Computational Algebraic Geometry
 Geometry, Algebra and Algorithms

Kaie Kubjas

kaie.kubjas@aalto.fi
January 13, 2021

Overview

Last time:

- Monomials and polynomials
- Polynomials as functions - link between algebra and geometry
- Affine varieties
- Rational parametric description and implicit representation

Overview

Last time:

- Monomials and polynomials
- Polynomials as functions - link between algebra and geometry
- Affine varieties
- Rational parametric description and implicit representation

Today:

- Ideals
- Ideal generated by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$
- Finitely generated ideal
- Vanishing ideal of an affine variety
- Polynomials in one variable
- Division algorithm
- A degree m polynomial has at most m roots
- Greatest common divisor
- Every ideal in $k[x]$ can be generated by one polynomial

Ideals

Ideals

Definition

A subset $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal if it satisfies:
(1) $0 \in I$.
(2) If $f, g, \in I$, then $f+g \in I$.
(3) If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h f \in I$.

Ideals

Definition

A subset $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal if it satisfies:
(1) $0 \in I$.
(2) If $f, g, \in I$, then $f+g \in I$.
(3) If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h f \in I$.

- the goal today is to introduce some naturally occuring ideals and to see how ideals relate to affine varieties

Ideals

Definition

A subset $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal if it satisfies:
(1) $0 \in I$.
(2) If $f, g, \in I$, then $f+g \in I$.
(3) If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h f \in I$.

- the goal today is to introduce some naturally occuring ideals and to see how ideals relate to affine varieties
- the real importance of ideals is that they will give us a language for computing with affine varieties

Ideals

Definition

Let f_{1}, \ldots, f_{s} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} f_{i}: h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

Ideals

Definition

Let f_{1}, \ldots, f_{s} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} f_{i}: h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

Lemma

If $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, then $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. We will call $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ the ideal generated by f_{1}, \ldots, f_{s}.

Proof: We want to show that $\left\langle f_{1,-1} f_{s}\right\rangle$ is an ideal.

1) $0 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ because

$$
0=\sum_{i=1}^{s} 0 \cdot f_{i}
$$

2) Let $g, h \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Hence

$$
\begin{aligned}
& g=\sum_{i=1}^{s} g_{i} f_{i}, \quad g_{i} \in k\left[x_{1}, \ldots x_{n}\right] \\
& h=\sum_{i=1}^{s} h_{i} f_{i}, \quad h_{i} \in k\left[x_{1}, \ldots, x_{n}\right] \\
& g+h=\sum_{i=1}^{s}\left(g_{i}+h_{i}\right) \cdot f_{i} \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
\end{aligned}
$$

3) Let $g \in\left\langle f_{1}, \ldots, f_{s}\right\rangle, h \in k\left[x_{1}, \ldots, x_{4}\right]$.

$$
h \cdot g=\sum_{i=1}^{s}\left(h \cdot g_{i}\right) \cdot f_{i} \in\left\langle f_{1}, \cdots, f_{s}\right\rangle .
$$

Thus $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is an ideal.

Interpretation in terms of polynomial equations

Given $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, we get the system of equations

$$
\begin{gathered}
f_{1}=0 \\
\vdots \\
f_{s}=0
\end{gathered}
$$

Interpretation in terms of polynomial equations

Given $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, we get the system of equations

$$
\begin{gathered}
f_{1}=0, \\
\vdots \\
f_{s}=0 .
\end{gathered}
$$

If we multiply the first equation by $h_{1} \in k\left[x_{1}, \ldots, x_{n}\right]$, the second by $h_{2} \in k\left[x_{1}, \ldots, x_{n}\right]$ etc and then add the resulting equations, we get

$$
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{s} f_{s}=0 .
$$

Interpretation in terms of polynomial equations

Given $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, we get the system of equations

$$
\begin{gathered}
f_{1}=0, \\
\vdots \\
f_{s}=0 .
\end{gathered}
$$

If we multiply the first equation by $h_{1} \in k\left[x_{1}, \ldots, x_{n}\right]$, the second by $h_{2} \in k\left[x_{1}, \ldots, x_{n}\right]$ etc and then add the resulting equations, we get

$$
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{s} f_{s}=0 .
$$

- The left-hand side is an element of the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Interpretation in terms of polynomial equations

Given $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, we get the system of equations

$$
\begin{gathered}
f_{1}=0, \\
\vdots \\
f_{s}=0 .
\end{gathered}
$$

If we multiply the first equation by $h_{1} \in k\left[x_{1}, \ldots, x_{n}\right]$, the second by $h_{2} \in k\left[x_{1}, \ldots, x_{n}\right]$ etc and then add the resulting equations, we get

$$
h_{1} f_{1}+h_{2} f_{2}+\cdots+h_{s} f_{s}=0 .
$$

- The left-hand side is an element of the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- We can think of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ as consisting of all "polynomial consequences" of the equations $f_{1}=f_{2}=\ldots=f_{s}=0$.

Ideals example

Consider the example

$$
\begin{aligned}
& x=1+t \\
& y=1+t^{2}
\end{aligned}
$$

Ideals example

Consider the example

$$
\begin{aligned}
& x=1+t \\
& y=1+t^{2}
\end{aligned}
$$

In the previous lecture we learned that eliminating t gives

$$
y=x^{2}-2 x+2
$$

Ideals example

Consider the example

$$
\begin{aligned}
& x=1+t \\
& y=1+t^{2}
\end{aligned}
$$

In the previous lecture we learned that eliminating t gives

$$
y=x^{2}-2 x+2
$$

In fact $x^{2}-2 x+2-y$ is in the ideal $\left\langle x-1-t, y-1-t^{2}\right\rangle$:

$$
(x-1-1 t)(x-1+t)+(-1)\left(y-1-t^{2}\right)=x^{2}-2 x+2-y
$$

Ideals

Definition

We say that an ideal I is finitely generated if there exist $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, and we say that f_{1}, \ldots, f_{s} forms a basis of I.

Ideals

Definition

We say that an ideal I is finitely generated if there exist $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, and we say that f_{1}, \ldots, f_{s} forms a basis of I.

- We will learn that every ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.

Ideals

Definition

We say that an ideal I is finitely generated if there exist $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, and we say that f_{1}, \ldots, f_{s} forms a basis of I.

- We will learn that every ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.
- A given ideal may have many different bases.

Ideals

Definition

We say that an ideal I is finitely generated if there exist $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, and we say that f_{1}, \ldots, f_{s} forms a basis of I.

- We will learn that every ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.
- A given ideal may have many different bases.
- An especially useful type of basis is Groebner basis.

Analogy with linear algebra

- the definition of an ideal is similar to the definition of a subspace

Analogy with linear algebra

- the definition of an ideal is similar to the definition of a subspace
- both have to be closed under addition and multiplication (for a subspace multiply with scalars whereas for an ideal we multiply by polynomials)

Analogy with linear algebra

- the definition of an ideal is similar to the definition of a subspace
- both have to be closed under addition and multiplication (for a subspace multiply with scalars whereas for an ideal we multiply by polynomials)
- the ideal generated by polynomials f_{1}, \ldots, f_{s} is similar to the span of a finite number of vectors v_{1}, \ldots, v_{s}

Analogy with linear algebra

- the definition of an ideal is similar to the definition of a subspace
- both have to be closed under addition and multiplication (for a subspace multiply with scalars whereas for an ideal we multiply by polynomials)
- the ideal generated by polynomials f_{1}, \ldots, f_{s} is similar to the span of a finite number of vectors v_{1}, \ldots, v_{s}
- in both cases one takes linear combinations, using field coefficients for the subspace and polynomial coefficients for the ideal

Ideals

Proposition

If f_{1}, \ldots, f_{s} and g_{1}, \ldots, g_{t} are bases of the same ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, so that $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, then we have $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$.

Ideals

Proposition

If f_{1}, \ldots, f_{s} and g_{1}, \ldots, g_{t} are bases of the same ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, so that $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, then we have $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$.

Example

- consider the variety $\mathbb{V}\left(2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right)$

Ideals

Proposition

If f_{1}, \ldots, f_{s} and g_{1}, \ldots, g_{t} are bases of the same ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, so that $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, then we have $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$.

Example

- consider the variety $\mathbb{V}\left(2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right)$
- $\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle=\left\langle x^{2}-4, y^{2}-1\right\rangle$

Ideals

Proposition

If f_{1}, \ldots, f_{s} and g_{1}, \ldots, g_{t} are bases of the same ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, so that $\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, then we have $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\mathbb{V}\left(g_{1}, \ldots, g_{t}\right)$.

Example

- consider the variety $\mathbb{V}\left(2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right)$
- $\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle=\left\langle x^{2}-4, y^{2}-1\right\rangle$
- hence $\mathbb{V}\left(2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right)=$

$$
\mathbb{V}\left(x^{2}-4, y^{2}-1\right)=\{(\pm 2, \pm 1)\}
$$

Proof: Assume that

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle .
$$

Let

$$
\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Y}\left(f_{1}, \ldots, f_{s}\right)
$$

thence $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$.
Since $g_{j} \in\left\langle f_{1}, \cdots f_{s}\right\rangle_{1}$, we can write $g_{j}=\sum_{i=1}^{s} h_{i} f_{i}$. Hence

$$
g_{j}\left(a_{1, \ldots}, a_{n}\right)=\sum_{i=1}^{s}\left(h_{i} f_{i}\right)\left(a_{1}, \ldots, a_{n}\right)=0 .
$$

Hence $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Y}\left(g_{1}, \ldots, g_{t}\right)$.
This moves

$$
\mathbb{V}\left(t_{1}, \ldots, t_{s}\right) \subseteq \mathbb{V}\left(g_{1}, \ldots g_{4}\right)^{\prime \prime}
$$

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\} .
$$

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\} .
$$

Lemma

If $V \subset k^{n}$ is an affine variety, then $I(V) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. We call $I(V)$ the (vanishing) ideal of V.

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Lemma

If $V \subset k^{n}$ is an affine variety, then $I(V) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. We call $I(V)$ the (vanishing) ideal of V.

Quiz: Find $I(\{0,0\})$ and $I\left(k^{n}\right)$ when k is infinite.

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Lemma

If $V \subset k^{n}$ is an affine variety, then $I(V) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. We call $I(V)$ the (vanishing) ideal of V.

Quiz: Find $I(\{0,0\})$ and $I\left(k^{n}\right)$ when k is infinite.

- $I(\{0,0\})=\langle x, y\rangle$

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Lemma

If $V \subset k^{n}$ is an affine variety, then $I(V) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. We call $I(V)$ the (vanishing) ideal of V.

Quiz: Find $I(\{0,0\})$ and $I\left(k^{n}\right)$ when k is infinite.

- $I(\{0,0\})=\langle x, y\rangle$
- $I\left(k^{n}\right)=\{0\}$ when k is infinite

The ideal of an affine variety

Definition

Let $V \subset k^{n}$ be an affine variety. Then we set

$$
I(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

Lemma

If $V \subset k^{n}$ is an affine variety, then $I(V) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. We call $I(V)$ the (vanishing) ideal of V.

Quiz: Find $I(\{0,0\})$ and $I\left(k^{n}\right)$ when k is infinite.

- $I(\{0,0\})=\langle x, y\rangle$
- $I\left(k^{n}\right)=\{0\}$ when k is infinite
- $V=\mathbb{V}\left(y-x^{2}, z-x^{3}\right) \Rightarrow I(V)=\left\langle y-x^{2}, z-x^{3}\right\rangle$

The ideal of an affine variety

polynomials $f_{1}, \ldots, f_{s} \rightarrow$ variety $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \rightarrow$ ideal $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$

The ideal of an affine variety

polynomials $f_{1}, \ldots, f_{s} \rightarrow$ variety $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \rightarrow$ ideal $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$

- $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)=\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

The ideal of an affine variety

polynomials $f_{1}, \ldots, f_{s} \rightarrow$ variety $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \rightarrow$ ideal $l\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$

- $l\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)=\left\langle f_{1}, \ldots, f_{s}\right\rangle ?$
- the answer is not always yes

The ideal of an affine variety

polynomials $f_{1}, \ldots, f_{s} \rightarrow$ variety $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \rightarrow$ ideal $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$

- $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)=\left\langle f_{1}, \ldots, f_{s}\right\rangle ?$
- the answer is not always yes

Lemma

If $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, then $\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$, although equality need not occur.

The ideal of an affine variety

polynomials $f_{1}, \ldots, f_{s} \rightarrow$ variety $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \rightarrow$ ideal $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$

- $I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)=\left\langle f_{1}, \ldots, f_{s}\right\rangle ?$
- the answer is not always yes

Lemma

If $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, then $\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset I\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$, although equality need not occur.

Proposition

Let V and W be affine varieties in k^{n}. Then
(1) $V \subset W$ if and only if $I(V) \supset I(W)$
(2) $V=W$ if and only if $I(V)=I(W)$

Proof: (1)"'Assume $V \leq W$. Take $f \in I(w)$.
Then for all $\left(a_{1}, \ldots, a_{n}\right) \in W$, we have $f\left(a_{11}, \ldots, a_{n}\right)=0$. Since $V \subseteq W$, also $f\left(a_{1}, \ldots, a_{n}\right)=0 \quad \forall\left(a_{1}, \ldots, a_{4}\right) \in V$. Hence $f \in I(V)$.
" 2 " Assume $I(W) \subseteq I(V)$. hut $\left(a_{1}, \ldots, a_{n}\right) \in V$.
Then $\forall f \in I(V)$, we lave $f\left(a_{1}, \ldots, a_{n}\right)=0$. Hence $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $f \in I(w)$.
This means that $\left(a_{1}, \ldots, a_{n}\right) \in W$.
(2) This follows from $V=W$ being equivalent to $V \subseteq W$ and $W \subseteq V$.

Polynomials in one variable

Polynomials in one variable

Definition

Given a nonzero polynomial $f \in k[x]$, let

$$
f=a_{0} x^{m}+a_{1} x^{m-1}+\ldots+a_{m},
$$

where $a_{i} \in k$ and $a_{0} \neq 0$. Then we say that $a_{0} x^{m}$ is the leading term of f, written $L T(f)=a_{0} x^{m}$.

Polynomials in one variable

Definition

Given a nonzero polynomial $f \in k[x]$, let

$$
f=a_{0} x^{m}+a_{1} x^{m-1}+\ldots+a_{m},
$$

where $a_{i} \in k$ and $a_{0} \neq 0$. Then we say that $a_{0} x^{m}$ is the leading term of f, written $L T(f)=a_{0} x^{m}$.

Quiz

What is the leading term of $f=2 x^{3}-4 x+3$?

Division algorithm

Proposition

Let g be a nonzero polynomial in $k[x]$. Then every $f \in k[x]$ can be written as

$$
f=q g+r
$$

where $q, r \in k[x]$, and either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Furthermore, q and r are unique, and there is an algorithm for finding q and r.

Division algorithm

Proposition

Let g be a nonzero polynomial in $k[x]$. Then every $f \in k[x]$ can be written as

$$
f=q g+r
$$

where $q, r \in k[x]$, and either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Furthermore, q and r are unique, and there is an algorithm for finding q and r.

Proof.

Input: g, f
Output: q, r
$q:=0, r:=f$
WHILE $r \neq 0$ AND $L T(g)$ divides $L T(r)$ DO

$$
\begin{aligned}
& q:=q+L T(r) / L T(g) \\
& r:=r-(L T(r) / L T(g)) g
\end{aligned}
$$

Example:

$$
\begin{aligned}
& f=x^{3}+2 x^{2}+x+1 \quad g=2 x+1 \\
& * g:=0 \quad r:=x^{3}+2 x^{2}+x+1 \\
& * q_{\text {new }}:=0+\frac{x^{3}}{2 x}=\frac{1}{2} x^{2} \\
& r_{\text {new }}:=x^{3}+2 x^{2}+x+1-\frac{x^{3}}{2 x} \cdot(2 x+1)= \\
& =\frac{3}{2} x^{2}+x+1
\end{aligned}
$$

Proof: 1) We will show that at each steps $f=9 \cdot g+r$. It charley holds at the first skeg. At each next step

$$
\begin{aligned}
& \left(q+\frac{L T(r)}{L T(g)}\right) g+r-\frac{L T(r)}{L T(g)} \cdot g= \\
= & q \cdot g+r=f .
\end{aligned}
$$

2) The algonithen terminates: At each stop the degree of n decreases, because $r-\frac{L T(r)}{L T(g)} \cdot g$ is lither zoo or smaller than the deque of r.
3) Uniqumes: Supper $f=q \cdot g+r=$
$=q^{\prime} \cdot g+r^{\prime}$. Then

$$
\gamma-\gamma^{\prime}=q^{\prime} \cdot g-q \cdot g
$$

Then $\operatorname{dg}\left(r-r^{\prime}\right)=\operatorname{dg}\left(q^{\prime} \cdot g-q g\right)$

$$
=\operatorname{dgg}\left(\left(q^{\prime}-q\right) \cdot g\right)=\operatorname{dg}\left(q^{\prime}-q\right)+\operatorname{dng}(g)
$$

$\geqslant \operatorname{dog}(g)$. This contradicts that $\operatorname{dog}(r)<\operatorname{dg}(g)$. Hence $r=r^{\prime}$ and $q=q^{\prime}$.

Division algorithm

Corollary

If k is a field and $f \in k[x]$ is a nonzero polynomial, then f has at most $\operatorname{deg}(f)$ roots in k.

Proof: We will us induction.
Basis: If f is a constant, then it has ne nods.
Step: Assume that the statement holds for polynomials of degree $m-1$. Let f be a polynomial of dogie m . If f has no roots, then we are dome. Otherwise of has a root a. We will divide f by $x-a$: $f=q \cdot(x-a)+r$. Evaluating both solus at a gives
$f(a)=r \Rightarrow$ Hence $r=0$ and
$f=q \cdot(x-a)$. Now q has degree $m-1$ and by the ind. hyjothesis han at most $m-1$ roots. Any root b of f different from a is a root of 9, because $0=f(b)=q(b)(b-a)$. Since k
is a field, we have $g(b)=0$. This completers the prof.

Division algorithm

Corollary

If k is a field, then every ideal of $k[x]$ can be written in the form $\langle f\rangle$ for some $f \in k[x]$. Furthermore, f is unique up to multiplication by a nonzero constant in k.

Proof: If $I=9 C 3$, then we are done. Otherwise take f to be a lowest chare element in I. We claim that $I=\langle f\rangle$. The inclusion $\langle f\rangle \subseteq I$ is obvious. Take $g \in I$. Thea $g=q \cdot f+r$ by the division algorithms, where $\operatorname{deg}(r)<\operatorname{dug}(f)$ or $r=0$. Then $r=g-q \cdot f \in I$. If $r \neq 0$, then $\operatorname{dog}(r)<\operatorname{dog}(f)$, which is a contradiction to f being a lowest degne element in I. Hence $r=0$ and $g=q \cdot f \in\langle f\rangle$.
Vniquemss: Supper $\langle f\rangle=\left\langle f^{\prime}\right\rangle$. Hence $f=h^{\prime} \cdot f^{\prime}$ and $\operatorname{dig}(f)=$

$$
\operatorname{dog}\left(h^{\prime}\right)+\operatorname{chg}\left(f^{\prime}\right) \geqslant \operatorname{deg}\left(f^{\prime}\right) .
$$

Similarly $\operatorname{dg}\left(f^{\prime}\right) \geqslant \operatorname{deg}(f)$.
Hence $\operatorname{dog}(f)=\operatorname{dog}\left(f^{\prime}\right)$ and
f and f^{\prime} differ up to multiplication by a constant.

Division algorithm

Corollary

If k is a field, then every ideal of $k[x]$ can be written in the form $\langle f\rangle$ for some $f \in k[x]$. Furthermore, f is unique up to multiplication by a nonzero constant in k.

- an ideal generate by one element is called a principal ideal

Division algorithm

Corollary

If k is a field, then every ideal of $k[x]$ can be written in the form $\langle f\rangle$ for some $f \in k[x]$. Furthermore, f is unique up to multiplication by a nonzero constant in k.

- an ideal generate by one element is called a principal ideal
- $k[x]$ is a principal ideal domain

Division algorithm

Corollary

If k is a field, then every ideal of $k[x]$ can be written in the form $\langle f\rangle$ for some $f \in k[x]$. Furthermore, f is unique up to multiplication by a nonzero constant in k.

- an ideal generate by one element is called a principal ideal
- $k[x]$ is a principal ideal domain
- how do we find a generator of the ideal $\left\langle x^{4}-1, x^{6}-1\right\rangle$?

The greatest common divisor

Definition

A greatest common divisor of polynomials $f, g \in k[x]$ is a polynomial h such that:
(1) h divides f and g.
(2) If p is another polynomial which divides f and g, then p divides h. When h has these properties, we write $h=G C D(f, g)$.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f, g \in k[x]$ is a polynomial h such that:
(1) h divides f and g.
(2) If p is another polynomial which divides f and g, then p divides h. When h has these properties, we write $h=G C D(f, g)$.

Proposition

Let $f, g \in k[x]$. Then:
(1) $\operatorname{GCD}(f, g)$ exists and is unique up to multiplication by a nonzero constant in k.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f, g \in k[x]$ is a polynomial h such that:
(1) h divides f and g.
(2) If p is another polynomial which divides f and g, then p divides h. When h has these properties, we write $h=G C D(f, g)$.

Proposition

Let $f, g \in k[x]$. Then:
(1) $\operatorname{GCD}(f, g)$ exists and is unique up to multiplication by a nonzero constant in k.
(2) $G C D(f, g)$ is a generator of the ideal $\langle f, g\rangle$.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f, g \in k[x]$ is a polynomial h such that:
(1) h divides f and g.
(2) If p is another polynomial which divides f and g, then p divides h. When h has these properties, we write $h=G C D(f, g)$.

Proposition

Let $f, g \in k[x]$. Then:
(1) $\operatorname{GCD}(f, g)$ exists and is unique up to multiplication by a nonzero constant in k.
(2) $G C D(f, g)$ is a generator of the ideal $\langle f, g\rangle$.
(3) There is an algorithm for finding $G C D(f, g)$.

Proof: (0)/ 0There exists h s.t. $\langle f, g\rangle=\langle h)$. We will show that $G C D(f, g)=h$.
The pl. h divides both f and gi becalm $f, g \in\langle h\rangle$. Supper p is another pol. that divides f and g. We can write $f=A p$ and $g=B \cdot p$ bo $A, B \in k[x]$. Because $h \in\langle f, g\rangle$, we kan write $h=C \cdot f+D \cdot g$ for same $C_{1} D \in L[x]$.
thence $h=C \cdot A \cdot p+D \cdot B \cdot p=(C A+D B) \cdot p$. Thus p divides h and h is GLD(f.9).
Uniqueness follows from the def beaux h and h^{\prime} would have to divicle each other.
(3) Notation: Let $f, g \in k[x], g \neq 0$. We write $f=g \cdot g+r$ as in the division algorithin. We dentate remainder $(f, g):=r$.

Euclidean algorithm:
Input: fig
Output: h

$$
\begin{aligned}
& h:-f \\
& s:=g
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHILE } s \neq O \quad D O \\
& \text { rem: }=\text { remainder }(h, s) \quad\left[\begin{array}{l}
h=q \cdot s+r \\
\text { rwaindin is } r
\end{array}\right] \\
& h_{\text {nee }}=s \\
& s_{\text {new }}=\text { rem }
\end{aligned}
$$

- The algorithen terminates, since the degree of s decreases at each step.
$\otimes \operatorname{GCD}(f, g)=\operatorname{GCD}\left(g,{\underset{f}{\infty}}_{\gamma}^{\sim}\right)$, becance $\langle f \cdot g\rangle=\langle g, f-q \cdot g\rangle$.
Similarly

$$
\begin{aligned}
& G C D(f, g)=G C D(g, r)=G C D\left(r, r^{\prime}\right)= \\
& =G C D\left(r^{\prime}, r^{\prime}\right)=\ldots
\end{aligned}
$$

where $r, r^{\prime}, r^{\prime \prime}, \ldots$ are remainders obtained by the consecutive steps of the Euclidean algorithm. The last two umaindus are the output h and 0 . Since $\operatorname{GCD}(h, 0)=h$, we have $G C D(f, g)=G C D(h, 0)=h$.

The greatest common divisor

Quiz

Compute the GCD of $x^{4}-1$ and $x^{6}-1$.

The greatest common divisor

Quiz

Compute the GCD of $x^{4}-1$ and $x^{6}-1$.

Example

$$
\begin{aligned}
x^{4}-1 & =0\left(x^{6}-1\right)+x^{4}-1, \\
x^{6}-1 & =x^{2}\left(x^{4}-1\right)+x^{2}-1, \\
x^{4}-1 & =\left(x^{2}+1\right)\left(x^{2}-1\right)+0 \\
\Rightarrow & G C D\left(x^{4}-1, x^{6}-1\right)=x^{2}-1
\end{aligned}
$$

The greatest common divisor

Definition

A greatest common divisor of polynomials $f_{1}, \ldots, f_{s} \in k[x]$ is a polynomial h such that:
(1) h divides f_{1}, \ldots, f_{s}.
(2) If p is another polynomial which divides f_{1}, \ldots, f_{s}, then p divides h. When h has these properties, we write $h=G C D\left(f_{1}, \ldots, f_{s}\right)$.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f_{1}, \ldots, f_{s} \in k[x]$ is a polynomial h such that:
(1) h divides f_{1}, \ldots, f_{s}.
(2) If p is another polynomial which divides f_{1}, \ldots, f_{s}, then p divides h. When h has these properties, we write $h=G C D\left(f_{1}, \ldots, f_{s}\right)$.

Proposition

Let $f_{1}, \ldots, f_{s} \in k[x]$, where $s \geq 2$. Then:
(1) $G C D\left(f_{1}, \ldots, f_{s}\right)$ exists and is unique up to multiplication by a nonzero constant in k.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f_{1}, \ldots, f_{s} \in k[x]$ is a polynomial h such that:
(1) h divides f_{1}, \ldots, f_{s}.
(2) If p is another polynomial which divides f_{1}, \ldots, f_{s}, then p divides h. When h has these properties, we write $h=G C D\left(f_{1}, \ldots, f_{s}\right)$.

Proposition

Let $f_{1}, \ldots, f_{s} \in k[x]$, where $s \geq 2$. Then:
(1) $G C D\left(f_{1}, \ldots, f_{s}\right)$ exists and is unique up to multiplication by a nonzero constant in k.
(2) $\operatorname{GCD}\left(f_{1}, \ldots, f_{s}\right)$ is a generator of the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f_{1}, \ldots, f_{s} \in k[x]$ is a polynomial h such that:
(1) h divides f_{1}, \ldots, f_{s}.
(2) If p is another polynomial which divides f_{1}, \ldots, f_{s}, then p divides h. When h has these properties, we write $h=G C D\left(f_{1}, \ldots, f_{s}\right)$.

Proposition

Let $f_{1}, \ldots, f_{s} \in k[x]$, where $s \geq 2$. Then:
(1) $G C D\left(f_{1}, \ldots, f_{s}\right)$ exists and is unique up to multiplication by a nonzero constant in k.
(2) $\operatorname{GCD}\left(f_{1}, \ldots, f_{s}\right)$ is a generator of the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
(3) If $s \geq 3$, then $G C D\left(f_{1}, \ldots, f_{s}\right)=G C D\left(f_{1}, G C D\left(f_{2}, \ldots, f_{s}\right)\right)$.

The greatest common divisor

Definition

A greatest common divisor of polynomials $f_{1}, \ldots, f_{s} \in k[x]$ is a polynomial h such that:
(1) h divides f_{1}, \ldots, f_{s}.
(2) If p is another polynomial which divides f_{1}, \ldots, f_{s}, then p divides h. When h has these properties, we write $h=G C D\left(f_{1}, \ldots, f_{s}\right)$.

Proposition

Let $f_{1}, \ldots, f_{s} \in k[x]$, where $s \geq 2$. Then:
(1) $\operatorname{GCD}\left(f_{1}, \ldots, f_{s}\right)$ exists and is unique up to multiplication by a nonzero constant in k.
(2) $\operatorname{GCD}\left(f_{1}, \ldots, f_{s}\right)$ is a generator of the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
(3) If $s \geq 3$, then $G C D\left(f_{1}, \ldots, f_{s}\right)=G C D\left(f_{1}, G C D\left(f_{2}, \ldots, f_{s}\right)\right)$.
(4) There is an algorithm for finding $G C D\left(f_{1}, \ldots, f_{s}\right)$.

The greatest common divisor

Quiz

Compute the GCD of $x^{3}-3 x+2, x^{4}-1$ and $x^{6}-1$.

The greatest common divisor

Quiz

Compute the GCD of $x^{3}-3 x+2, x^{4}-1$ and $x^{6}-1$.

Example

$$
\begin{aligned}
& G C D\left(x^{3}-3 x+2, x^{4}-1, x^{6}-1\right) \\
= & G C D\left(x^{3}-3 x+2, \operatorname{GCD}\left(x^{4}-1, x^{6}-1\right)\right) \\
= & G C D\left(x^{3}-3 x+2, x^{2}-1\right)=x-1
\end{aligned}
$$

It follows that

$$
\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle=\langle x-1\rangle
$$

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$
- $x^{3}+4 x^{2}+3 x-7$ is not in the ideal

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$

Conclusion

Today:

- Ideals
- Ideal generated by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$
- Finitely generated ideal
- Vanishing ideal of an affine variety
- Polynomials in one variable
- Division algorithm
- A degree m polynomial has at most m roots
- Greatest common divisor
- Every ideal in $k[x]$ can be generated by one polynomial

Next time:

- Gröbner bases
- Orderings of the monomials
- Division algorithm for polynomials in n variables

