines in 2D

- $y=m x+b$
- 2 variable ($R^{\wedge} 2$) and 1 linear equation
- Solution set is 1 dimensional (affine) space.
- If $b=0$ then the solution set is a subspace (matrix alg course)

But in 3D

- The analogue of the 2 D equation is naively $z=m x+n y+b$
- 3 variable ($R^{\wedge} 3$) and 1 linear equation
- The solution set is a 2 dimensional space
- This is a plane
- To get a line we need 2 equations

What data spceifies a line (see zulip poll)?

- 2 points
\square
- 1 point + 2 slopes
- Int of 2 planes
- 1 point + 1 vector

Parametric description of a line in 3D Given data: $P\left(x_{0}, y_{0}, z_{0}\right), \vec{V}=\langle a, b, c\rangle$

(1) Go to P. Vector $\overrightarrow{O P}$
(2) move in the direction of v

Parametric equation of the line

$$
\begin{aligned}
\vec{r}(t) & =\overrightarrow{O P}+t \vec{V} \\
& =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
\end{aligned}
$$

$O R$

$$
\left.\begin{array}{l}
x(t)=x_{0}+a t \\
y(t)=y_{0}+b t \\
z(t)=z_{0}+c t
\end{array}\right]
$$

Line is $3 \mathrm{D}(2)$

Example: Find the equation of the line passing through the points $\mathrm{P}(2,3,-1)$ and $\mathrm{Q}(5,4,-2)$.

Need: 1 point $\sqrt{ }(P$ or $Q)$
1 vector?

$$
\begin{aligned}
\vec{V}=\overrightarrow{P Q} & =\langle 5-2,4-3,-2-(-1)\rangle \\
& =\langle 3,1,-1\rangle
\end{aligned}
$$

Using P as the point, we have

$$
\left.\begin{array}{r}
\vec{r}(t)=\langle 2,3,-1\rangle+t\langle 3,1,-1\rangle \\
(\text { Parametric equation }-\operatorname{vector~} \\
\text { form }
\end{array}\right)
$$

OR
Solve fort: $\quad t=\underbrace{x-2}_{3}$
-

$$
\begin{aligned}
& x(t)=2+3 t \\
& y(t)=3+t \\
& z(t)=-1-t
\end{aligned}\left(\begin{array}{c}
\text { Parametric } \\
\text { equations } \\
\text {-component } \\
\text { form }
\end{array}\right)
$$

OR

$$
t=\frac{x-2}{3}=y-3=\frac{z+1}{-1}
$$

(Symmetric equation)

Derivatives of vector valued functions
Recall: (Home work \#1)
The definition of the derivative of a function of one variable is:

$$
\frac{d f}{d x}(a)=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Let's just write down the analogue for a vector valued function.

$$
\begin{aligned}
& \underbrace{\text { Definition: } \vec{r}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\vec{r}(a+h)-\vec{r}(a)}{h}})
\end{aligned}
$$

Does this make sense?
(1) $\vec{r}(a+h)-\vec{r}(a)$ is ok because
we can add and subtract vectors
(2) $\frac{" \text { " makes sense as it is }}{h}$
just scalar multiplication

$$
\frac{1}{h}(\vec{r}(a+h)-\vec{r}(a))
$$

OK, so fine we have a definition that makes mathematical sence. But (A) how can we compute it? And (B), what does it measure?
(A) Let's just write it out in components.

$$
\begin{aligned}
\vec{r}^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{1}{h}(\langle x(a+h), y(a+h)\rangle-\langle x(a), y(a)\rangle) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\langle x(a+h)-x(a), y(a+h)-y(a)\rangle \\
& =\lim _{h \rightarrow 0}\left\langle\frac{x(a+h)-x(a)}{h}, \frac{y(a+h)-y(a)}{h}\right\rangle \\
& =\left\langle\lim _{h \rightarrow 0} \frac{x(a+h)-x(a)}{h}, \lim _{h \rightarrow 0} \frac{y(a+h)-y(a)}{h}\right\rangle \\
& =\left\langle x^{\prime}(a), y^{\prime}(a)\right\rangle
\end{aligned}
$$

= Wouhou! Just the regular
derivative in each component
Ex

$$
\begin{aligned}
\frac{d}{d t}\left\langle t^{2}\right. & , \sin (t)+t\rangle \\
& =\langle 2 t, \cos (t)+1\rangle
\end{aligned}
$$

Derivatives of vector valued functons (2)
(B) What does $\mathrm{r}^{\prime}(\mathrm{t})$ measure? Let's draw a picture.

We see that as $h \rightarrow 0$ the difference $\vec{r}(a+h)-\vec{r}(a)$ becomes parallel to the tangent vector

Conclusion:
$r^{\prime}(a)$ is the tangent vector to the curve $r^{\prime}(t)$ at $t=a$
Example Find the tangent vector to the circle of radius 1 centered ut $(0,0)$ at the point

$$
(1 / \sqrt{2}, 1(\sqrt{2})
$$

solution

$$
\left\{\begin{array}{l}
\vec{r}(t)=\langle\cos (t), \sin (t)\rangle \\
\text { at } t=\pi / 4 \\
\vec{r}, \vec{r}(\pi / 4)=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
\end{array}\right.
$$

The tangent vector is

$$
\vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle
$$

Note $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$. So the tangent vector is perpendicular to the radial vector as we know from bask school geometry
The required tangent is $\vec{r}^{\prime}\left(\frac{\pi}{4}\right)=\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$

