

Operation Management in Construction Lecture #3 LBMS controlling intro

Olli Seppänen Associate professor

Topics, today's lecture #3

- Learning objectives of Lecture #3
- LBMS controlling overview
- Cascading delays in construction
- Controlling case studies

Intended learning objectives for this lecture

- ILO 2: **Students can compare and contrast** the similarities and differences of different production planning and control methods
 - ILO emphasized for controlling
- ILO 5: **Students can explain** the significance of work and labor flow and how flow can be achieved in construction
 - ILO reinforced
- ILO 8: **Students can** make production control decisions based on the schedule using the Location Based Management System
 - ILO emphasized

LBMS technical system

Planning system

- Location Breakdown
- Quantities
- Duration calculation
- Layered logic
- LBMS algorithm (CPM+)
- Production system cost
- Production system risk

Controlling system

- Progress data
- Performance metrics
- Detailed planning
- Forecasting
- Control actions

Progress data

Progress data for each task and location:

- Start dates
- Finish date or quantities completed / % completed
- Actual crew size (no. of people)
- Actual worked hours
- Suspensions (e.g. No work on Tuesday)

Daily / Weekly depending on project

Real time in the future?

Progress data

- Manual data collection
 - Distributed
 - Centralized
- Digital data collection
 - Distributed
 - Centralized
- Automation in the (near) future?

Step 1: iCONS – real time data

iCONS

Step 2: Reality Capture

LBMS: Visualization of status – control chart

Report date Actual Forecast

LBMS key performance metrics

- Actual production rate (units / day)
 - Actual quantity / duration
 - General Contractor's main interest how fast production is moving. However, does not measure **productivity**
- Actual labor consumption (manhours / unit)
 - Actual manhours / actual quantity
 - A measure of **productivity**. Subcontractor's main interest. Improving productivity helps both the GC and the sub. Informs control action decisions. Harder to get data.

LBMS schedule forecast calculations

- Assumptions: (Seppänen, 2009)
 - Use actual labor consumption
 - Use planned resources
 - Use planned logic
 - If actual progress deviates from planned logic, ignore logic in ongoing locations but resume planned logic in future locations
 - If multiple locations have been started
 - Assume even split of resources to ongoing locations
 - After ongoing locations finish, resume planned behavior (one location at the time)

Alarms

- LBMS alarms are generated when predecessor forecast impacts successor forecast
 - Delaying start
 - Causing a discontinuity

Alarms

Control actions

- Control actions are responses to alarms
- The goal is to prevent an alarm from turning into a problem
- Forecast updated based on planned action: (in order of preference)
 - Root cause analysis and improving productivity
 - Increase / decrease in resources
 - Sequence change
 - Overtime / holiday / weekend work
 - Etc.
- Update the forecast, not the plan
 - Each action will change some part of the forecast formula
 - Plan enough actions to prevent the problem

End of video 1

Control actions prevent cascading delays (Seppänen 2009)

Project type	M2	Start-up delays	Discontinuities	Slowdowns	Total effect of cascading delays / total duration (months)
Retail	6,800	34	36	54	1.5 / 8.5
Retail	10,638	8	20	94	1 / 12
Office	14,528	96	129	132	1.5 / 15

- Cascading delays cause 10+ % increase of project duration
- Productivity loss of 30+ %
- •Only 12% of problems discussed in site meetings!

Cascading delays

- Problems especially in projects without buffers
- Most building projects have cascading delays in interior construction phase (MEP + rough-in + finishes)
- Delays caused by multiple subcontractors in the same space
 - Slowdowns (large, open locations)
 - Discontinuities (constrained spaces)
 - Start-up delays
- Cascading delays make projects unpredictable and chaotic

Example of cascading delays (Seppänen 2009)

Empirical results about LBMS controlling

- 30 Master's theses in Finland in 1980's and 1990's
- Empirical research on 6 projects (Seppänen & Kankainen 2004)
 - Just planning continuity is not enough, controlling is critical
 - Discontinuities are the hardest deviation type to recover from
 - Starting too early slowdowns
- Seppänen (2009)
 - Cascading delay chains, improved forecasting
- Kala et al. (2012)
 - CPM requires more man-hours to operate than LBMS
 - LBMS provides better information for superintendents
 - Subcontractors overestimate their resource consumption (30-40%)

Empirical results about LBMS controlling

- Evinger et al. (2013) CPM vs. LBMS floors of same project
 - CPM floors had 18% higher labor consumption and 10% slower production than LBMS floors
- Seppänen et al. (2014) LBMS production alarms and their impacts
 - 39% of alarms resulted in control actions
 - 65% of control actions increased production rate, 50% successfully prevented production problems
 - It is possible for GC to control production rates of subs!
 - An example from this project next

	Target/Estimated			Actual			Delta		
Name	Production			Production					
1.55	rate units/day	units / day	% Comp	rate units/day	units / day	% Comp	Production rate units/day	% Comp	
Beam Clips	10,356	SF	15%	13,563	SF	25%	3,207	10%	
Fire Proofing	2,000	SF	6%	1,364	SF	15%	-636	9%	
Fire Sprinkler	436	LF	0%	541	LF	4%	105	4%	

	N	ο.	Date	Prod Opportui	F	G		
1 F	PAI	-076	14-Mar-11	Recomme	ndation	Status	ebfore moving to new	Owner Nels, Mike W Nels, Mike W
50 F 51 F 52 F	Al-137 Al-136 Al-135 Al-134 Al-133	20-Mar-12 u w w lir 20-Mar-12 ti 14-Mar-12 lir 14-Mar-12 l	n-wall copper is driving the production of level 3 is trending to production drywall from LVL 1 to production drywall from LVL 1 to production with the condition task is trendifullestone. In wall plumbing on the even and	Deploy 3rd gun to do focus gun 2 on produ	Respons	se	0	wner
54 F	AI-132	14-Mar-12 T tl	his is influencing the start of Insula he 80% OH Milestone and Product orecast suggests a late March star	ch tasks are trending too slowly in level 2 podium. clos ation and headwall tasks -> in turn this may affect sug	Focus 3rd gun on and 2nd gun on p		st Fire	neral Super, eproofing o, Area Super

	Target/Estimated			Actual			Delta	
Name	Production rate	units		Production rate	units /	%	Production rate	%
	units/day	/ day	% Comp	units/day	day	Comp		Comp
Fire Proofing	2,000	SF	30%	2,031	SF	29%	-	-1%
Fire Sprinkler	436	LF	14%	560	LF	19%	124	5%

	N	ο.	Date	Prod Opportur	F	G			
1 48	PAI	-084	11-Apr-11	Recomme	ndation	Status	ebfore movi	Owner Ing to new Nels, Mike W Nels, Mike W	T
51 52 53	PAI-137 PAI-136 PAI-135 PAI-134	20-Mar-12	in-wall copper is driving the produ the podium of level 3 is trending v production drywall from LVL 1 to Ductwork insulation task is trendi Milestone. In wall plumbing on the even and	Reduce fire proection by 1 journeyman	Respons	se		Owner	
55	PAI-132	14-Mar-12 T t	This is influencing the start of Insul the 80% OH Milestone and Product Forecast suggests a late March star	ch tasks are trending too slowly in level 2 podium. clos ation and headwall tasks -> in turn this may affect tion drywall continuity. Pipi ort for lower level HVAC below duct. A forecasted influence the Duct Branch and Production Framing lncr	reducing by 1 resource			General Super, Fire Protection Sub, Area Super	

Project in chaos

Thank you Questions & Comments