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Overview

Last time:
@ Monomials and polynomials

@ Polynomials as functions - link between algebra and
geometry

@ Affine varieties
@ Rational parametric description and implicit representation
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Overview

Last time:
@ Monomials and polynomials

@ Polynomials as functions - link between algebra and
geometry

@ Affine varieties
@ Rational parametric description and implicit representation
Today:

@ Ideals

o |deal generated by fi,...,fs € K[x1, ..., Xp]
e Finitely generated ideal
e Vanishing ideal of an affine variety

@ Polynomials in one variable

e Division algorithm

e A degree m polynomial has at most m roots

e Greatest common divisor

e Every ideal in k[x] can be generated by one polynomial
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|deals
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ldeals

A subset | C k[xq,...,Xp] is an ideal if it satisfies:
Q@0cl

Q Ilff,g el thenf+gel

Q I[ffeland he k[xq,...,xn], then hf € |.

Kaie Kubjas Geometry, Algebra and Algorithms



ldeals

A subset | C k[xq,...,Xp] is an ideal if it satisfies:
Q@0cl

Q Ilff,g el thenf+gel

Q I[ffeland he k[xq,...,xn], then hf € |.

@ the goal today is to introduce some naturally occuring
ideals and to see how ideals relate to affine varieties
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ldeals

A subset | C k[xq,...,Xp] is an ideal if it satisfies:
Q@0cl
Q Ilff,g el thenf+gel

Q I[ffeland he k[xq,...,xn], then hf € |.

@ the goal today is to introduce some naturally occuring
ideals and to see how ideals relate to affine varieties

@ the real importance of ideals is that they will give us a
language for computing with affine varieties
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ldeals

Let fi, ..., fs be polynomials in k[x1, ..., Xs]. Then we set

(fr, ..., f {th h1,...,hsek[x1,...,xn]}.
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ldeals

Let fi, ..., fs be polynomials in k[x1, ..., Xs]. Then we set

(fr, ..., f {th h1,...,hsek[x1,...,xn]}.

Iftfy,....fs € K[Xy,...,Xn], then {fy,..., fs) is an ideal of
K[x1,...,xn|. We will call {f;,...,fs) the ideal generated by
f‘| g e ooy fs.
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Interpretation in terms of polynomial equations

Given fy,..., fs € K[x1, ..., Xn], we get the system of equations
f1 — 07
fs — O
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Interpretation in terms of polynomial equations

Given fy,..., fs € K[x1, ..., Xn], we get the system of equations

f1 :Oa

fS:O.

If we multiply the first equation by hy € k[xq, ..., xn], the second
by ho € k[xq, ..., xp] etc and then add the resulting equations,
we get

hifi + hofo + --- + hsfs = 0.
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Interpretation in terms of polynomial equations

Given fy,..., fs € K[x1, ..., Xn], we get the system of equations

f1 :Oa

fS:O.

If we multiply the first equation by hy € k[xq, ..., xn], the second
by ho € k[xq, ..., xp] etc and then add the resulting equations,
we get

hifi + hofo + --- + hsfs = 0.

@ The left-hand side is an element of the ideal (f;,...,fs).
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Interpretation in terms of polynomial equations

Given fy,..., fs € K[x1, ..., Xn], we get the system of equations

f1 :Oa

fS:O.

If we multiply the first equation by hy € k[xq, ..., xn], the second
by ho € k[xq, ..., xp] etc and then add the resulting equations,
we get

hifi + hofo + --- + hsfs = 0.

@ The left-hand side is an element of the ideal (f;,...,fs).
@ We can think of (fy,...,fs) as consisting of all “polynomial
consequences” of the equations fi = h =... =, = 0.
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ldeals example

Consider the example

x=1+1t
y:1+ﬁ.
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|ldeals example

Consider the example

x=1+1t
y=1+1t.

In the previous lecture we learned that eliminating t gives

y =x°—2x+2.
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ldeals example

Consider the example

x=1+1t
y:1+ﬁ.

In the previous lecture we learned that eliminating t gives
y=x%-2x+2.
In fact x> — 2x +2 — yisintheideal (x —1 —t,y — 1 — t?):

(X—1-1D(x—-1+)+(-NDNy—-1—-1])=x>—2x+2—y
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ldeals

We say that an ideal / is finitely generated if there exist
fi,....Ts € K[Xq,...,xp] such that I = (fy, ..., fs), and we say
that fq, ..., fs forms a basis of /. )
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ldeals

We say that an ideal / is finitely generated if there exist
fi,....Ts € K[Xq,...,xp] such that I = (fy, ..., fs), and we say
that fq, ..., fs forms a basis of /. )
@ We will learn that every ideal of k[x1, ..., Xp] is finitely
generated.
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ldeals

We say that an ideal / is finitely generated if there exist
fi,....Ts € K[Xq,...,xp] such that I = (fy, ..., fs), and we say
that fq, ..., fs forms a basis of /. )
@ We will learn that every ideal of k[x1, ..., Xp] is finitely
generated.

@ A given ideal may have many different bases.
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ldeals

We say that an ideal / is finitely generated if there exist
fi,....Ts € K[Xq,...,xp] such that I = (fy, ..., fs), and we say
that fq, ..., fs forms a basis of /. )
@ We will learn that every ideal of k[x1, ..., Xp] is finitely
generated.

@ A given ideal may have many different bases.
@ An especially useful type of basis is Groebner basis.
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Analogy with linear algebra

@ the definition of an ideal is similar to the definition of a
subspace
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Analogy with linear algebra

@ the definition of an ideal is similar to the definition of a
subspace

@ both have to be closed under addition and multiplication
(for a subspace multiply with scalars whereas for an ideal
we multiply by polynomials)
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Analogy with linear algebra

@ the definition of an ideal is similar to the definition of a
subspace

@ both have to be closed under addition and multiplication
(for a subspace multiply with scalars whereas for an ideal
we multiply by polynomials)

@ the ideal generated by polynomials fi, ..., fs is similar to
the span of a finite number of vectors vy, ..., vq
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Analogy with linear algebra

@ the definition of an ideal is similar to the definition of a
subspace

@ both have to be closed under addition and multiplication
(for a subspace multiply with scalars whereas for an ideal
we multiply by polynomials)

@ the ideal generated by polynomials fi, ..., fs is similar to
the span of a finite number of vectors vy, ..., vq

@ in both cases one takes linear combinations, using field
coefficients for the subspace and polynomial coefficients
for the ideal
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ldeals

Iffy,...,fsand g4, ..., g: are bases of the same ideal in
K[x1,...,Xpn|, so that (f;,...,fs) = (91,...,Q9:), then we have
V(f~|,...,fs)ZV(g1,...,gt). J
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Ideals

Iffy,...,fsand g4, ..., g: are bases of the same ideal in
K[x1,...,Xpn|, so that (f;,...,fs) = (91,...,Q9:), then we have
V(f~|,...,fs)ZV(Q1,...,gt).

@ consider the variety V(2x? +3y? — 11, x% — y? — 3)
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Ideals

Iffy,...,fsand g4, ..., g: are bases of the same ideal in
K[x1,...,Xpn|, so that (f;,...,fs) = (91,...,Q9:), then we have
V(f~|,...,fs)ZV(g1,...,gt).

@ consider the variety V(2x? +3y? — 11, x% — y? — 3)
® 2x2+3y2 —11,x2 —y2 —3) = (x2 —4,y2 1)
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Ideals

Iffy,...,fsand g4, ..., g: are bases of the same ideal in
K[x1,...,Xpn|, so that (f;,...,fs) = (91,...,Q9:), then we have
V(f~|,...,fs)ZV(g1,...,gt).

@ consider the variety V(2x? +3y? — 11, x% — y? — 3)
® 2x2+3y2 —11,x2 —y2 —3) = (x2 —4,y2 1)

@ hence V(2x? +3y? — 11, x% — y? — 3) =
V(X2 —4,y% —1) = {(£2,+1)}
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The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.
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The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.

If V C k" is an affine variety, then I(V) C k[X1,...,Xn] IS an
ideal. We call I(V) the (vanishing) ideal of V.
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The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.

If V C k" is an affine variety, then I(V) C k[X1,...,Xn] IS an
ideal. We call I(V) the (vanishing) ideal of V.

Quiz: Find /({0,0}) and /(k") when k is infinite.
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The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.

If V C k" is an affine variety, then I(V) C k[X1,...,Xn] IS an
ideal. We call I(V) the (vanishing) ideal of V.

Quiz: Find /({0,0}) and /(k") when k is infinite.
® /({0,0}) = (x,y)
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The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.

If V C k" is an affine variety, then I(V) C k[X1,...,Xn] IS an
ideal. We call I(V) the (vanishing) ideal of V.

Quiz: Find /({0,0}) and /(k") when k is infinite.

® I({0,0}) = (x,y)
@ /(k") = {0} when k is infinite

Kaie Kubjas Geometry, Algebra and Algorithms



The ideal of an affine variety

Let V C k" be an affine variety. Then we set

I(V)=A{fek[x,...,xn] : f(a1,...,an) =0forall (a,...,a,) € V}.

If V C k" is an affine variety, then I(V) C k[X1,...,Xn] IS an
ideal. We call I(V) the (vanishing) ideal of V.

Quiz: Find /({0,0}) and /(k") when k is infinite.

® /({0,0}) = (x,y)
@ /(k™) = {0} when K is infinite
o V=Vy—-—x3z—x3=I(V)=(y —x%,z— x3)
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The ideal of an affine variety

polynomials fi, ..., fs — variety V(f;,...,fs) — ideal (V(fi,...,fs))
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The ideal of an affine variety

polynomials fi, ..., fs — variety V(f;,...,fs) — ideal (V(fi,...,fs))
¢ I(V(f'lava)) — <f1a'°'7f3>?
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The ideal of an affine variety

polynomials fi, ..., fs — variety V(f;,...,fs) — ideal (V(fi,...,fs))
¢ I(V(f'lava)) — <f1a'°'7f3>?
@ the answer is not always yes
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The ideal of an affine variety

polynomials fi, ..., fs — variety V(f;,...,fs) — ideal (V(fi,...,fs))
¢ I(V(f'laafS)) — <f17'°'7f3>?
@ the answer is not always yes

Iffy,... . fs € k[X-|,...,Xn], then <f1,...,f3> C /(V(f1,...,f3)),
although equality need not occur.
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The ideal of an affine variety

polynomials fi, ..., fs — variety V(f;,...,fs) — ideal (V(fi,...,fs))
¢ I(V(f'lava)) — <f1a"'7f3>?
@ the answer is not always yes

Iffy,... . fs € k[X-|,...,Xn], then <f1,...,f3> C /(V(f1,...,f3)),
although equality need not occur.

Let V and W be affine varieties in k". Then
Q@ Vc Wifandonlyifl(V) D> I(W)
Q@ V=Wifandonlyif (V)= I(W)
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Polynomials in one variable
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Polynomials in one variable

Given a nonzero polynomial f € k[x], let
f=apx™+a;x™ ' +... +an,

where a; € k and gy # 0. Then we say that ayx™ is the leading
term of f, written LT (f) = apx™.
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Polynomials in one variable

Given a nonzero polynomial f € k[x], let
f=apx™+a;x™ ' +... +an,

where a; € k and gy # 0. Then we say that ayx™ is the leading
term of f, written LT (f) = apx™.

v

What is the leading term of f = 2x3 — 4x + 37 \

Kaie Kubjas Geometry, Algebra and Algorithms




Division algorithm

Let g be a nonzero polynomial in k[x]|. Then every f € k[x] can
be written as

f=aqg+r,

where q, r € k[x], and either r = 0 or deg(r) < deg(g).
Furthermore, q and r are unique, and there is an algorithm for
finding g and r.
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Division algorithm

Let g be a nonzero polynomial in k[x]|. Then every f € k[x] can
be written as
f=qg+r,

where q, r € k[x], and either r = 0 or deg(r) < deg(g).
Furthermore, q and r are unique, and there is an algorithm for

finding g and r.
Input: g, f
QOutput: g, r
q=0,r=f

WHILE r £ 0 AND LT (g) divides LT(r) DO
q:=q+ LT(r)/LT(g)
r.=r—(LT(r)/LT(g))g ]

.
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Division algorithm

If k is a field and f € k|[x] is a nonzero polynomial, then f has at
most deg(f) roots in k.
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Division algorithm

Corollary

If k is a field, then every ideal of k[x] can be written in the form
(f) for some f € k[x|. Furthermore, f is unique up to
multiplication by a nonzero constant in k.
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Division algorithm

Corollary

If k is a field, then every ideal of k[x] can be written in the form
(f) for some f € k[x|. Furthermore, f is unique up to
multiplication by a nonzero constant in k.

@ an ideal generate by one element is called a principal
ideal

Kaie Kubjas Geometry, Algebra and Algorithms



Division algorithm

Corollary

If k is a field, then every ideal of k[x] can be written in the form
(f) for some f € k[x|. Furthermore, f is unique up to
multiplication by a nonzero constant in k.

@ an ideal generate by one element is called a principal
ideal

@ k[x] is a principal ideal domain
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Division algorithm

Corollary

If k is a field, then every ideal of k[x] can be written in the form
(f) for some f € k[x|. Furthermore, f is unique up to
multiplication by a nonzero constant in k.

@ an ideal generate by one element is called a principal
ideal

@ k[x] is a principal ideal domain
@ how do we find a generator of the ideal (x* — 1, x% — 1)?
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The greatest common divisor

A greatest common divisor of polynomials f, g € k[x] is a
polynomial h such that:

@ hdivides fand g.

@ If pis another polynomial which divides f and g, then p
divides h. When h has these properties, we write
h = GCD(f, g).
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The greatest common divisor

A greatest common divisor of polynomials f, g € k[x] is a
polynomial h such that:

@ hdivides fand g.

@ If pis another polynomial which divides f and g, then p
divides h. When h has these properties, we write
h = GCD(f, g).

Letf,g € k[x]. Then:

@ GCD(f,9) exists and is unique up to multiplication by a
nonzero constant in K.

V.
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The greatest common divisor

A greatest common divisor of polynomials f, g € k[x] is a
polynomial h such that:

@ hdivides fand g.

@ If pis another polynomial which divides f and g, then p
divides h. When h has these properties, we write
h = GCD(f, g).

Letf,g € k[x]. Then:

@ GCD(f,9) exists and is unique up to multiplication by a
nonzero constant in K.

@ GCD(f, g) is a generator of the ideal (f, g).

V.
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The greatest common divisor

A greatest common divisor of polynomials f, g € k[x] is a
polynomial h such that:

@ hdivides fand g.

@ If pis another polynomial which divides f and g, then p
divides h. When h has these properties, we write
h = GCD(f, g).

Letf,g € k[x]. Then:

@ GCD(f,9) exists and is unique up to multiplication by a
nonzero constant in K.

@ GCD(f, g) is a generator of the ideal (f, g).
© There is an algorithm for finding GCD(f, g).

V.
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The greatest common divisor

Compute the GCD of x* — 1 and x® — 1. \
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The greatest common divisor

Compute the GCD of x* — 1 and x® — 1. \

x*—1=0(x%-1)+x*—1,

X —1=x2(x*—1)+x% -1,

x* 1=+ 1)(x*—-1)+0
=GCD(x* —1,x% —1) =x* -1
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The greatest common divisor

A greatest common divisor of polynomials fi,..., fs € k[x] is
a polynomial h such that:

@ hdivides fi, ..., fs.
@ If pis another polynomial which divides fi, ..., fs, then p

divides h. When h has these properties, we write
h= GCD(fy,...,fs).
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The greatest common divisor

A greatest common divisor of polynomials fi,..., fs € k[x] is
a polynomial h such that:

@ hdivides fi, ..., fs.
@ If pis another polynomial which divides fi, ..., fs, then p

divides h. When h has these properties, we write
h= GCD(fy,...,fs).

Letfq,..., fs € k[x], where s > 2. Then:

@ GCD(fq,...,fs) exists and is unique up to multiplication by
a nonzero constant in k.
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The greatest common divisor

A greatest common divisor of polynomials fi,..., fs € k[x] is
a polynomial h such that:

@ hdivides fi, ..., fs.
@ If pis another polynomial which divides fi, ..., fs, then p

divides h. When h has these properties, we write
h= GCD(fy,...,fs).

Letfq,..., fs € k[x], where s > 2. Then:

@ GCD(fq,...,fs) exists and is unique up to multiplication by
a nonzero constant in k.

@ GCD(fy,...,fs) is a generator of the ideal {fy, ..., fs).

V.
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The greatest common divisor

A greatest common divisor of polynomials fi,..., fs € k[x] is
a polynomial h such that:

@ hdivides fi, ..., fs.
@ If pis another polynomial which divides fi, ..., fs, then p

divides h. When h has these properties, we write
h= GCD(fy,...,fs).

Letfq,..., fs € k[x], where s > 2. Then:

@ GCD(fq,...,fs) exists and is unique up to multiplication by
a nonzero constant in k.

@ GCD(fy,...,fs) is a generator of the ideal {fy, ..., fs).
© I/fs> 3, then GCD(fy,...,fs) = GCD(f;, GCD(fy, ..., f5)).

V.
Kaie Kubjas Geometry, Algebra and Algorithms



The greatest common divisor

A greatest common divisor of polynomials fi,..., fs € k[x] is
a polynomial h such that:

@ hdivides fi, ..., fs.
@ If pis another polynomial which divides fi, ..., fs, then p

divides h. When h has these properties, we write
h= GCD(fy,...,fs).

Letfq,..., fs € k[x], where s > 2. Then:

@ GCD(fq,...,fs) exists and is unique up to multiplication by
a nonzero constant in k.

@ GCD(fy,...,fs) is a generator of the ideal {fy, ..., fs).
© I/fs> 3, then GCD(fy,...,fs) = GCD(f;, GCD(fy, ..., f5)).
© There is an algorithm for finding GCD(fi, .. ., fs).




The greatest common divisor

Compute the GCD of x® —3x +2,x* — 1 and x® — 1. \
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The greatest common divisor

Compute the GCD of x® —3x +2,x* — 1 and x® — 1. \

GCD(x® — 3x +2,x* —1,x® — 1)
—GCD(x® — 3x + 2, GCD(x* — 1,x% — 1))
—GCD(x® —3x+2,x* —1) = x — 1

It follows that

P —=3x+2,x*—1,x5—1) = (x—1)
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?

@ Using GCDs find a generator h of (fy,...,f).
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?
@ Using GCDs find a generator h of (fy,...,f).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (fy,...,f5)?

@ Using GCDs find a generator h of (f;,...,fs).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).

@ The polynomial f is in the ideal if and only if r = 0.
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (fy,...,f5)?

@ Using GCDs find a generator h of (f;,...,fs).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).

@ The polynomial f is in the ideal if and only if r = 0.

@ X3 +4x%2 +3x—-7¢c(x3—-3x+2,x*—1,x5-1)?
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?

@ Using GCDs find a generator h of (fy,...,f).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).
@ The polynomial f is in the ideal if and only if r = 0.

@ X3 +4x%2 +3x—-7¢c(x3—-3x+2,x*—1,x5-1)?
@ X3 +4x2 +3x—-7¢c({x—1)?
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?

@ Using GCDs find a generator h of (fy,...,f).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).
@ The polynomial f is in the ideal if and only if r = 0.

@ X3 +4x%2 +3x—-7¢c(x3—-3x+2,x*—1,x5-1)?
@ X3 +4x2 +3x—-7¢c({x—1)?
@ x> +4x2 4+ 3x —7 = (X2 +5x+8)(x —1) +1
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ldeal membership problem

@ |s there an algorithm for deciding whether a given
polynomial f € k[x] lies in the ideal (f;,...,fs)?

@ Using GCDs find a generator h of (fy,...,f).

@ Use the division algorithm to write f = gh + r where
deg(r) < deg(h).
@ The polynomial f is in the ideal if and only if r = 0.

@ x3+4x2+3x—-7¢ (x> —3x+2,x*—1,x5-1)?
@ X3 +4x2 +3x—-7¢c({x—1)?

@ X3 +4x24+3x -7 = (x> +5x+8)(x —1) +1

@ x3 + 4x2 4 3x — 7 is not in the ideal

Quiz: Does x € (x3 —3x+2,x* —1,x% —1)?
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Conclusion

Today:
@ Ideals

o Ideal generated by fi,... . fs € K[xq,..., X3]
e Finitely generated ideal
e Vanishing ideal of an affine variety

@ Polynomials in one variable

@ Division algorithm

e A degree m polynomial has at most m roots

e Greatest common divisor

e Every ideal in k[x] can be generated by one polynomial

Next time:
@ GrObner bases
@ Orderings of the monomials
@ Division algorithm for polynomials in n variables
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