Lecture 2 Where to find this material

Adams and Essex 11.3, 12.1
Corral, 1.9, 2.1

Guichard, 13.3, 14.1

Active Calculus. 9.1, 9.8

Topics: Arc Length. Functions of 2 or 3 variables.
Sketching surfaces. Level curves.

¢ Find the formula for arc length from first principles using the
definition of the definite integral. (More details will be given
in the next lecture)

e The physical interpretation of arc length being the integral of
speed makes the formula very intuitive

e Note: A more rigorous mathematical treatment of the
arclength formual is given in in the materials section of
MyCourses (somewhat rigorous proof of the arc length
formula). This is material is not required and is not discussed
in lecture, but is available for general interest.

e Computed the arc length of the circle of radius 'a' and
obtained the expectd result

e Domains and graphs of functions of two variables.

e How to sketch surfaces by taking slices (traces). Did the
example of the paraboloid in detail. Talked about the
physical applications of paraboloids such as telescopes,
satellite dishes, solar collectors etc. Other examples included
the sphere, cone and saddle.

¢ Introduced the concept of a level curve (and level surface).
Sketch a couple of examples. Talked about familiar
applications such as the contour lines on topographic maps
and isotherms on weather maps and so on.

e Viewed some surface and level curves on maple (code is in
the materials sections).
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https://mycourses.aalto.fi/pluginfile.php/1416817/mod_resource/content/2/ArcLength.pdf
https://mycourses.aalto.fi/pluginfile.php/1416817/mod_resource/content/2/ArcLength.pdf
hhttps://mycourses.aalto.fi/mod/folder/view.php?id=679236

Arc Length

Recall from lecture 1:
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This picture will be useful at some other times in the
course too.
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Arc length (2)

Aim:
Find a formula for the arc length of a parametric curve.
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Idea: Say you have a straight ruler. How can
find (approximately) the length of the curve
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We expect that in the limit N — oo that the approximation
becomes exact. This is true, and can me made rigorous,
with some (very mild) assumptions on the
smoothness/regularity of the curve. See the handoutout
linked to on the first page of today's notes.
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Arc length (3)

b
Conclusion | arclength = j |7 (©]| dt
a

Now we (A) give a physical interpretation and (B) do a
simple example
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(A) Let's find the arc length of a circle of radius 'a'. Of
course we already know that the anwer is 2ma , so
this is a good test case.
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It is not a surprise that this is constant. The

parametrization of the circle we are using describes
motion around the circle at a constant speed!
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Functions of several variables
For a Fumcf/oy] of 2 variables

So far we have studied functions 2
e f:R — R (in earlier courses) '!D : [R — }R
e f:R — R™ (vector-valued functions we just studied)
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Now we look at functions of several variables f:R" - R
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What are some physical/real-life examples of functions of wf’.

several variable? Go to zulip -> lectures/polls

Domains and graphs
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Functions of several variables (2)

Domain examples
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For example, this is important in guaranteeing the

existence of absolute minima and maxima. A closed
interval/region is necessary.
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3D sketching

We need a collection of simple surfaces to use as example
throughout the course ( and Diff Int 3). These surfaces also
appear frequently in real life.

Let's introduce the ideas in an example
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3D sketching (2)
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Read about Conic sections
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https://en.wikipedia.org/wiki/Conic_section

3D sketching (3)
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Paraboloids

What special geometric/physical property does a

paraboloid have that make them extremely useful in real

life?
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Parabolic things
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Level Curves
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go through it in lecture 3)

This is actually a familiar idea. We want to represent a

surface in terms of a plot in the xy-plane
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Level curves (2)
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Level surfaces

If we have a function of 3 variable, f(x, y, z), then we can
not sketch its graph as we would need a 4th dimension to
record the values of f.

However, we can sketch the level set (surface) of f(x,y,x)

B 2 X 52
Exawplt Lot flheyz)= e V7T
Sk#@ﬁ 7%@ level J"dm@ace 1&: 6

Lecture 2 edited Page 13



