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Overview

Last time:
Ideals

Ideal generated by f1, . . . , fs ∈ k [x1, . . . , xn]
Finitely generated ideal
Vanishing ideal of an affine variety

〈f1, . . . , fs〉 ⊆ I(V (f1, . . . , fs))
V ⊆ W ⇔ I(V ) ⊇ I(W )

Polynomials in one variable
Division algorithm
A degree m polynomial has at most m roots
Every ideal in k [x ] can be written in the form 〈f 〉
Greatest common divisor

Today:
Motivation for Groebner bases
Orders of the monomials
Division algorithm for polynomials in n variables
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Ideal membership problem

Is there an algorithm for deciding whether a given
polynomial f ∈ k [x ] lies in the ideal 〈f1, . . . , fs〉?
Using GCDs find a generator h of 〈f1, . . . , fs〉.
Use the division algorithm to write f = qh + r where
deg(r) < deg(h).
The polynomial f is in the ideal if and only if r = 0.

Example

x3 + 4x2 + 3x − 7 ∈ 〈x3 − 3x + 2, x4 − 1, x6 − 1〉?
x3 + 4x2 + 3x − 7 ∈ 〈x − 1〉?
x3 + 4x2 + 3x − 7 = (x2 + 5x + 8)(x − 1) + 1
x3 + 4x2 + 3x − 7 is not in the ideal

Quiz: Does x ∈ 〈x3 − 3x + 2, x4 − 1, x6 − 1〉?
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Groebner bases
introduction
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Introduction

We will study the method of Groebner bases which will allow us
to solve problems about polynomial ideals in algorithmic and
computational fashion.

The ideal description problem: Does every ideal
I ⊂ k [x1, . . . , xn] have a finite generating set?
The ideal membership problem: Given f ∈ k [x1, . . . , xn]
and ideal I = 〈f1, . . . , fs〉, determine if f ∈ I.
The problem of solving polynomial equations: Find all
common solutions in kn of a system of polynomial
equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0.

The implicitization problem: If V is given by a rational
parametric representation, find a system of polynomial
equations that defines V .
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Ideal description and membership problems

Example
When n = 1, we solved the ideal description problem.
Given I ⊂ k [x ], we showed that I = 〈g〉 for some g ∈ k [x ].
The solution to the ideal membership problem follows from
the division algorithm: given f ∈ k [x ], to check whether
f ∈ I = 〈g〉, we divide f by g:

f = qg + r .

Then f ∈ I if and only if r = 0.

Kaie Kubjas Groebner Bases



Ideal description and membership problems

Example
When n = 1, we solved the ideal description problem.
Given I ⊂ k [x ], we showed that I = 〈g〉 for some g ∈ k [x ].
The solution to the ideal membership problem follows from
the division algorithm: given f ∈ k [x ], to check whether
f ∈ I = 〈g〉, we divide f by g:

f = qg + r .

Then f ∈ I if and only if r = 0.

Kaie Kubjas Groebner Bases



Solving polynomial equations

Example
Solve the system of polynomial equations

2x1 + 3x2 − x3 = 0,
x1 + x2 − 1 = 0,
x1 + x3 − 3 = 0.

Gaussian elimination gives the reduced row echelon form: 1 0 1 3
0 1 −1 −2
0 0 0 0

 .

Hence

x1 = −t + 3, x2 = t − 2, x3 = t .
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Implicitization problem

Consider the affine linear subspace V in k4 parametrized by

x1 = t1 + t2 + 1,
x2 = t1 − t2 + 3,
x3 = 2t1 − 1,
x4 = t1 + 2t2 − 3.

Order the variables t1, t2, x1, x2, x3, x4. The corresponding
matrix of coefficients is:

1 1 −1 0 0 0 −1
1 −1 0 −1 0 0 −3
2 0 0 0 −1 0 2
1 2 0 0 0 −1 3

 .
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Implicitization problem

Gaussian elimination gives the matrix:
1 0 0 0 −1/2 0 1
0 1 0 0 1/4 −1/2 1
0 0 1 0 −1/4 −1/2 3
0 0 0 1 −3/4 1/2 3

 .

The last two rows of this matrix correspond to the equations:

x1 − (1/4)x3 − (1/2)x4 − 3 = 0,
x2 − (3/4)x3 + (1/2)x4 − 3 = 0.

These two equations define V in k4.
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Orders on monomials
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Orders on monomials

In dividing f (x) = x5 − 3x2 + 1 by g(x) = x2 − 4x + 7:
write the terms in decreasing order
subtract x3g(x) from f to cancel the leading term
repeat the process
the degree order of the monomials

· · · > xm+1 > xm > · · · > x2 > x > 1

Gaussian elimination:
work with the entries to the left first
order of the variables

x1 > x2 > · · · > xn
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Orders on monomials

to extend polynomial division and Gaussian elimination to
arbitrary polynomials, one needs an order on the terms in
polynomials in k [x1, . . . , xn]

a 1-to-1 correspondence between the monomials in
k [x1, . . . , xn] and Zn

≥0

would like to compare every pair of monomials⇒ total
order
a monomial times a polynomial should keep the relative
order of terms⇒ if xα > xβ and xγ is any monomial, then
we require xαxγ > xβxγ
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Total order

Definition
Let X and Y be sets. A binary relation R on X and Y is a
subset of X × Y . The statement (x , y) ∈ R is denoted xRy .

If X = Y , then we say that R is a binary relation on X .

Definition
Let X be a set. A binary relation ≥ is a total order on X if it
satisfies for all a,b and c in X :

(Antisymmetry) If a ≥ b and b ≥ a, then a = b,
(Transitivity) If a ≥ b and b ≥ c, then a ≥ c, and
(Connexity) a ≥ b or b ≥ a.

A total order is also called a linear order.
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Strict total order

Each total order ≥ defines a strict total order > in the
following way: a > b if a ≥ b and a 6= b.

It satisfies the following properties:
(Transitivity) If a > b and b > c, then a > c, and
(Trichotomy) Exactly one of a > b, b > a and a = b is true.

Conversely, a transitive trichotomous binary relation > defines
a total order ≥ in the following way: a ≥ b if a > b or a = b.
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Monomial order

Definition
A monomial order ≥ on k [x1, . . . , xn] is an relation ≥ on Zn

≥0
satisfying:

1 ≥ is a total order on Zn
≥0.

2 If α ≥ β and γ ∈ Zn
≥0, then α+ γ ≥ β + γ.

3 ≥ is a well-order on Zn
≥0. This means that every nonempty

subset of Zn
≥0 has a smallest element under ≥.

We will call the strict total order defined by a monomial order
also a monomial order.
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Monomial order

Example
The usual numerical order

· · · > m + 1 > m > · · · > 3 > 2 > 1 > 0

on the elements Z≥0 is a monomial order.
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Monomial order

Lemma
An order relation > on Zn

≥0 is a well-order if and only if every
strictly decreasing sequence in Zn

≥0

α(1) > α(2) > α(3) > · · ·

eventually terminates.

This lemma will be used to show that various algorithms must
terminate because some term strictly decreases at each step of
the algorithm.
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Lexicographic order

Definition
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn

≥0. We say
α >lex β if, in the vector difference α− β ∈ Zn, the leftmost
nonzero entry is positive. We will write xα >lex xβ if α >lex β.

Quiz
Compare w.r.t the lexicographic order:

1 (1,2,0) and (0,3,4)
2 (3,2,4) and (3,2,1)
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Lexicographic order

Definition
Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn

≥0. We say
α >lex β if, in the vector difference α− β ∈ Zn, the leftmost
nonzero entry is positive. We will write xα >lex xβ if α >lex β.

Example
1 (1,2,0) >lex (0,3,4) since α− β = (1,−1,−4)
2 (3,2,4) >lex (3,2,1) since α− β = (0,0,3)
3 the variables x1, . . . , xn are ordered in the usual way:

(1,0, . . . ,0) >lex (0,1,0, . . . ,0) >lex · · · >lex (0, . . . ,0,1)

4 analogous to the order of words in dictionaries
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Lexicographic order

Proposition

The lex order on Zn
≥0 is a monomial order.

there are many lex orders, corresponding to which 1-to-1
correspondence between the monomials k [x1, . . . , xn] and
Zn
≥0 is chosen

this corresponds to how the variables are ordered
so far used lex order with x1 > x2 > . . . > xn

there are n! lex orders
in lex order a variable dominates any monomial involving
only smaller variables
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Graded lexicographic order

Definition
Let α, β ∈ Zn

≥0. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and α >lex β.

Quiz
Compare w.r.t the graded lexicographic order:

1 (1,2,3) and (3,2,0)
2 (1,1,5) and (1,2,4)
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Graded lexicographic order

Definition
Let α, β ∈ Zn

≥0. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and α >lex β.

Example

(1,2,3) >grlex (3,2,0) since |(1,2,3)| = 6 > |(3,2,0)| = 5
(1,2,4) >grlex (1,1,5) since |(1,2,4)| = |(1,1,5)| and
(1,2,4) >lex (1,1,5)
the variables are ordered according to the lex order
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Graded reverse lexicographic order

Definition
Let α, β ∈ Zn

≥0. We say α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and

the rightmost nonzero entry of α− β ∈ Zn is negative.

Quiz
Compare w.r.t the graded reverse lexicographic order:

1 (4,2,3) and (4,7,1)
2 (1,5,2) and (4,1,3)
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Graded reverse lexicographic order

Definition
Let α, β ∈ Zn

≥0. We say α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi , or |α| = |β| and

the rightmost nonzero entry of α− β ∈ Zn is negative.

Example

(4,7,1) >grevlex (4,2,3) since
|(4,7,1)| = 12 > |(4,2,3)| = 9
(1,5,2) >grevlex (4,1,3) since |(1,5,2)| = |(4,1,3)| and
(1,5,2)− (4,1,3) = (−3,4,−1)
gives the same order on the variables
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Quiz

Order the terms of f = 4xy2z + 4z2 − 5x3 + 7x2z2 with respect
to lex, grlex and grevlex orders.
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Quiz

Order the terms of f = 4xy2z + 4z2 − 5x3 + 7x2z2 with respect
to lex, grlex and grevlex orders.

Wrt the lex order

f = −5x3 + 7x2z2 + 4xy2z + 4z2.

Wrt the grlex order

f = 7x2z2 + 4xy2z − 5x3 + 4z2.

Wrt grevlex order

f = 4xy2z + 7x2z2 − 5x3 + 4z2.
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Terminology

Definition
Let f =

∑
α aαxα be a nonzero polynomial in k [x1, . . . , xn] and

let > be a monomial order.
1 The multidegree of f is

multideg(f ) = max(α ∈ Zn
≥0 : aα 6= 0).

2 The leading coefficient of f is

LC(f ) = amultideg(f ) ∈ k .

3 The leading monomial of f is

LM(f ) = xmultideg(f ).
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Terminology

Definition
4 The leading term of f is

LT(f ) = LC(f ) · LM(f ).

Quiz

Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 and let > be the lex order.
Find its multidegree, leading coefficient, leading monomial and
leading term.
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Terminology

Definition
4 The leading term of f is

LT(f ) = LC(f ) · LM(f ).

Quiz

Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 and let > be the lex order.
Find its multidegree, leading coefficient, leading monomial and
leading term.

multideg(f ) = (3,0,0)
LC(f ) = −5
LM(f ) = x3

LT(f ) = −5x3
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Properties of multidegree

Lemma
Let f ,g ∈ k [x1, . . . , xn] be nonzero polynomials. Then

1 multideg(fg) = multideg(f ) + multideg(g).
2 if f + g 6= 0, then

multideg(f + g) ≤ max(multideg(f ),multideg(g)). If in
addition multideg(f ) 6= multideg(g), then equality occurs.
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A division algorithm in
k [x1, . . . , xn]
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A division algorithm

Goal: divide f ∈ k [x1, . . . , xn] by f1, . . . , fs ∈ k [x1, . . . , xn]

Result: f = a1f1 + · · ·+ asfs + r

Example

Divide f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1.
Result: x2y +xy2 +y2 = (x +y)(xy −1)+1(y2−1)+x +y +1

Kaie Kubjas Groebner Bases



A division algorithm

Goal: divide f ∈ k [x1, . . . , xn] by f1, . . . , fs ∈ k [x1, . . . , xn]

Result: f = a1f1 + · · ·+ asfs + r

Example

Divide f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1.
Result: x2y +xy2 +y2 = (x +y)(xy −1)+1(y2−1)+x +y +1

Kaie Kubjas Groebner Bases





A division algorithm

Theorem
Fix a monomial order > on Zn

≥0 and let F = (f1, . . . , fs) be an
ordered s-tuple of polynomials in k [x1, . . . , xn]. Then every f
can be written as

f = a1f1 + · · ·+ asfs + r ,

where ai , r ∈ k [x1, . . . , xn], and either r = 0 or r is a linear
combination of monomials with coefficients in k, none of which
is divisible by any of LT(f1), . . . ,LT(fs). We will call r a
remainder of f on division by F. Furthermore, if ai fi 6= 0, then
we have

multideg(f ) ≥ multideg(ai fi).
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A division algorithm

Input: f1, . . . , fs, f
Output: a1, . . . ,as, r
a1 := 0; . . . ;as := 0; r := 0
p := f
WHILE p 6= 0 do

i := 1
divisionoccurred := false
WHILE i ≤ s AND divisionoccurred := false DO

IF LT(fi) divides LT(p) THEN
ai := ai + LT(p)/LT(fi)
p := p − (LT(p)/LT(fi)) · fi
divisionoccurred := true

ELSE
i := i + 1

IF divisionoccurred := false THEN
r := r + LT(p)
p := p − LT(p)
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Order of the polynomials

The order of the s-tuple of polynomials f1, . . . , fs matters:
1 Divide f = x2y + xy2 + y2 by f1 = y2 − 1 and f2 = xy − 1

using lex order with x > y :
x2y + xy2 + y2 = (x + 1)(y2 − 1) + x(xy − 1) + 2x + 1

2 Divide f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1
using lex order with x > y :
x2y + xy2 + y2 = (x + y)(xy − 1) + 1(y2 − 1) + x + y + 1
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Ideal membership problem

the division algorithm in k [x ] solves the ideal membership
problem
if after division of f by F = (f1, . . . , fs) we obain a
remainder r = 0, then

f = a1f1 + . . .+ asfs and f ∈ 〈f1, . . . , fs〉

r = 0 is a sufficient by not a necessary condition for being
in the ideal
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A division algorithm

f1 = xy + 1, f2 = y2 − 1 ∈ k [x , y ] with the lex order
divide f by F = (f1, f2)
result: xy2 − x = y(xy + 1) + 0(y2 − 1) + (−x − y)
divide f by F = (f2, f1)
result: xy2 − x = x(y2 − 1) + 0(xy + 1) + 0
the second calculation shows that f ∈ 〈f1, f2〉
the first calculation shows that even if f ∈ 〈f1, f2〉 it is
possible to obtain a nonzero remainder
pass to the ideal I generated by f1, . . . , fs
want a good generating set for I
Groebner bases: condition r = 0 is equivalent to
membership in the ideal
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Conclusion

Today:
Motivation for Gröbner bases
Orders of the monomials
Division algorithm for polynomials in n variables

Next time:
Monomial ideals
Hilbert basis theorem
Groebner bases
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