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CO, emissions of fusion/fission (last lecture)

CO, exhaust of power reactors in their entire life cycle
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Kikuchi, Proc. 18" World Energy Conference 2001
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CO, emissions of fusion/fission (last lecture)

Where do Co, emissions of fusion come from? s
(fusion 6-12 vs e.g. fission 5.7 and coal 270 carbon g/kWh ) o el
. . . 4 Current drive
« Most CO, emissions from fusion ' s
reactors are from materials (according 3500000 m Heat transport
- m Reactor buildi
to Tokimatsu et al NF2000) SN i
« CO, emissions from (ITER-like) reactor ¢ v .
construction account for almost 60-
70% of the total, with the rest coming 1500000 " Replicemen.
from reactor operation il
* The emissions depend much on el i
- ® Main frame
reactor type (size etc) O o
m TF coil

Life cycle total CO, emission for two different

DEMO designs. Kobori et al Fusion
Engineering and Design 2016
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CO, emissions of fusion/fission (last lecture)

Fusion vs. fission

* In fission, the processes for mining and refining uranium and
making reactor fuel all require large amounts of energy.

* Nuclear power plants also have large amounts of metal and
concrete, which require large amounts of energy to manufacture.

=
.

* Infission, emissions ' S
% =80%
are mostly fuel related &%, .
while in fusion plants ~ Z£us |
material related 5 20% |
0% :
_ Coal Fission_ DT Fusion ~ Wind
B Fuel Related & Plant Materials & Construction
_I:Il:;lp:mljﬁn _ B Decommissioning .'."i: Waste D'!-&_i_pl:lﬁﬂ}

Proportional energy requirements for different energy sources. White et al
Fusion Engineering and Design 2000
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Concept of high-temperature plasmas and nuclear fusion

Fusion requirements = Lawson criterion
Constraints and limitation of burn conditions

Fusion reactions and fuels
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Fusion holds one of the biggest promises of an

virtually unlimited energy source
4 H— He+2e +2V' + 2y
+26.8MeV
— Core of the sunproduces

380 yottawatts (3.8 x 102¢
W) via fusion

— Merging of hydrogen
isotopes to helium

- m < m,: proton-proton
chain

- m>1.3 mg,: carbon-
nitrogen-oxygen-chain
(catalytic cycle)
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Fusion holds one of the biggest promises of an

virtually unlimited energy source

411H—>;He+2e++2v++2y %? IHK "
+26.8MeV

n
Y Gamma Ray
Fil
V] e @y | @
O Positran

A Mathias Groth & Timo Kiviniemi. Fusion Technology PHYS-E0463 “Fusion Principles®, Aalto University 7




At fusion-relevant temperatures, a plasma exists

of unbounded ions and electrons

* Plasmas are
(electrostatically)
neutral

* Plasmas need to
be confined to
remain hot

— Gravity

— Inertia

— Magnetic fields
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http://www.efda.org/

A wide range of reactants may be used besides

hydrogen isotopes

D+T ‘He (3.5 MeV) + n (14.1 MeV)

D+D 50%: T (1.01 MeV) + p (3.02 MeV)

50%: 3He (0.82 MeV) + n (2.45 MeV)

D+3He “He (3.6 MeV) + p (14.7 MeV)
T+T ‘He + 2n + 11.3 MeV
SHe+3He ‘He + 2p

SHe+T 951%:*He +p + n + 12.1 MeV

43%: “He (4.8 MeV) + D (9.5 MeV)

6%: “He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV)

D+6Li 4He (1.7 MeV) + He (2.3 MeV)
3He+6L i 2 4He + p + 16.9 MeV
p+"B 3 4He (1.7 MeV) + 8.7 MeV

Ref
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Deuterium-tritium reaction is favored since it has the

highest reaction rate at the lowest temperature

2H 3H -
0 ‘ *‘Energy in neutrons (~80%) for

\k, .4/ energy production (e.g.,

, - heating of blanket, also tritium
“He + 3.5 MeV

production)
n + 14.1 MeV

*4He (fast o particles) for
internal, self-sustained heating
of the fusion process
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Deuterium-tritium reaction is favored since it has the

hig

hest reaction rate at the lowest temperature

Reaction rates strongly depend on temperature

temperature [keVv] * Reactant nuclei

—_ 0 1 2 3
T 10 10 19 have to overcome
v electrostatic
o 10-22 "
£ repulsion =
10 heating to
£ 102 increase thermal
; 102 — D1 velocity
9 10'25 E— D'D
= _
8 | — D-He3| = Reaction rates
£ 02 10 10° 10* have a maximum

A
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temperature [billion Kelvin]
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http://en.wikipedia.org/

Deuterium-tritium reaction has the highest

reaction rate at the lowest temperature

temperature [keV]

o) 10° 10° 10° 10°

107t | ' : : :

= * At (engineering

“""E 10 .

=g feasible) 10 keV,
L s D-T reaction three
& 025 — DT | orders of

- = -

S o2 — D-D || magnitude higher
® 1027 , — D-He3| than D-D

& 107 10* 10° 10"

temperature [billion Kelvin]

<ov>  %3.68x 10T exp(-19.94T ") cm’s™
<ov>  %2.33x 10T exp(-18.76T ") cm’s”

Here, temperature is in keV
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Video: Where do you get fusion fuel?

. (from 1.45s — 3.57s)

* Where do you get Tritium?

 How much fuel do you need for average European
family‘s demand for electrical energy for entire year?
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https://youtu.be/vDAZsPkTkMM
http://en.wikipedia.org/

Video: Where do you get fusion fuel?

 Where do you get Tritium? A: from Lithium which is
abundant in natural rock everywhere on Earth
 How much fuel do you need for average European
family‘s demand for electrical energy for entire year?
A: 2 litres of water + 250g of rock

10°

Rock-forming elements

Ru

Major industrial metals in red Rh
Precious metals in purple . .
Rare earth elements in blue Rarest "metals Ir

Abundance, atoms of element per 10° atoms of Si

10_6 il I 1 l Il I Il I L l L l 1 I Il I L '
0 10 20 30 40 50 60 70 80 90
Atomic number, Z Wikipedia
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Criteria for fusion energy
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What temperatures, densities, and confinement

times) are required for fusion?

Internal heating via
fusion o’s (> 1 MeV)

I:’rad I:,trans
* Fusion power in
neutrons

* Radiative and
transport losses

. “He + 3.5 MeV
n+ 14.1 MeV

* Up to self-sustained
burn, auxiliary
heating required =
fraction of P;.,,,

I:,aux (4/ 5)Pfusion
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| P

usion aux

Energy gain factor 0 = P

F.

"—> Electricity (Q >> 1)

€< Electricity (Q < 1)

Lawson criterium () — o)
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Energy gain Q>1 gives scientific breakeven but...

“Engineering” breakeven: takes into account that
1) only a fraction (1-f ) of fusion energy goes to blanket

2) cooling fluid of blanket drives steam turbines with
efficiency n = 35-40 %

elec

3) fractionf  of P recirculated back into the

recirc elec

heaters
4) n_ _1is the efficiency that power supplied to the

heating systems is turned into heat in the fuel

B (1 fch) T] nheat P

elec recirc fus



What temperatures, densities, and confinement

times are required for fusion?

* Ignition condition: O=P,_ /P >1=>0—> o
— Q=1 break-even

* 50-50 mix of D-T
P,. =5P =35
total fusion power: fusion « = Snn oV E,V,
* Net heating

power: Pheat =P ux + Poc B Pbrems

a

— Paux + anY<0V>EOLI/p B CBT I/ane I/p

1 1
= 50-50 mix of D-T: Pheat — Paux +z ng< GV> EGV;, = CBT /ane V;
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Fusion power must exceed radiative (and thermal

conductive-convective) losses: Lawson criterion

10% ¢ .El\i\‘
“?E : “\\ h-f:ri_f)?f}
2 102 b “\‘
= : P / ®
s i .
@ fusion,D-T
L. 101 | ot
= E b&
I [ =
L S e
g ait g
”? -
£ T S
2 0 P
z | fusion,D-D
& .|
2 A0sy
(a

10.3 . 2 4 a2 -& a.aa‘h 2 2 o a a.n-a ot a 2 4 o - g a2

100 101 102 10°

T [keV]
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Energy leaks continuously out of the plasma =

needs to be compensated by additional heating

* Total kinetic energy in W =3nk,TV
plasma: ’ ’

* Heating power s
consumed to raise W, and
to compensate (transport)
losses:

])heat — de / dt + E’ans

= Energy confinement time: T, =W /(P,,-dW, /df)

eat

= (Time-dependent) power balance (usingQ=r, _  /
P,.and equation for P, shown earlier)

o) £ €5

A Mathias Groth & Timo Kiviniemi. Fusion Technology PHYS-E0463 “Fusion Principles®, Aalto University 21

to University

-CBTI/Zn 3I’ZkT d(3l’lkT)
T dt

E




For a 50-50 mix of D-T, the product of density and

confinement time must exceed 1020 s m-3

Overleaf T
n.(ov) E, 3—25 -G, n = 4 Ok
* Steady-state:
(d/dt=0) ) <OV> i &(Q+5 C.Tn? _3nk,T
’ 4Q E
* Break-even (Q =1): 3k T

nt ,=

e

% OV E,-C,T"

= For 50-50 D-T, min n_t at T = 25 keV = n_t; 2 1020 s m-
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The D-T reaction requires the lowest product of

and confinement time

densit
<oVv> = const.
temperature [keV]
5107 10" 10° 10’
10°" - '
2
;;iﬂ 1023
T
£ i9?2t
= 102
=
20 ——7 .
4

10 IE I3
0 10 10 10
temperature [million Kelvin]
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Allowing for a temperature-dependent reaction rate,

the Lawson criterion becomes a triple product

cc T2
<gv>oc T temperature [keV]
10° 10' 10° 10°

%

&

(7]

>

D

=,

|_

L

u s

- /

10° 10° 10
temperature [million Kelvin]
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Requirements for ignition are more stringent than

for break-even

Power balance, steady-state

I 3k, T
e FE Q+ 5 ) %
<O'V >Ea 40 Cpl
 Ignition (P, =0, T — 3k, T
. e” £ |
Q—); LoE -cr”

= For 50-50 D-T, a minimum product of n_.t; at T = 25 keV
= n.te 2 1.5x 1020 s m-3
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...............

Original Lawson criterion did not take into account P_

heating, nor helium ash, and intrinsic and extrinsic
impurities

te Is function of n and T (and device parameters);
determined experimentally = approach to ignition

Conversion efficiencies of input power sources and output
thermal energy to electric energy: ~30%

Profiles of n and T, peaking in the center, lead to increase in
minimum triple product

Lawson criterion for inertial confinement (IC) system takes
on a slightly different form = to be discuss together with IC
systems
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Lawson criterion becomes more stringent when

considering D-T dilution due to helium ash

102 _ ,
e D-T fusiona’s =
3.5 MeV =
become thermal
He?* at <10 keV
_10%r = dilution of D-T
n
IE ]
) = Accumulation of
‘;m He?* in the center
1021 may quench
— D-TPure fusion process
O p* =3
A p* =5
O p*=9 :
X p*=13 S
10% ' £
100 102
D. Reiter et al., Temperature [keV]

Nucl. Fusion 30 (1990) 2141.

A Mathias Groth & Timo Kiviniemi. Fusion Technology PHYS-E0463 “Fusion Principles®, Aalto University 27

Ito University
Scien



Lawson criterion becomes more stringent

when considering impurities

p° =135,
C (Z=6), W (Z =174)
~7?)

brems

* Additional dilution
and radiative losses
due to impurities =
upper limit of nt,

= Only very small
concentrations of
high-Z impurities,

20
10 e 20 ' 50 such as W, can be
R. Neu Habilitation 2003, T (keV) tolerated (< 5x1 05)
Tlbingen, Germany

A

to University
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Energy confinement time depends on many

plasma and device parameters

10+

Te ()

0.1

0.01

ITER Physics Basis,

ASDEX
DIlI-D
JET
JFT-2M
PBX-M
PDX
ASDEX Upgrade
ALCATOR C-Mod
COMPASS-D
JT-60U

TCV

ITER

S @ N

¢ ¢ 4 0 O ¢ O

X

o0t od
TE,iPBog(y) ®)

Nucl. Fusion 39 (1999) 2175.

A

Aalto University
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* Confinement times
of close to 1 s have
been achieved in
tokamaks

= Next-step devices
are expected to
reach 8 s, due to
larger size (R)

0.08 -0.63 0.41

T g iPBog(y) 10'97B P " n

X MO.20 R1'938 0.23K 0.67
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Approach to ignition depends on actual values

and gradients of T and T,

.  Max. P, required at
~5 keV = P_starts to

dominate for T > 5 keV
loss

« AtT=10keV, ignition

reach = Paux — 0

« P_non-linear with T
= unstable
equilibrium

Lack of experimental

| | | | data
0 2 4 6 8 10 12

T (keV)

Wesson “Tokamaks” (1996)
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D-T reaction has the highest power density at lowest

temperature, but produces

too) many fast neutrons

Fuel <cVv>/T2 Neutro- Power

D-T 1.24x10-24 0.80 17.6 34

D-D 1.28x10-2 0.66 12.5 0.5
D-3He 2.24x10-26 ~0.05 18.3 0.43
p-"Be 3.01x10% ~0.001 8.7 0.014

* Fast neutrons + high neutronicity (fraction of fusion
energy released in neutrons) lead to radiation damage

and plant safety issues
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Fusion of D-D is significantly more beneficial than

D-T

D+D 50%: T (1.01 MeV) + p (3.02 MeV)
50%: 3He (0.82 MeV) + n (2.45 MeV)

D+3He “He (3.6 MeV) + p (14.7 MeV)

p+""B 3 4He (1.7 MeV) + 8.7 MeV

* D-D does not require control of fuel mix

* D-D reaction results in 1 MeV tritons = self-heating +
additional D-T burn

* Advanced fuels (3He, ""B) low neutronicity, but requires
significantly higher densities, temperatures, and
confinement (higher triple products)
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...............

Deuterium may be distilled from any form of water =
widely available, harmless, and virtually inexhaustible
(33 mg in each liter/kg of water)

Tritium is an unstable radioactive isotope = half-life of
12.3 yr (beta decay): _
I'—>°He+e +v,

Tritium currently being produced externally in fission
plants (CANDU reactors)

In future plants, breeding of tritium by nuclear reaction (video:
3min 16s) of fusion neutrons with L.i:

n+Li—>*He+ T +4.8 MeV
n+'Li->*He+T+n -25 MeV
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https://www.youtube.com/watch?v=v5hOIjDsuJs

Replacing an electron with a muon permits fusion

lower (room) temperatures

HEI;.:'HT 5 & Tritium nucleus (t) | ° C reati N g
@ Muen ©@ Deuterium nucleus (d) | muons

requires
: 1 ? energies >>
(2) Production of w t .
TR ) fusion output
(3) Production of dtp m dtp molecules

muonic molecules

* Limited muon
cycle due to

sticking to
?o a-particles

Elr%hs (helium nuclei) * M uons h dave a

f"“e“a“”d"' ' < short life time
Fh—\ Sticking
@ ap particles (muonic helium atoms)
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http://www.rikenresearch.riken.jp/

* A high-temperature plasma at sufficient confinement is
required to achieve fusion conditions

— Magnetic, inertial and gravitational systems

* Break-even and ignition conditions are described by the
Lawson criterion

— Self-heating has to exceed radiative and transport losses

— Presence of helium and impurities significantly limits the
operational space

* Fusion of deuterium-tritium is currently favored: highest
cross-section (power density) at lowest temperature

— Fuel is abundantly available, though D-D reaction more
favorable for future devices
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