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Overview

Last time:
Monomials and polynomials
Polynomials as functions - link between algebra and
geometry
Affine varieties
Rational parametric description and implicit representation

Today:
Ideals

Ideal generated by f1, . . . , fs 2 k [x1, . . . , xn]
Finitely generated ideal
Vanishing ideal of an affine variety

Polynomials in one variable
Division algorithm
A degree m polynomial has at most m roots
Greatest common divisor
Every ideal in k [x ] can be generated by one polynomial
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Ideals
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Ideals

Definition
A subset I ⇢ k [x1, . . . , xn] is an ideal if it satisfies:

1 0 2 I.
2 If f , g,2 I, then f + g 2 I.
3 If f 2 I and h 2 k [x1, . . . , xn], then hf 2 I.

the goal today is to introduce some naturally occuring
ideals and to see how ideals relate to affine varieties
the real importance of ideals is that they will give us a
language for computing with affine varieties
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Ideals

Definition
Let f1, . . . , fs be polynomials in k [x1, . . . , xn]. Then we set

hf1, . . . , fsi =
( sX

i=1

hi fi : h1, . . . , hs 2 k [x1, . . . , xn]

)
.

Lemma
If f1, . . . , fs 2 k [x1, . . . , xn], then hf1, . . . , fsi is an ideal of
k [x1, . . . , xn]. We will call hf1, . . . , fsi the ideal generated by
f1, . . . , fs.
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Interpretation in terms of polynomial equations

Given f1, . . . , fs 2 k [x1, . . . , xn], we get the system of equations

f1 = 0,
...

fs = 0.

If we multiply the first equation by h1 2 k [x1, . . . , xn], the second
by h2 2 k [x1, . . . , xn] etc and then add the resulting equations,
we get

h1f1 + h2f2 + · · ·+ hsfs = 0.

The left-hand side is an element of the ideal hf1, . . . , fsi.
We can think of hf1, . . . , fsi as consisting of all “polynomial
consequences” of the equations f1 = f2 = . . . = fs = 0.
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Ideals example

Consider the example

x = 1 + t

y = 1 + t2.

In the previous lecture we learned that eliminating t gives

y = x2 � 2x + 2.

In fact x2 � 2x + 2 � y is in the ideal hx � 1 � t , y � 1 � t2i:

(x � 1 � 1t)(x � 1 + t) + (�1)(y � 1 � t2) = x2 � 2x + 2 � y
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Ideals

Definition
We say that an ideal I is finitely generated if there exist
f1, . . . , fs 2 k [x1, . . . , xn] such that I = hf1, . . . , fsi, and we say
that f1, . . . , fs forms a basis of I.

We will learn that every ideal of k [x1, . . . , xn] is finitely
generated.
A given ideal may have many different bases.
An especially useful type of basis is Groebner basis.
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Analogy with linear algebra

the definition of an ideal is similar to the definition of a
subspace

both have to be closed under addition and multiplication
(for a subspace multiply with scalars whereas for an ideal
we multiply by polynomials)
the ideal generated by polynomials f1, . . . , fs is similar to
the span of a finite number of vectors v1, . . . , vs

in both cases one takes linear combinations, using field
coefficients for the subspace and polynomial coefficients
for the ideal
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Ideals

Proposition
If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in
k [x1, . . . , xn], so that hf1, . . . , fsi = hg1, . . . , gti, then we have
V(f1, . . . , fs) = V(g1, . . . , gt).

Example

consider the variety V(2x2 + 3y2 � 11, x2 � y2 � 3)
h2x2 + 3y2 � 11, x2 � y2 � 3i = hx2 � 4, y2 � 1i
hence V(2x2 + 3y2 � 11, x2 � y2 � 3) =
V(x2 � 4, y2 � 1) = {(±2,±1)}
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The ideal of an affine variety

Definition
Let V ⇢ kn be an affine variety. Then we set

I(V ) = {f 2 k [x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . , an) 2 V}.

Lemma
If V ⇢ kn is an affine variety, then I(V ) ⇢ k [x1, . . . , xn] is an
ideal. We call I(V ) the (vanishing) ideal of V .

Quiz: Find I({0, 0}) and I(kn) when k is infinite.

I({0, 0}) = hx , yi
I(kn) = {0} when k is infinite
V = V(y � x2, z � x3) ) I(V ) = hy � x2, z � x3i
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The ideal of an affine variety

polynomials f1, . . . , fs ! variety V(f1, . . . , fs) ! ideal I(V(f1, . . . , fs))

I(V(f1, . . . , fs)) = hf1, . . . , fsi?
the answer is not always yes

Lemma
If f1, . . . , fs 2 k [x1, . . . , xn], then hf1, . . . , fsi ⇢ I(V(f1, . . . , fs)),
although equality need not occur.

Proposition
Let V and W be affine varieties in kn. Then

1 V ⇢ W if and only if I(V ) � I(W )
2 V = W if and only if I(V ) = I(W )
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Polynomials in one variable
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Polynomials in one variable

Definition
Given a nonzero polynomial f 2 k [x ], let

f = a0xm + a1xm�1 + . . .+ am,

where ai 2 k and a0 6= 0. Then we say that a0xm is the leading
term of f , written LT (f ) = a0xm.

Quiz
What is the leading term of f = 2x3 � 4x + 3?
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Division algorithm

Proposition
Let g be a nonzero polynomial in k [x ]. Then every f 2 k [x ] can
be written as

f = qg + r ,

where q, r 2 k [x ], and either r = 0 or deg(r) < deg(g).
Furthermore, q and r are unique, and there is an algorithm for
finding q and r .

Proof.
Input: g, f
Output: q, r
q := 0, r := f
WHILE r 6= 0 AND LT (g) divides LT (r) DO

q := q + LT (r)/LT (g)
r := r � (LT (r)/LT (g))g
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Division algorithm

Corollary
If k is a field and f 2 k [x ] is a nonzero polynomial, then f has at
most deg(f ) roots in k.
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Division algorithm

Corollary
If k is a field, then every ideal of k [x ] can be written in the form
hf i for some f 2 k [x ]. Furthermore, f is unique up to
multiplication by a nonzero constant in k.

an ideal generate by one element is called a principal
ideal
k [x ] is a principal ideal domain
how do we find a generator of the ideal hx4 � 1, x6 � 1i?
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The greatest common divisor

Definition
A greatest common divisor of polynomials f , g 2 k [x ] is a
polynomial h such that:

1 h divides f and g.
2 If p is another polynomial which divides f and g, then p

divides h. When h has these properties, we write
h = GCD(f , g).

Proposition
Let f , g 2 k [x ]. Then:

1 GCD(f , g) exists and is unique up to multiplication by a
nonzero constant in k.

2 GCD(f , g) is a generator of the ideal hf , gi.
3 There is an algorithm for finding GCD(f , g).
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The greatest common divisor

Quiz
Compute the GCD of x4 � 1 and x6 � 1.

Example

x4 � 1 = 0(x6 � 1) + x4 � 1,

x6 � 1 = x2(x4 � 1) + x2 � 1,

x4 � 1 = (x2 + 1)(x2 � 1) + 0

)GCD(x4 � 1, x6 � 1) = x2 � 1
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The greatest common divisor

Definition
A greatest common divisor of polynomials f1, . . . , fs 2 k [x ] is
a polynomial h such that:

1 h divides f1, . . . , fs.
2 If p is another polynomial which divides f1, . . . , fs, then p

divides h. When h has these properties, we write
h = GCD(f1, . . . , fs).

Proposition
Let f1, . . . , fs 2 k [x ], where s � 2. Then:

1 GCD(f1, . . . , fs) exists and is unique up to multiplication by
a nonzero constant in k.

2 GCD(f1, . . . , fs) is a generator of the ideal hf1, . . . , fsi.
3 If s � 3, then GCD(f1, . . . , fs) = GCD(f1,GCD(f2, . . . , fs)).
4 There is an algorithm for finding GCD(f1, . . . , fs).
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The greatest common divisor

Quiz
Compute the GCD of x3 � 3x + 2, x4 � 1 and x6 � 1.

Example

GCD(x3 � 3x + 2, x4 � 1, x6 � 1)

=GCD(x3 � 3x + 2,GCD(x4 � 1, x6 � 1))

=GCD(x3 � 3x + 2, x2 � 1) = x � 1

It follows that

hx3 � 3x + 2, x4 � 1, x6 � 1i = hx � 1i
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Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?

Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.

Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).

The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?

x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1

x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



23/23

Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f 2 k [x ] lies in the ideal hf1, . . . , fsi?
Using GCDs find a generator h of hf1, . . . , fsi.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x � 7 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?
x3 + 4x2 + 3x � 7 2 hx � 1i?
x3 + 4x2 + 3x � 7 = (x2 + 5x + 8)(x � 1) + 1
x3 + 4x2 + 3x � 7 is not in the ideal

Quiz: Does x 2 hx3 � 3x + 2, x4 � 1, x6 � 1i?

Kaie Kubjas Geometry, Algebra and Algorithms



24/23

Conclusion

Today:
Ideals

Ideal generated by f1, . . . , fs 2 k [x1, . . . , xn]
Finitely generated ideal
Vanishing ideal of an affine variety

Polynomials in one variable
Division algorithm
A degree m polynomial has at most m roots
Greatest common divisor
Every ideal in k [x ] can be generated by one polynomial

Next time:
Gröbner bases
Orderings of the monomials
Division algorithm for polynomials in n variables
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