Computational Algebraic Geometry

 Groebner BasesKaie Kubjas

kaie.kubjas@aalto.fi
January 18, 2021

Overview

Last time:

- Ideals
- Ideal generated by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$
- Finitely generated ideal
- Vanishing ideal of an affine variety
- $\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq I\left(V\left(f_{1}, \ldots, f_{s}\right)\right)$
- $V \subseteq W \Leftrightarrow I(V) \supseteq I(W)$
- Polynomials in one variable
- Division algorithm
- A degree m polynomial has at most m roots
- Every ideal in $k[x]$ can be written in the form $\langle f\rangle$
- Greatest common divisor

Today:

- Motivation for Groebner bases
- Orders of the monomials
- Division algorithm for polynomials in n variables

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}\right.$,
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$
- $x^{3}+4 x^{2}+3 x-7$ is not in the ideal

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$
- $x^{3}+4 x^{2}+3 x-7$ is not in the ideal

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$ - $x^{3}+4 x^{2}+3 x-7$ is not in the ideal

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle$?

Ideal membership problem

- Is there an algorithm for deciding whether a given polynomial $f \in k[x]$ lies in the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
- Using GCDs find a generator h of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
- Use the division algorithm to write $f=q h+r$ where $\operatorname{deg}(r)<\operatorname{deg}(h)$.
- The polynomial f is in the ideal if and only if $r=0$.

Example

- $x^{3}+4 x^{2}+3 x-7 \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$
- $x^{3}+4 x^{2}+3 x-7 \in\langle x-1\rangle$?
- $x^{3}+4 x^{2}+3 x-7=\left(x^{2}+5 x+8\right)(x-1)+1$
- $x^{3}+4 x^{2}+3 x-7$ is not in the ideal

Quiz: Does $x \in\left\langle x^{3}-3 x+2, x^{4}-1, x^{6}-1\right\rangle ?$

Groebner bases introduction

Introduction

We will study the method of Groebner bases which will allow us to solve problems about polynomial ideals in algorithmic and computational fashion.

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1} \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial equations

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines

Introduction

We will study the method of Groebner bases which will allow us to solve problems about polynomial ideals in algorithmic and computational fashion.

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial
equations

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines

Introduction

We will study the method of Groebner bases which will allow us to solve problems about polynomial ideals in algorithmic and computational fashion.

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial
equations

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines

Introduction

We will study the method of Groebner bases which will allow us to solve problems about polynomial ideals in algorithmic and computational fashion.

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines

Introduction

We will study the method of Groebner bases which will allow us to solve problems about polynomial ideals in algorithmic and computational fashion.

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines V.

Ideal description and membership problems

Example

- When $n=1$, we solved the ideal description problem. Given $I \subset k[x]$, we showed that $I=\langle g\rangle$ for some $g \in k[x]$.
- The solution to the ideal membership problem follows from the division algorithm: given $f \in k[x]$, to check whether $f \in I=\langle g\rangle$, we divide f by g :

Then $f \in I$ if and only if $r=0$.

Ideal description and membership problems

Example

- When $n=1$, we solved the ideal description problem. Given $I \subset k[x]$, we showed that $I=\langle g\rangle$ for some $g \in k[x]$.
- The solution to the ideal membership problem follows from the division algorithm: given $f \in k[x]$, to check whether $f \in I=\langle g\rangle$, we divide f by g :

$$
f=q g+r
$$

Then $f \in I$ if and only if $r=0$.

Solving polynomial equations

Example

Solve the system of polynomial equations

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=0, \\
x_{1}+x_{2}-1=0, \\
x_{1}+x_{3}-3=0
\end{array}
$$

Gaussian elimination gives the reduced row echelon form:

Hence

Solving polynomial equations

Example

Solve the system of polynomial equations

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=0, \\
x_{1}+x_{2}-1=0, \\
x_{1}+x_{3}-3=0
\end{array}
$$

Gaussian elimination gives the reduced row echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 0 & 1 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Solving polynomial equations

Example

Solve the system of polynomial equations

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=0, \\
x_{1}+x_{2}-1=0, \\
x_{1}+x_{3}-3=0
\end{array}
$$

Gaussian elimination gives the reduced row echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 0 & 1 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence

$$
x_{1}=-t+3, x_{2}=t-2, x_{3}=t .
$$

Implicitization problem

Consider the affine linear subspace V in k^{4} parametrized by

$$
\begin{aligned}
& x_{1}=t_{1}+t_{2}+1 \\
& x_{2}=t_{1}-t_{2}+3 \\
& x_{3}=2 t_{1}-1 \\
& x_{4}=t_{1}+2 t_{2}-3 .
\end{aligned}
$$

Order the variables $t_{1}, t_{2}, x_{1}, x_{2}, x_{3}, x_{4}$. The corresponding matrix of coefficients is:

Implicitization problem

Consider the affine linear subspace V in k^{4} parametrized by

$$
\begin{aligned}
& x_{1}=t_{1}+t_{2}+1 \\
& x_{2}=t_{1}-t_{2}+3 \\
& x_{3}=2 t_{1}-1 \\
& x_{4}=t_{1}+2 t_{2}-3
\end{aligned}
$$

Order the variables $t_{1}, t_{2}, x_{1}, x_{2}, x_{3}, x_{4}$. The corresponding matrix of coefficients is:

$$
\left(\begin{array}{cccccc|c}
1 & 1 & -1 & 0 & 0 & 0 & -1 \\
1 & -1 & 0 & -1 & 0 & 0 & -3 \\
2 & 0 & 0 & 0 & -1 & 0 & 2 \\
1 & 2 & 0 & 0 & 0 & -1 & 3
\end{array}\right) .
$$

Implicitization problem

Gaussian elimination gives the matrix:

$$
\left(\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & -1 / 2 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 / 4 & -1 / 2 & 1 \\
0 & 0 & 1 & 0 & -1 / 4 & -1 / 2 & 3 \\
0 & 0 & 0 & 1 & -3 / 4 & 1 / 2 & 3
\end{array}\right) .
$$

The last two rows of this matrix correspond to the equations:

$$
\begin{aligned}
& x_{1}-(1 / 4) x_{3}-(1 / 2) x_{4}-3=0 \\
& x_{2}-(3 / 4) x_{3}+(1 / 2) x_{4}-3=0
\end{aligned}
$$

These two equations define V in k^{4}.

Implicitization problem

Gaussian elimination gives the matrix:

$$
\left(\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & -1 / 2 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 / 4 & -1 / 2 & 1 \\
0 & 0 & 1 & 0 & -1 / 4 & -1 / 2 & 3 \\
0 & 0 & 0 & 1 & -3 / 4 & 1 / 2 & 3
\end{array}\right) .
$$

The last two rows of this matrix correspond to the equations:

$$
\begin{aligned}
& x_{1}-(1 / 4) x_{3}-(1 / 2) x_{4}-3=0, \\
& x_{2}-(3 / 4) x_{3}+(1 / 2) x_{4}-3=0 .
\end{aligned}
$$

These two equations define V in k^{4}.

Implicitization problem

Gaussian elimination gives the matrix:

$$
\left(\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & -1 / 2 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 / 4 & -1 / 2 & 1 \\
0 & 0 & 1 & 0 & -1 / 4 & -1 / 2 & 3 \\
0 & 0 & 0 & 1 & -3 / 4 & 1 / 2 & 3
\end{array}\right) .
$$

The last two rows of this matrix correspond to the equations:

$$
\begin{aligned}
& x_{1}-(1 / 4) x_{3}-(1 / 2) x_{4}-3=0, \\
& x_{2}-(3 / 4) x_{3}+(1 / 2) x_{4}-3=0 .
\end{aligned}
$$

These two equations define V in k^{4}.

Orders on monomials

Orders on monomials

In dividing $f(x)=x^{5}-3 x^{2}+1$ by $g(x)=x^{2}-4 x+7$:

- write the terms in decreasing order
- subtract $x^{3} g(x)$ from f to cancel the leading term
- repeat the process
- the degree order of the monomials

$$
\cdots>x^{m+1}>x^{m}>\cdots>x^{2}>x>1
$$

Gaussian elimination:

- work with the entries to the left first
- order of the variables

Orders on monomials

In dividing $f(x)=x^{5}-3 x^{2}+1$ by $g(x)=x^{2}-4 x+7$:

- write the terms in decreasing order
- subtract $x^{3} g(x)$ from f to cancel the leading term
- repeat the process
- the degree order of the monomials

$$
\cdots>x^{m+1}>x^{m}>\cdots>x^{2}>x>1
$$

Gaussian elimination:

- work with the entries to the left first
- order of the variables

$$
x_{1}>x_{2}>\cdots>x_{n}
$$

Orders on monomials

- to extend polynomial division and Gaussian elimination to arbitrary polynomials, one needs an order on the terms in polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$
- a 1-to-1 correspondence between the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{Z}_{>0}^{n}$
- would like to compare every pair of monomials \Rightarrow total order
- a monomial times a polynomial should keep the relative order of terms \Rightarrow if $x^{\alpha}>x^{\beta}$ and x^{γ} is any monomial, then we require $X^{\alpha} X^{\gamma}>X^{\beta} x^{\gamma}$

Orders on monomials

- to extend polynomial division and Gaussian elimination to arbitrary polynomials, one needs an order on the terms in polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$
- a 1-to-1 correspondence between the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{Z}_{\geq 0}^{n}$
- would like to compare every pair of monomials \Rightarrow total order
- a monomial times a polynomial should keep the relative order of terms \Rightarrow if $x^{\alpha}>x^{\beta}$ and x^{γ} is any monomial, then we require $x^{\alpha} x^{\gamma}>x^{\beta} x^{\gamma}$

Orders on monomials

- to extend polynomial division and Gaussian elimination to arbitrary polynomials, one needs an order on the terms in polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$
- a 1-to-1 correspondence between the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{Z}_{\geq 0}^{n}$
- would like to compare every pair of monomials \Rightarrow total order
- a monomial times a polynomial should keep the relative order of terms \Rightarrow if $x^{\alpha}>x^{\beta}$ and x^{γ} is any monomial, then we require $x^{\alpha} x^{\gamma}>x^{\beta} x^{\gamma}$

Orders on monomials

- to extend polynomial division and Gaussian elimination to arbitrary polynomials, one needs an order on the terms in polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$
- a 1-to-1 correspondence between the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{Z}_{\geq 0}^{n}$
- would like to compare every pair of monomials \Rightarrow total order
- a monomial times a polynomial should keep the relative order of terms \Rightarrow if $x^{\alpha}>x^{\beta}$ and x^{γ} is any monomial, then we require $x^{\alpha} x^{\gamma}>x^{\beta} x^{\gamma}$

Total order

Definition

Let X and Y be sets. A binary relation R on X and Y is a subset of $X \times Y$. The statement $(x, y) \in R$ is denoted $x R y$.

If $X=Y$, then we say that R is a binary relation on X.
Definition
Let X be a set. A binary relation \geq is a total order on X if it
satisfies for all a, b and c in X :

- (Antisymmetry) If $a \geq b$ and $b \geq a$, then $a=b$;
- (Transitivity) If $a \geq b$ and $b \geq c$, then $a \geq c$, and
- (Connexity) $a \geq b$ or $b \geq a$.

A total order is also called a linear order.

Total order

Definition

Let X and Y be sets. A binary relation R on X and Y is a subset of $X \times Y$. The statement $(x, y) \in R$ is denoted $x R y$.

If $X=Y$, then we say that R is a binary relation on X.

Definition

Let X be a set. A binary relation \geq is a total order on X if it satisfies for all a, b and c in X :

- (Antisymmetry) If $a \geq b$ and $b \geq a$, then $a=b$,
- (Transitivity) If $a \geq b$ and $b \geq c$, then $a \geq c$, and
- (Connexity) $a \geq b$ or $b \geq a$.

A total order is also called a linear order.

Strict total order

Each total order \geq defines a strict total order $>$ in the following way: $a>b$ if $a \geq b$ and $a \neq b$.

It satisfies the following properties:

- (Transitivity) If $a>b$ and $b>c$, then $a>c$, and
- (Trichotomy) Exactly one of $a>b, b>a$ and $a=b$ is true.

Conversely, a transitive trichotomous binary relation $>$ defines a total order \geq in the following way: $a \geq b$ if $a>b$ or $a=b$.

Strict total order

Each total order \geq defines a strict total order $>$ in the following way: $a>b$ if $a \geq b$ and $a \neq b$.

It satisfies the following properties:

- (Transitivity) If $a>b$ and $b>c$, then $a>c$, and
- (Trichotomy) Exactly one of $a>b, b>a$ and $a=b$ is true.

Conversely, a transitive trichotomous binary relation $>$ defines
a total order \geq in the following way: $a \geq b$ if $a>b$ or $a=b$.

Strict total order

Each total order \geq defines a strict total order $>$ in the following way: $a>b$ if $a \geq b$ and $a \neq b$.

It satisfies the following properties:

- (Transitivity) If $a>b$ and $b>c$, then $a>c$, and
- (Trichotomy) Exactly one of $a>b, b>a$ and $a=b$ is true.

Conversely, a transitive trichotomous binary relation > defines a total order \geq in the following way: $a \geq b$ if $a>b$ or $a=b$.

Monomial order

Definition

A monomial order \geq on $k\left[x_{1}, \ldots, x_{n}\right]$ is an relation \geq on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(1) \geq is a total order on $\mathbb{Z}_{\geq 0}^{n}$.
(2) If $\alpha \geq \beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma \geq \beta+\gamma$.
(3) $>$ is a well-order on \mathbb{T}_{n}^{n}. This means that every nonempty subset of $\mathbb{Z}_{>0}^{n}$ has a smallest element under

We will call the strict total order defined by a monomial order also a monomial order.

Monomial order

Definition

A monomial order \geq on $k\left[x_{1}, \ldots, x_{n}\right]$ is an relation \geq on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(1) \geq is a total order on $\mathbb{Z}_{\geq 0}^{n}$.
(2) If $\alpha \geq \beta$ and $\gamma \in \mathbb{Z}_{>0}^{n}$, then $\alpha+\gamma \geq \beta+\gamma$.
(3) \geq is a well-order on $\mathbb{Z}_{>0}^{n}$. This means that every nonempty subset of $\mathbb{Z}_{>0}^{n}$ has a smallest element under

We will call the strict total order defined by a monomial order also a monomial order.

Monomial order

Definition

A monomial order \geq on $k\left[x_{1}, \ldots, x_{n}\right]$ is an relation \geq on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(1) \geq is a total order on $\mathbb{Z}_{\geq 0}^{n}$.
(2) If $\alpha \geq \beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma \geq \beta+\gamma$.
(3) \geq is a well-order on $\mathbb{Z}_{>0}^{n}$. This means that every nonempty subset of $\mathbb{Z}_{>0}^{n}$ has a smallest element under \geq.

We will call the strict total order defined by a monomial order also a monomial order.

Monomial order

Definition

A monomial order \geq on $k\left[x_{1}, \ldots, x_{n}\right]$ is an relation \geq on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(1) \geq is a total order on $\mathbb{Z}_{\geq 0}^{n}$.
(2) If $\alpha \geq \beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma \geq \beta+\gamma$.
(3) \geq is a well-order on $\mathbb{Z}_{\geq 0}^{n}$. This means that every nonempty subset of $\mathbb{Z}_{\geq 0}^{n}$ has a smallest element under \geq.

We will call the strict total order defined by a monomial order also a monomial order.

Monomial order

Definition

A monomial order \geq on $k\left[x_{1}, \ldots, x_{n}\right]$ is an relation \geq on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(1) \geq is a total order on $\mathbb{Z}_{\geq 0}^{n}$.
(2) If $\alpha \geq \beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma \geq \beta+\gamma$.
(3) \geq is a well-order on $\mathbb{Z}_{\geq 0}^{n}$. This means that every nonempty subset of $\mathbb{Z}_{\geq 0}^{n}$ has a smallest element under \geq.

We will call the strict total order defined by a monomial order also a monomial order.

Monomial order

Example

The usual numerical order

$$
\cdots>m+1>m>\cdots>3>2>1>0
$$

on the elements $\mathbb{Z}_{\geq 0}$ is a monomial order.

Monomial order

Lemma

An order relation $>$ on $\mathbb{Z}_{\geq 0}^{n}$ is a well-order if and only if every strictly decreasing sequence in $\mathbb{Z}_{\geq 0}^{n}$

$$
\alpha(1)>\alpha(2)>\alpha(3)>\cdots
$$

eventually terminates.
This lemma will be used to show that various algorithms must terminate because some term strictly decreases at each step of the algorithm.

Proof:" " Assume that $>$ is a well-odes. Let us cownden the set $\{\alpha(1), \alpha(2), \alpha(3), \ldots\}$. This set has a minimal elfencat.
This minimal element has to be the last element of the decreasing sequence. thence the sequence terminates.
"\&"Assume that $>$ is not a well-oden.
There exists ar army that does not have a minimal element. Let $\alpha(1)$ be an clement in the net. We can choose $\alpha(2)$ in the st st. $\alpha(1)>\alpha(2)$. Since the sit has no minimal element, we ban continue to construct a clocrasing sequence that does not terminate.

Monomial order

Lemma

An order relation $>$ on $\mathbb{Z}_{\geq 0}^{n}$ is a well-order if and only if every strictly decreasing sequence in $\mathbb{Z}_{\geq 0}^{n}$

$$
\alpha(1)>\alpha(2)>\alpha(3)>\cdots
$$

eventually terminates.
This lemma will be used to show that various algorithms must terminate because some term strictly decreases at each step of the algorithm.

Lexicographic order

Definition

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {lex }} \beta$ if, in the vector difference $\alpha-\beta \in \mathbb{Z}^{n}$, the leftmost nonzero entry is positive. We will write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.

Quiz
Compare w.r.t the lexicographic order:
© $(1,2,0)$ and $(0,3,4)$
(2) $(3,2,4)$ and $(3,2,1)$

Lexicographic order

Definition

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {lex }} \beta$ if, in the vector difference $\alpha-\beta \in \mathbb{Z}^{n}$, the leftmost nonzero entry is positive. We will write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.

Quiz

Compare w.r.t the lexicographic order:
(1) $(1,2,0)$ and $(0,3,4)$
(2) $(3,2,4)$ and $(3,2,1)$

Lexicographic order

Definition

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {lex }} \beta$ if, in the vector difference $\alpha-\beta \in \mathbb{Z}^{n}$, the leftmost nonzero entry is positive. We will write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.

Example

(1) $(1,2,0)>_{\text {lex }}(0,3,4)$ since $\alpha-\beta=(1,-1,-4)$
(2) $(3,2,4)>_{\text {lex }}(3,2,1)$ since $\alpha-\beta=(0,0,3)$
(3) the variables x_{1}, \ldots, x_{n} are ordered in the usual way:

$$
(1,0, \ldots, 0)>_{\text {lex }}(0,1,0, \ldots, 0)>_{\text {lex }} \cdots>_{\operatorname{lex}}(0, \ldots, 0,1)
$$

(4) analogous to the order of words in dictionaries

Lexicographic order

Proposition

The lex order on $\mathbb{Z}_{\geq 0}^{n}$ is a monomial order.

- there are many lex orders, corresponding to which 1-to-1 correspondence between the monomials $k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbb{Z}_{\geq 0}^{n}$ is chosen
- this corresponds to how the variables are ordered
- so far used lex order with $x_{1}>x_{2}>\ldots>x_{n}$
- there are n ! lex orders
- in lex order a variable dominates any monomial involving only smaller variables

Proof: (1) It is a total order by definition and that numerical order on \mathbb{Z}_{20} is a monomial order.
(2) Assume $\alpha>\beta$. It implies that the leftmost nonzle entry of $\alpha-\beta$ is pritive. Thea $(\alpha+j e)-(\beta+\beta)=\alpha-\beta$ and $\alpha+j e>\beta+j e$.
(3) Consider a non-enpty subset of $\mathbb{Z}^{n} \geq 0$. Since the unmerical oder is a well-order, we call choose the minimal value among the first coordinate of all the elements in this set. Ameng all the elements of this at that have the first cocrdinale withe the minimal value, we can pick uninimal value bi the second coo ordinates. We an repeat the procedure for all ordinates to obtain the minimal element in the set. Hence Tex is a well-ordering.

Graded lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and } \alpha>_{\text {lex }} \beta
$$

Quiz

Compare w.r.t the graded lexicographic order:
(1) $(1,2,3)$ and $(3,2,0)$
(2) $(1,1,5)$ and $(1,2,4)$

Graded lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and } \alpha>_{\text {lex }} \beta
$$

Quiz

Compare w.r.t the graded lexicographic order:
(1) $(1,2,3)$ and $(3,2,0)$
(2) $(1,1,5)$ and $(1,2,4)$

Graded lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and } \alpha>_{\text {lex }} \beta
$$

Example

- $(1,2,3)>_{\text {grlex }}(3,2,0)$ since $|(1,2,3)|=6>|(3,2,0)|=5$
- $(1,2,4)>_{\text {grlex }}(1,1,5)$ since $|(1,2,4)|=|(1,1,5)|$ and $(1,2,4)>_{\text {lex }}(1,1,5)$
- the variables are ordered according to the lex order

Graded reverse lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grevlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and }
$$

the rightmost nonzero entry of $\alpha-\beta \in \mathbb{Z}^{n}$ is negative.

Quiz
Compare w.r.t the graded reverse lexicographic order:

- $(4,2,3)$ and $(4,7,1)$
(2) $(1,5,2)$ and $(4,1,3)$

Graded reverse lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grevlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and }
$$

the rightmost nonzero entry of $\alpha-\beta \in \mathbb{Z}^{n}$ is negative.

Quiz

Compare w.r.t the graded reverse lexicographic order:
(1) $(4,2,3)$ and $(4,7,1)$
(2) $(1,5,2)$ and $(4,1,3)$

Graded reverse lexicographic order

Definition

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {grevlex }} \beta$ if

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}>|\beta|=\sum_{i=1}^{n} \beta_{i}, \text { or }|\alpha|=|\beta| \text { and }
$$

the rightmost nonzero entry of $\alpha-\beta \in \mathbb{Z}^{n}$ is negative.

Example

- $(4,7,1)>$ grevlex $(4,2,3)$ since

$$
|(4,7,1)|=12>|(4,2,3)|=9
$$

- $(1,5,2)>_{\text {grevlex }}(4,1,3)$ since $|(1,5,2)|=|(4,1,3)|$ and

$$
(1,5,2)-(4,1,3)=(-3,4,-1)
$$

- gives the same order on the variables

Quiz

Order the terms of $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ with respect to lex, grlex and grevlex orders.

Quiz

Order the terms of $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ with respect to lex, grlex and grevlex orders.

- Wrt the lex order

$$
f=-5 x^{3}+7 x^{2} z^{2}+4 x y^{2} z+4 z^{2}
$$

- Wrt the grlex order

$$
f=7 x^{2} z^{2}+4 x y^{2} z-5 x^{3}+4 z^{2}
$$

- Wrt grevlex order

$$
f=4 x y^{2} z+7 x^{2} z^{2}-5 x^{3}+4 z^{2}
$$

Terminology

Definition

Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $>$ be a monomial order.
(1) The multidegree of f is
$\operatorname{multideg}(f)=\max \left(\alpha \in \mathbb{Z}_{\geq 0}^{n}: a_{\alpha} \neq 0\right)$.
(2) The leading coefficient of f is

(3) The leading monomial of f is

Terminology

Definition

Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $>$ be a monomial order.
(1) The multidegree of f is

$$
\operatorname{multideg}(f)=\max \left(\alpha \in \mathbb{Z}_{\geq 0}^{n}: a_{\alpha} \neq 0\right)
$$

(2) The leading coefficient of f is

(3) The leading monomial of f is

Terminology

Definition

Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $>$ be a monomial order.
(1) The multidegree of f is

$$
\operatorname{multideg}(f)=\max \left(\alpha \in \mathbb{Z}_{\geq 0}^{n}: a_{\alpha} \neq 0\right)
$$

(2) The leading coefficient of f is

$$
\mathrm{LC}(f)=\mathrm{a}_{\text {multideg }(f)} \in k
$$

(8) The leading monomial of f is

Terminology

Definition

Let $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ and let $>$ be a monomial order.
(1) The multidegree of f is

$$
\operatorname{multideg}(f)=\max \left(\alpha \in \mathbb{Z}_{\geq 0}^{n}: a_{\alpha} \neq 0\right)
$$

(2) The leading coefficient of f is

$$
\mathrm{LC}(f)=a_{\text {multideg }(f)} \in k
$$

(3) The leading monomial of f is

$$
\mathrm{LM}(f)=x^{\operatorname{multideg}(f)}
$$

Terminology

Definition

(9) The leading term of f is

$$
\operatorname{LT}(f)=\operatorname{LC}(f) \cdot \operatorname{LM}(f) .
$$

Quiz

Let $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ and let $>$ be the lex order. Find its multidegree, leading coefficient, leading monomial and leading term.

Terminology

Definition

(4) The leading term of f is

$$
\operatorname{LT}(f)=\operatorname{LC}(f) \cdot \operatorname{LM}(f)
$$

Quiz

Let $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ and let $>$ be the lex order. Find its multidegree, leading coefficient, leading monomial and leading term.

Terminology

Definition

(4) The leading term of f is

$$
\operatorname{LT}(f)=\operatorname{LC}(f) \cdot \operatorname{LM}(f)
$$

Quiz

Let $f=4 x y^{2} z+4 z^{2}-5 x^{3}+7 x^{2} z^{2}$ and let $>$ be the lex order. Find its multidegree, leading coefficient, leading monomial and leading term.

- multideg $(f)=(3,0,0)$
- $L C(f)=-5$
- $L M(f)=x^{3}$
- $L T(f)=-5 x^{3}$

Properties of multidegree

Lemma

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomials. Then
(1) multideg $(f g)=$ multideg $(f)+$ multideg (g).
(3) if $f+g \neq 0$, then
multideg $(f+g) \leq \max ($ multideg (f), multideg(g)). If in addition multideg $(f) \neq$ multideg(g), then equality occurs.

A division algorithm in $k\left[x_{1}, \ldots, x_{n}\right]$

A division algorithm

- Goal: divide $f \in k\left[x_{1}, \ldots, x_{n}\right]$ by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$
- Result: $f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r$

Example

A division algorithm

- Goal: divide $f \in k\left[x_{1}, \ldots, x_{n}\right]$ by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$
- Result: $f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r$

Example

Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=x y-1$ and $f_{2}=y^{2}-1$. Result: $x^{2} y+x y^{2}+y^{2}=(x+y)(x y-1)+1\left(y^{2}-1\right)+x+y+1$

$$
\begin{aligned}
& a_{1}: x+y \\
& a_{2}: 1 \\
& \begin{array}{l}
x y-1 \\
y^{2}-1
\end{array} \frac{\left\{\begin{array}{l}
x^{2} y+x y^{2}+y^{2} \\
x^{2} y-x
\end{array}\right.}{\left\lvert\, \begin{array}{l}
x y^{2}+x+y^{2} \\
x y^{2}-y
\end{array}\right.} \\
& \begin{aligned}
& \frac{x+y^{2}+y}{y^{2}+y} \\
& \frac{y^{2}-1}{y^{2}} \rightarrow x \\
& \frac{y}{y+1} \rightarrow x+y \\
& \rightarrow x+y+1
\end{aligned} \\
& x^{2} y+x y^{2}+y^{2}=(x+y)(x y-1)+1 \cdot\left(y^{2}-1\right)+x+y+1
\end{aligned}
$$

A division algorithm

Theorem

Fix a monomial order $>$ on $\mathbb{Z}_{\geq 0}^{n}$ and let $F=\left(f_{1}, \ldots, f_{s}\right)$ be an ordered s-tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every f can be written as

$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r
$$

where $a_{i}, r \in k\left[x_{1}, \ldots, x_{n}\right]$, and either $r=0$ or r is a linear combination of monomials with coefficients in k, none of which is divisible by any of $L T\left(f_{1}\right), \ldots, L T\left(f_{s}\right)$. We will call r a remainder of f on division by F. Furthermore, if $a_{i} f_{i} \neq 0$, then we have
multideg $(f) \geq$ multideg $\left(a_{i} f_{i}\right)$.

A division algorithm

Input: f_{1}, \ldots, f_{s}, f
Output: a_{1}, \ldots, a_{s}, r
$a_{1}:=0 ; \ldots ; a_{s}:=0 ; r:=0$
$p:=f$
WHILE $p \neq 0$ do
$i:=1$
divisionoccurred := false
WHILE $i \leq s$ AND divisionoccurred := false DO
IF LT $\left(f_{i}\right)$ divides $\operatorname{LT}(p)$ THEN

$$
\begin{aligned}
& a_{i}:=a_{i}+\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right) \\
& p:=p-\left(\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)\right) \cdot f_{i}
\end{aligned}
$$

divisionoccurred $:=$ true
ELSE

$$
i:=i+1
$$

IF divisionoccurred := false THEN

$$
\begin{aligned}
& r:=r+\mathrm{LT}(p) \\
& p:=p-\operatorname{LT}(p)
\end{aligned}
$$

Proof: (1) To move that the algor rithem works, first we show that $f=a_{1} \cdot f_{1}+\ldots+a_{3} \cdot f_{s}+p+r$ at each step of the algorithm. This is twee when we initialize $a_{11}, \ldots, a_{3}, p, r$. At each step either a_{i} and p git udifinede (as in the 11 vas $6 x$) or η and r gat redefined. In both cases, the identity is still satisfied.
(2) The algorithm ends when $\rho=0$. Then $f=a_{1} f_{1}+\ldots+a_{s} f_{s}+p+\gamma$.
(3) The algorithm terminates, be cares at each step p gits rodfind either as

$$
p-\left(\frac{L T(p)}{L T\left(f_{i}\right)}\right) \cdot L T\left(f_{i}\right) \text { on } p-L T(p)
$$ In both lases the unultidegue of p drops. By earlier lemma, wee decreasing sequence terminates.

(4) r is zee on no term of r is divisible by any of LT $\left(f_{i}\right)$, because at initialization r is zero and terms are added precisely when they are not divisible by any of $\operatorname{LT}\left(f_{i}\right)$.

Order of the polynomials

The order of the s-tuple of polynomials f_{1}, \ldots, f_{s} matters:
(1) Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=y^{2}-1$ and $f_{2}=x y-1$ using lex order with $x>y$:

(2) Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=x y-1$ and $f_{2}=y^{2}-1$ using lex order with $x>y$:

Order of the polynomials

The order of the s-tuple of polynomials f_{1}, \ldots, f_{s} matters:
(1) Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=y^{2}-1$ and $f_{2}=x y-1$ using lex order with $x>y$:
$x^{2} y+x y^{2}+y^{2}=(x+1)\left(y^{2}-1\right)+x(x y-1)+2 x+1$
(2) Divide $f=x^{2} y+x y^{2}+y^{2}$ by $f_{1}=x y-1$ and $f_{2}=y^{2}-1$ using lex order with $x>y$:
$x^{2} y+x y^{2}+y^{2}=(x+y)(x y-1)+1\left(y^{2}-1\right)+x+y+1$

Ideal membership problem

- the division algorithm in $k[x]$ solves the ideal membership problem
- if after division of f by $F=\left(f_{1}, \ldots, f_{S}\right)$ we obain a remainder $r=0$, then

$$
f=a_{1} f_{1}+\ldots+a_{s} f_{s} \text { and } f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

- $r=0$ is a sufficient by not a necessary condition for being in the ideal

Ideal membership problem

- the division algorithm in $k[x]$ solves the ideal membership problem
- if after division of f by $F=\left(f_{1}, \ldots, f_{s}\right)$ we obain a remainder $r=0$, then

$$
f=a_{1} f_{1}+\ldots+a_{s} f_{s} \text { and } f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

- $r=0$ is a sufficient by not a necessary condition for being in the ideal

Ideal membership problem

- the division algorithm in $k[x]$ solves the ideal membership problem
- if after division of f by $F=\left(f_{1}, \ldots, f_{s}\right)$ we obain a remainder $r=0$, then

$$
f=a_{1} f_{1}+\ldots+a_{s} f_{s} \text { and } f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

- $r=0$ is a sufficient by not a necessary condition for being in the ideal

Ideal membership problem

- the division algorithm in $k[x]$ solves the ideal membership problem
- if after division of f by $F=\left(f_{1}, \ldots, f_{s}\right)$ we obain a remainder $r=0$, then

$$
f=a_{1} f_{1}+\ldots+a_{s} f_{s} \text { and } f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

- $r=0$ is a sufficient by not a necessary condition for being in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal / generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal / generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal / generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal I generated by $f_{1}, \ldots . f_{s}$
- want a good generating set for /
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal / generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal I generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal I generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

A division algorithm

- $f_{1}=x y+1, f_{2}=y^{2}-1 \in k[x, y]$ with the lex order
- divide f by $F=\left(f_{1}, f_{2}\right)$
- result: $x y^{2}-x=y(x y+1)+0\left(y^{2}-1\right)+(-x-y)$
- divide f by $F=\left(f_{2}, f_{1}\right)$
- result: $x y^{2}-x=x\left(y^{2}-1\right)+0(x y+1)+0$
- the second calculation shows that $f \in\left\langle f_{1}, f_{2}\right\rangle$
- the first calculation shows that even if $f \in\left\langle f_{1}, f_{2}\right\rangle$ it is possible to obtain a nonzero remainder
- pass to the ideal I generated by f_{1}, \ldots, f_{s}
- want a good generating set for I
- Groebner bases: condition $r=0$ is equivalent to membership in the ideal

Conclusion

Today:

- Motivation for Gröbner bases
- Orders of the monomials
- Division algorithm for polynomials in n variables

Next time:

- Monomial ideals
- Hilbert basis theorem
- Groebner bases

