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Fractals; self-similarity



Introduction: chaos



Introduction: dynamics
Fractals and chaos are part of dynamics, i.e. the subject 
that deals with systems evolving in time  

A dynamic system may:
1) Reach a steady state (equilibrium)
2) Reach a periodic orbit (limit cycle)
3) Do otherwise (e.g. follow chaotic orbits)

Dynamic systems occur in a wide variety of fields:
1) Classical mechanics
2) Chemical kinetics
3) Population biology
4) Etc.



History of Dynamics
Birth (mid-1600s): Newton invented 
differential calculus and discovered laws  
of motion.
He solved two-body problem: motion of
the earth around the sun and the
inverse-square law of gravitational
attraction.
Subsequent generations failed in the 
attempt to extend Newton’s analytical 
methods to three bodies. Three-body 
motion is analytically unsolvable, no 
explicit formulas can be found!



History of Dynamics
Breakthrough by Poincaré (late 1800s): 
development of geometric approach to  
analyze qualitative questions of e.g. 
stability. This approach has evolved into 
the modern science of dynamics. 
Poincaré was the first to conceive the 
idea of chaos, where a deterministic 
system exhibits aperiodic behaviour that 
sensitively depends on the initial 
conditions.



History of Dynamics
First half of the 20th
century: nonlinear
oscillators.
Applications in radio, radar,
phase-locked loops, laser …

New mathematical
techniques and extension of
Poincare’s geometric
methods in classical
mechanics (Kolmogorov).



History of Dynamics

Birth of chaos: Lorenz, 1963
Studies of a simplified model of
convection rolls in the
atmosphere for weather forecast
è Discovery of chaotic motion
on a strange attractor (Lorenz
attractor).
Dependence on initial conditions: the distance of two
particles starting from slightly different points grows
exponentially in time!
Lorenz attractor is “an infinite complex of surfaces”:
fractal.

“High-speed” computers in the 50’s
allowed for solving dynamic equations
numerically è



History of Dynamics
1970s: the golden age of chaos

1971: new theory of turbulence by Ruelle and Takens using
strange attractors

1976: May introduces the logistic map

1978: Feigenbaum discovers universality in one-
dimensional maps; different systems may go chaotic in the
same way→ link between chaos and critical phenomena
1980s: experimental verification of chaotic behavior on
fluids, chemical reactions, electronic circuits, mechanical
oscillators, semiconductors (Gollub, Libchaber, Swinney,
Linsay, Moon, Westervelt)



History of Dynamics



Dynamics
Two types:
1) Differential equations: evolution in continuous time
2) Iterated maps (difference equations): evolution in

discrete time; iterated maps are useful in chaotic
dynamics

m
d2x

dt2
+ b

dx

dt
+ kx = 0

An example of a differential equation: damped harmonic
oscillator

Ordinary equation: one independent variable (time t)



Dynamics

where (in physics) u is the temparature and κ is the
diffusivity. This is a partial differential equation: two
independent variables (space x, time t).

Another example: heat equation

Our concern is purely temporal behaviour: exclusively
ordinary differential equations.

@u

@t
= 

@2u

@x2
,



Dynamics
General framework for ordinary differential equations:

ẋ1 = f1(x1, . . . , xn)
.
.
.
.

ẋn = fn(x1, . . . , xn)

✓
ẋi =

dxi

dt

◆

x1, …, xn might represent concentrations of chemicals,
populations of different species, or the positions and
velocities of the planets. (Or: signals on different EEG/MEG
sensors.)



Dynamics
High-order differential equations can be rewritten as a
system of first-order equations.

Example: damped harmonic oscillator

m
d2x

dt2
+ b

dx

dt
+ kx = 0

Trick: x1 = x; x2 = ẋ1

ẋ2 = ẍ = � b
m ẋ� k

mx
= � b

mx2 � k
mx1



Dynamics
ẋ2 = ẍ = � b

m ẋ� k
mx

= � b
mx2 � k

mx1

ẋ1 = x2

ẋ2 = � b
mx2 � k

mx1

The system is linear, there are only first powers of the
variables!



Dynamics

x = angle of pendulum from vertical

g = acceleration due to gravity

L = length of the pendulum

Equivalent nonlinear first-order system:

ẋ1 = x2

ẋ2 = � g
L sinx1

Example of a nonlinear equation: swinging pendulum!

ẍ+
g

L
sinx = 0



Dynamics
ẋ1 = x2

ẋ2 = � g
L sinx1

Analytical solution is very difficult due to the nonlinear
term (sin x).
(Standard) trick: Linearisation for small-angle oscillations
→ sinx ⇠ x for x ⌧ 1
Problem with linearisation: no way to know what happens
when the pendulum swirls over the top

Scope of the course: to understand the features of evolution
using geometric methods, without explicitly solving the
equation of motion



Dynamics
Phase space: set
spanned by all possible
trajectories of a system

Trajectory: evolution of
position(s) and
velocity(ies)

Example: for one-
dimensional motion
phase space is two-
dimensional

A system whose phase space is
n-dimensional = an nth-order
system.



Dynamics
Phase space is
completely filled with
trajectories as each point
can be used as initial
condition for the motion

Our goal: given the
system, draw the
trajectories without
solving the equations!
(geometric reasoning)



Dynamics
Can we handle equations with explicit time-dependence
(nonautonomous equations)?
Example: forced harmonic oscillator

mẍ+ bẋ+ kx = F cos t

In addition to and , introduce

ẋ1 = x2

ẋ2 = 1
m (�kx1 � bx2 + F cosx3)

ẋ3 = 1
Three-dimensional system with the explicit time dependence
removed.→ View frozen trajectories in 3-D phase space.

x2 = ẋx1 = x x3 = t



Dynamics
Rule: a time-dependent n-th order equation can be turned
into an (n+1)-dimensional system without explicit time
dependence.

‘Physical’ reason: For the motion to fully unfold, that is, to
predict a future state from the present, we need three
numbers: position, velocity, and time. Hence the 3-
dimensional phase space.

This leads to nontraditional terminology. The forced 
harmonic oscillator, normally regarded as a second-order 
linear equation, will be in our vocabulary a third-order 
nonlinear (because of the cosine term) system.



Dynamics
Question: why are nonlinear systems so hard to solve?

Answer: linear systems can be decomposed in parts,
which can be solved separately and then recombined to
get the answer. Nonlinear systems cannot be decomposed.

Linear systems are the sum of their parts, nonlinear
systems are not!

Nonlinearity is everywhere: weather, fluid dynamics,
population and social dynamics, economics and finance,
neurons and brain, lasers, Josephson junctions, etc.



Dynamics



One-Dimensional Flows



Flows on the line
One-dimensional (first-order) systems

ẋ = f(x)

x(t) real-valued function of time

f(x) smooth real-valued function of x, not explicitly
depending on time. In case there were an explicit time
dependence it would be regarded as a two-
dimensional system



One-dimensional systems
ẋ = sinxExample:

dt =
dx

sinx
Exact solution:

t� t0 =

Z x

x0

1

sinx0 dx
0 [x(t0) = x0]

t� t0 = ln

����
cscx0 + cotx0

cscx+ cotx

����

Exact solution not transparent: what happens when t→ ∞ ?



Geometric approach: 
vector fields

Interpret a differential equation as a vector field: how the
velocity of the particle depends on its position
(mechanical analogs are used – “velocities” are just rates
of change). ẋ = sinx

ẋ < 0 ! particle/flow moves to the left

ẋ > 0 ! particle/flow moves to the right



Fixed points

Two types of FPs:
1) Stable fixed points (attractors, sinks): flow converges

towards them
2) Unstable fixed points (repellers, sources): flow goes

away from them

At points                 there is no flow: fixed points.ẋ = 0



Fixed points

Example: initial condition x0 =
⇡

4
Solution: particle starting at x = π/4 moves to the right with
increasing velocity, then slows down after x = π/2 until it
reaches asymptotically the stable fixed point x = π.



Fixed points



Fixed points

If the particle starts at a point where

ẋ = 0

it will stay there forever



Fixed points & stability

General procedure:
1) Draw the graph of f(x)
2) Identify fixed points

(intersections with x-
axis)

3) Classify fixed points

ẋ = f(x)

Fixed points x* are equilibrium solutions:
1) Stable equilibrium: the effect of small perturbations

vanishes in time
2) Unstable equilibrium: the effect of small perturbations

grow in time

Imaginary particle, phase point, is carried by the flow along the trajectory x(t).
The diagram is called a phase portrait. 



Example I
ẋ = x2 � 1

Fixed points:

f(x⇤) = 0 ! x⇤2 � 1 = 0 ! x⇤ = ±1

Note: Stability of a FP 
is determined by small
perturbations → here 
FPs are stable or 
unstable locally – not 
globally.



Example II: electric circuit
Q(t) = charge of capacitor at time t

R = resistance

C = capacity

I = current flowing through the
resistor

Circuit equation: total voltage drop of system must be zero

�V0 +RI +
Q

C
= 0



Example II: electric circuit
I = Q̇ ! �V0 +RQ̇+

Q

C
= 0

Q̇ = f(Q) =
V0

R
� Q

RC

Fixed points:

f(Q⇤) = 0 ! V0

R
� Q⇤

RC
= 0

Q⇤ = CV0

The fixed point is globally stable, i.e. it is approached by all
initial conditions; in other words, even large
perturbations/disturbances decay.



Example II: electric circuit
For the initial condition at the origin:



Example III
ẋ = x� cosx

Fixed points:

f(x⇤) = 0 ! x⇤ = cosx⇤

⇢
y = x
y = cosx

Solution: either plot x –
cos x directly or
separately plot

Only one fixed point!



Example III
ẋ = x� cosx

To the right of x*, x > cos x
→ x – cos x > 0 : velocity is
positive.

To the left of x*, x < cos x
→ x – cos x < 0 : velocity is
negative.

The fixed point x* = cos x* is unstable!



Example IV: population 
growth

Simplest model:
Ṅ = rN

N(t) = N0 e
rt

Consequence: exponential growth

Exponential growth cannot last forever.



Example IV: population 
growth

Hypothesis: per capita growth rate Ṅ/N

decreases with N until, for N > K, it be-

comes negative

Simple hypothesis: linear decrease

→ logistic equation.



Example IV: population 
growth

Ṅ = rN

✓
1� N

K

◆
Logistic equation (Verhulst, 1838)

Analytically solvable. Here we use geometric approach.

Fixed points:

N⇤
✓
1� N⇤

K

◆
= 0 ! N⇤

1 = 0, N⇤
2 = K



Example IV: population 
growth

Logistic equation (Verhulst, 1838)

Ṅ = rN

✓
1� N

K

◆

N⇤
1 = 0 is unstable

N⇤
2 = K is stable



Example IV: population 
growth

For N0 ~ 0 there is a rapid
growth until the growth rate
peaks (N = K/2), then the
population grows slower
and slower until it reaches
the stationary value K
(carrying capacity).

For N0 > K the growth rate is
negative and the population
decreases until it reaches K.



Linear stability analysis
Let 𝑥∗ be a fixed point and 𝜂(𝑡) = 𝑥(𝑡) − 𝑥∗ a small
perturbation away from the fixed point.

Question: How does the perturbation grow or decay with
time?

⌘̇ =
d

dt
(x� x⇤) = ẋ = f(x) = f(x⇤ + ⌘)

0 (fixed point)

⌘̇ = f(x⇤ + ⌘) = ⌘f
0(x⇤) +O(⌘2)

f(x⇤ + ⌘) = f(x⇤) + ⌘f
0(x⇤) +O(⌘2)

Taylor’s expansion:



Linear stability analysis
If f 0(x⇤) 6= 0 ! ⌘̇ ⇠ ⌘f 0(x⇤) Linearisation about x*

if f 0(x⇤) > 0 the perturbation grows exponentially in time

if f 0(x⇤) < 0 the perturbation decays exponentially in time

if f 0(x⇤) = 0 O(⌘2) terms are non-negligible: nonlinear analysis

is needed

Key point: the slope of 𝑓(𝑥) at a fixed point determines the
stability of the fixed point:
1) If the slope is positive, the fixed point is unstable
2) If the slope is negative, the fixed point is stable
1/|𝑓 ’(𝑥∗)| is a characteristic time scale:
it determines the time required for 𝑥(𝑡) to vary significantly
near 𝑥∗; 𝜂 = 𝜂0 exp(𝑡/𝜏).



Example I
ẋ = sinx

Fixed points:

f(x⇤) = 0 ! sinx⇤ = 0 ! x⇤ = h⇡, h = 0,±1,±2, ...

f 0(x⇤) = cosh⇡ =

⇢
1 for h even
�1 for h odd

x* is unstable if h is even, stable if h is odd



Example II
Ṅ = rN(1� N

K
)

Fixed points:

f(N⇤) = 0 ! rN⇤(1�N⇤/K) = 0 ! N⇤
1 = 0, N⇤

2 = K

f 0(N⇤) = r � 2rN⇤

K

f 0(N⇤
2 ) = �r < 0 ! stable

f 0(N⇤
1 ) = r > 0 ! unstable

1/|f 0(x)| = 1/r
Characteristic time scale for both 
𝑁 < 𝐾 and 𝑁 > 𝐾:

For logistic equation



Example III

Fixed points: 𝑥∗ = 0 in (a), (b), (c); the whole x-axis for (d)

Examples:

(a) ẋ = �x3 (b) ẋ = x3 (c) ẋ = x2 (d) ẋ = 0

When 𝑓’(𝑥∗) = 0, dynamics cannot be linearized even close to 𝑥∗.
The stability of a fixed point 𝑓’(𝑥∗) = 0 depends on 𝑓(𝑥).



Example III
(a) ẋ = �x3 (b) ẋ = x3 (c) ẋ = x2 (d) ẋ = 0

Stable Unstable

Half-Stable

Line of fixed
points:
Perturbations
neither grow
nor decay.



Existence and uniqueness
Are we sure that ẋ = f(x) always has a solution and,

in that case, that it is unique?

Example:
ẋ = x1/3, for x0 = 0

Trivial solution:
x(t) = 0 8t

Other solution: (imposing initial condition x(0) = 0)

4
&!'(

&
𝑥′ )*/,𝑑𝑥- = 4

.!'(

.
𝑑𝑡- ⇔

3
2𝑥

//, = 𝑡 ⟺ 𝑥 𝑡 =
2
3 𝑡

,//



Existence and uniqueness
ẋ = x1/3, for x0 = 0

There are actually infinitely many solutions along

𝑥 𝑡 = /
, 𝑡

,//
.

Without uniqueness, geometric approach fails.

Where does non-uniqueness come from?



Existence and uniqueness
ẋ = x1/3, for x0 = 0

Fixed points

x⇤ = 0 ! f 0(x⇤) =
1

3
x⇤�2/3 = 1

Fixed point has vertical slope, so
it is extremely unstable!



Existence & uniqueness

ẋ = x1/3, for x0 = 0

In fact, there are infinitely many solutions to

𝑥 𝑡 = /
, 𝑡

,//
is a solution.

We can construct solutions such as 𝑥 𝑡 = /
, 𝑡 − 𝑡(

⁄" #
.

Now x(t) = 0 is the only solution for 𝑡 < 𝑡0 . For 𝑡 > 𝑡0 ,  

𝑥 moves away from 0 following 𝑥 𝑡 = /
, 𝑡 − 𝑡(

⁄" #

𝑡0 is arbitrary, so there are infinitely many solutions.



Existence and uniqueness
Existence and Uniqueness Theorem

Consider the initial value problem:

ẋ = f(x), x(0) = x0

Suppose that 𝑓(𝑥) and 𝑓’(𝑥) are continuous on an open interval R
of the x-axis and that x0 is a point in R. Then the initial value
problem has a solution x(t) on some time interval (-τ, τ) about
𝑡 = 0, and the solution is unique.

For the layman: If 𝑓(𝑥) is smooth, solutions exist and are
unique.



Existence and uniqueness
Solutions do not necessarily exist forever! The theorem
guarantees a solution only in a time interval around t = 0.
Example:

ẋ = 1 + x2, x(0) = x0

𝑓(𝑥) = 1 + 𝑥2 is continuous and has continuous
derivative for all x → there is a unique solution for any
initial condition x(0).

x(0) = 0 !
Z x

x(0)=0

dx0

1 + x02 =

Z t

t=0
dt0 ! tan�1 x = t ! x(t) = tan t

However, the solution exists only for –π/2 < t < π/2, outside
this interval there is no solution, since x(t) ! ±1 as t ! ±⇡/2.

Blow-up: solutions reach infinity in finite time.



Impossibility of oscillations
In a vector field on the real line particles either approach
a fixed point or diverge to ± ∞. The trajectories are forced
to increase or decrease monotonically: In a first-order
system there can be no oscillations!

In other words, no periodic solutions for
(Flow on the line. Vector field on a circle is different.) 

ẋ = f(x).



Impossibility of oscillations
Mechanical analog: overdamped systems. If in Newton’s
equation damping dominates over inertia,

mẍ+ bẋ = F (x) ) bẋ ⇡ F (x).

Strong viscous damping.



Potentials

If 𝑓(𝑥) is well behaved (e.g. continuous), it is integrable, so
one can introduce the potential 𝑉(𝑥) of “the force” 𝑓(𝑥)

f(x) = �dV

dx

ẋ = f(x)

dV

dt
=

dV

dx

dx

dt
= �

✓
dV

dx

◆2

 0

Conclusion: 𝑉(𝑡) decreases along trajectories → the
particle always moves towards lower potential.



Potentials
dV

dt
=

dV

dx

dx

dt
= �

✓
dV

dx

◆2

 0

dV

dt
= 0 ! dV

dx
= 0 ! f(x) = 0

The potential stays constant in time only at equilibrium
(fixed) points, which correspond to extrema of V

Minimum of V ! d2V

dx2
> 0 ! f 0(x) < 0 ! stable fixed point

Maximum of V ! d2V

dx2
< 0 ! f 0(x) > 0 ! unstable fixed point

f(x) = �dV

dx



Potentials: Example I
ẋ = �x

�dV

dx
= �x ! V (x) =

1

2
x2 + C (C is arbitrary)

C = 0

Fixed point at x = 0, stable
(minimum of V)



Potentials: Example II

C = 0

ẋ = x� x3

�dV

dx
= x� x3 ! V (x) = �x2

2
+

x4

4
+ C (C is arbitrary)

Stable fixed points at x = ±1,
(minima of V)

Unstable fixed point at x = 0,
(maximum of V)

This system is bistable.



Solving equations on the 
computer

Euler’s method

Numerical integration

ẋ = f(x), x(t0) = x0

x(t0 +�t) ⇠ x1 = x0 + f(x0)�t

Idea: in a small time interval Δ𝑡 after time 𝑡0 the velocity
of the particle/system is approximately the same as at 𝑡0

xn+1 = xn + f(xn)�t



Solving equations on the 
computer

Euler’s method

Problem: the method gets
bad quickly, unless Δt is
really small (but then it
takes a long time to
create the trajectory).

E = |x(tn)� xn|
Error (for a given stepsize):

For Euler’s method: E / �t



Solving equations on the 
computer

Improved Euler’s method

Weakness of Euler’s method: velocity is taken at the
beginning of the interval [𝑡𝑛, 𝑡𝑛 + Δ𝑡]

x̃n+1 = xn + f(xn)�t (trial step)

For Improved Euler’s method: E / (�t)2

xn+1 = xn +
1

2
[f(xn) + f(x̃n+1)]�t (real step)



Solving equations on the 
computer

Runge-Kutta method

Tradeoff: high-order methods are more precise but
require additional computations

k1 = f(xn)�t
k2 = f(xn + 1

2k1)�t
k3 = f(xn + 1

2k2)�t
k4 = f(xn + k3)�t

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4)

For Runge-Kutta method: E / (�t)4



Solving equations on the 
computer

There are several ways for numerically solving the 
relevant differential equations. It’s all about numerical 
integration in time. 
1. You can write your own algorithm. See numerical 

integration methods e.g. in Press, et al: Numerical 
Recipes, lecture notes in the Computational 
Science course (MyCourses).

2. Use numerical methods packages like Matlab, 
Mathematica, or Maple.

3. Use softwares specifically designed for solving and 
visualising systems of nonlinear dynamics: Pplane
and XXP.

4. Write your own algorithm using high-level library 
functions. This you will be doing some in Python.

Visualisation: Mathematica, Matlab, Maple, Python, …



Solving equations on the 
computer

Now, take a look at the 
instructions and the example 
Jupyter notebook under Materials.

The numerical exercises are to be 
returned as Jupyter notebooks.

Next time: Bifurcations.

Exercise 2.8.1 in Strogatz:
Solve system 𝑥̇ = 𝑥(1 − 𝑥)
numerically; slope field an 
numerically integrated 𝑥(𝑡)
starting from different 𝑥(0).


