	Where to find this material			
	 Adams and Essex 11.3, 12.1 			
I opics: Arc Length. Functions of 2 or 3 variables.	• Corral, 1, 9, 2, 1			
Sketching surfaces. Level curves.	• Guichard, 13.3, 14.1			
 Find the formula for arc length from first principles using the definition of the definite integral. (More details will be given in the next lecture) The physical interpretation of arc length being the integral of speed makes the formula very intuitive Note: A more rigorous mathematical treatment of the arclength formual is given in in the <i>materials</i> section of MyCourses (somewhat rigorous proof of the arc length formula). This is material is not required and is not discussed in lecture, but is available for general interest. 	Active Calculus. 9.1, 9.8			
• Computed the arc length of the circle of radius a and obtained the expectd result				
 Domains and graphs of functions of two variables. 				
 How to sketch surfaces by taking slices (traces). Did the example of the paraboloid in detail. Talked about the 				
physical applications of paraboloids such as telescopes,				
satellite dishes, solar collectors etc. Other examples included the sphere, cone and saddle.				
 Introduced the concept of a level curve (and level surface). Sketch a couple of examples. Talked about familiar 				
applications such as the contour lines on topographic maps and isotherms on weather maps and so on.				
 Viewed some surface and level curves on maple (<u>code</u> is in 				
the materials sections).				

Arc length (2)

Aim: Find a formula for the arc length of a parametric curve. $\frac{Setup}{f} \quad Curve \quad \vec{r}(t) = \langle x(t), y(t) \rangle \quad Same in 3D$ $a \langle t \leq b$ $y \uparrow \qquad leng + h = ?$

 $\vec{r}(b)$

Idea: Say you have a straight ruler. How can find (approximately) the length of the curve

Let's calculate Divide the curve into N pieces of length Asi, i=1,...,N corresponding to time steps $\Delta t = \frac{b-a}{N}$ The total arclength = $\sum_{i=1}^{N} \Delta s_i$ $\approx \sum_{i=1}^{N} \|\vec{r}'(t_i)\| \Delta t$ We expect that in the limit $N \rightarrow \infty$ that the approximation becomes exact. This is true, and can me made rigorous, with some (very mild) assumptions on the smoothness/regularity of the curve. See the handoutout

Oh!! This looks familiar. It is exactly the definition of the definite integral = $\int_{110}^{10} ||r'(t)|| dt$

Arc length (3)

Conclusion	arc length =	$\int_{0}^{b} \ \vec{r}'(t)\ \mathrm{d}t$
		J_a "

Now we (A) give a physical interpretation and (B) do a simple example

(A) If we think of
$$\vec{r}(t)$$
 as position
then: $\vec{r}'(t) = velocity$ (vector)
 $||\vec{r}'(t)|| = speed$ (scalar)
Also, speed x time = distance
Since our speed is not constant, we
summed up all the small distances ΔS
 and obtained
Arc
 $length = distace = \int_{a}^{b} speed dtime$
 $= \int_{a}^{b} ||r'(t)|| dt$
 $= \int_{a}^{b} ||r'(t)|| dt$
 $= \int_{a}^{arr} a dt$

(A) Let's find the arc length of a circle of radius 'a'. Of course we already know that the anwer is $2\pi a$, so this is a good test case.

> As we Aucussed last class, 木ぃ $x(t) = a \cos(t) \\ y(t) = a \sin(t) \\ y(t) = a \sin(t)$ a So $\vec{r}(t) = (a\cos(t), a\sin(t))$ and $\vec{r}'(t) = (-a\sin(t), a\cos(t))$

$$\frac{1}{2} \log \left(\frac{1}{1} \log \left(\frac{1}{1} \right) \right) = \int \left[-\alpha \sin \left(\frac{1}{1} \right)^2 + \left[\alpha \cos \left(\frac{1}{1} \right)^2 \right] \right]$$
$$= \alpha \sqrt{\sin^2(1) + \cos^2(1)}$$

a surprise that this is constant. The trization of the circle we are using describes around the circle at a constant speed!

= a

= 217a as expected!

Functions of several variables

For a function of 2 variables

the domain is a region in the xy-plane

So far we have studied functions

- $f: \mathbb{R} \to \mathbb{R}$ (in earlier courses)
- $f: \mathbb{R} \to \mathbb{R}^n$ (vector-valued functions we just studied)

Now we look at functions of several variables $f: \mathbb{R}^n \to \mathbb{R}$

For example : $f(x, y) = 2x + x^2y$

What are some physical/real-life examples of functions of several variable? Go to zulip -> lectures/polls

Domains and graphs

the graph is a curve in IR^Q Jomain

 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$

surface

Functions of several variables (2)

Open and closed regions

Paraboloids

What special geometric/physical property does a paraboloid have that make them extremely useful in real life?

Parabolic things

Level Curves

(We did not have time to cover this in lecture 2. We will go through it in lecture 3)

This is actually a familiar idea. We want to represent a surface in terms of a plot in the xy-plane

A (level curve) of f(x,y) at level c is the set of points

Example Sketch some level curves
of
$$f(x,y) = x^2 + y^2$$

level Curves

$$f(x,y) = 0$$

Level curves ((2)	
----------------	-----	--

