Basic principle of thermonuclear fusion

Dr. Timo Kiviniemi & Prof. Dr. Mathias Groth
Aalto University
School of Science, Department of Applied Physics

CO, emissions of fusion/fission (last lecture)

CO₂ exhaust of power reactors in their entire life cycle

Kikuchi, Proc. 18th World Energy Conference 2001

CO, emissions of fusion/fission (last lecture)

Where do CO₂ emissions of fusion come from?

(fusion 6-12 vs e.g. fission 5.7 and coal 270 carbon g/kWh)

- Most CO₂ emissions from fusion reactors are from materials (according to Tokimatsu et al NF2000)
- CO₂ emissions from (ITER-like) reactor construction account for almost 60-70% of the total, with the rest coming from reactor operation
- The emissions depend much on reactor type (size etc)

Life cycle total CO₂ emission for two different DEMO designs. Kobori et al Fusion Engineering and Design 2016

CO, emissions of fusion/fission (last lecture)

Fusion vs. fission

- In fission, the processes for mining and refining uranium and making reactor fuel all require large amounts of energy.
- Nuclear power plants also have large amounts of metal and concrete, which require large amounts of energy to manufacture.
- In fission, emissions are mostly fuel related while in fusion plants material related

Proportional energy requirements for different energy sources. White et al Fusion Engineering and Design 2000

Outline

- Concept of high-temperature plasmas and nuclear fusion
- Fusion requirements ⇒ Lawson criterion
- Constraints and limitation of burn conditions
- Fusion reactions and fuels

Fusion holds one of the biggest promises of an virtually unlimited energy source

$$4 {}_{1}^{1}H \rightarrow {}_{2}^{4}He + 2e^{+} + 2v^{+} + 2\gamma$$
$$+26.8MeV$$

- Core of the sunproduces
 380 yottawatts (3.8 x 10²⁶
 W) via fusion
- Merging of hydrogen isotopes to helium
- $m \lesssim m_{sun}$: proton-proton chain
- m > 1.3 m_{sun}: carbonnitrogen-oxygen-chain (catalytic cycle)

Fusion holds one of the biggest promises of an virtually unlimited energy source

$$4 {}_{1}^{1}H \rightarrow {}_{2}^{4}He + 2e^{+} + 2v^{+} + 2\gamma$$

+26.8MeV

At fusion-relevant temperatures, a plasma exists of unbounded ions and electrons

- Plasmas are (electrostatically) neutral
- Plasmas need to be confined to remain hot
 - Gravity
 - Inertia
 - Magnetic fields

http://www.efda.org

A wide range of reactants may be used besides hydrogen isotopes

D+T	⁴ He (3.5 MeV) + n (14.1 MeV)		
D+D	50%: T (1.01 MeV) + p (3.02 MeV)		
	50%: 3He (0.82 MeV) + n (2.45 MeV)		
D+3He	⁴ He (3.6 MeV) + p (14.7 MeV)		
T+T	⁴ He + 2n + 11.3 MeV		
³He+³He	⁴ He + 2p		
³He+T	51%: ⁴ He + p + n + 12.1 MeV		
	43%: ⁴ He (4.8 MeV) + D (9.5 MeV)		
	6%: 4He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV)		
D+6Li	⁴ He (1.7 MeV) + ³ He (2.3 MeV)		
³He+ ⁶ Li	2 ⁴ He + p + 16.9 MeV		
p+11B	3 ⁴ He (1.7 MeV) + 8.7 MeV		

Ref

Deuterium-tritium reaction is favored since it has the highest reaction rate at the lowest temperature

- $\Delta E_{D-T\rightarrow 4He} = 17.6 \text{ MeV}$
- •Energy in neutrons (~80%) for energy production (e.g., heating of blanket, also tritium production)
- 4He (fast α particles) for internal, self-sustained heating of the fusion process

Deuterium-tritium reaction is favored since it has the highest reaction rate at the lowest temperature

Reaction rates strongly depend on temperature

- Reactant nuclei
 have to overcome
 electrostatic
 repulsion ⇒
 heating to
 increase thermal
 velocity
- ⇒ Reaction rates have a maximum

Deuterium-tritium reaction has the highest reaction rate at the lowest temperature

 At (engineering feasible) 10 keV,
 D-T reaction three orders of magnitude higher than D-D

$$\langle \sigma v \rangle_{DT} \approx 3.68 \text{ x } 10^{-12} \text{T}^{-2/3} \text{exp}(-19.94 \text{T}^{-1/3}) \text{ cm}^3 \text{ s}^{-1}$$

 $\langle \sigma v \rangle_{DD} \approx 2.33 \text{ x } 10^{-14} \text{T}^{-2/3} \text{exp}(-18.76 \text{T}^{-1/3}) \text{ cm}^3 \text{ s}^{-1}$

Here, temperature is in keV

http://en.wikipedia.org

Video: Where do you get fusion fuel?

- Video about fusion fuel (from 1.45s 3.57s)
- Where do you get Tritium?
- How much fuel do you need for average European family's demand for electrical energy for entire year?

Video: Where do you get fusion fuel?

- Where do you get Tritium? A: from Lithium which is abundant in natural rock everywhere on Earth
- How much fuel do you need for average European family's demand for electrical energy for entire year?

A: 2 litres of water + 250g of rock

Criteria for fusion energy

What temperatures, densities, and confinement (times) are required for fusion?

- Internal heating via fusion α's (> 1 MeV)
- Fusion power in neutrons
- Radiative and transport losses
- Up to self-sustained burn, auxiliary heating required ⇒ fraction of P_{fusion}

Energy gain factor $Q \equiv P_{fusion} / P_{aux}$

Lawson criterium ($Q \rightarrow \infty$)

Energy gain Q>1 gives scientific breakeven but...

- "Engineering" breakeven: takes into account that
- 1) only a fraction (1-f_{ch}) of fusion energy goes to blanket
- 2) cooling fluid of blanket drives steam turbines with efficiency η_{aloc} = 35-40 %
- 3) fraction $\mathbf{f}_{\text{recirc}}$ of \mathbf{P}_{elec} recirculated back into the heaters
- 4) η_{heat} is the efficiency that power supplied to the heating systems is turned into heat in the fuel

$$P_{\text{heat}} = (1-f_{\text{ch}}) \eta_{\text{elec}} f_{\text{recirc}} \eta_{\text{heat}} P_{\text{fus}}$$

What temperatures, densities, and confinement times are required for fusion?

Ignition condition:

$$Q \equiv P_{\text{fusion}} / P_{\text{aux}} >> 1 \Rightarrow Q \rightarrow \infty$$

- Q=1 break-even
- 50-50 mix of D-T total fusion power:

$$P_{fusion} = 5P_{\alpha} = 5n_{X}n_{Y}\langle \sigma V \rangle E_{\alpha}V_{p}$$

Net heating power:

$$\begin{aligned} P_{heat} &= P_{aux} + P_{\alpha} - P_{brems} \\ &= P_{aux} + n_{x} n_{y} \langle \sigma v \rangle E_{\alpha} V_{p} - C_{B} T^{1/2} n_{e}^{2} V_{p} \end{aligned}$$

⇒ 50-50 mix of D-T:

$$P_{heat} = P_{aux} + \frac{1}{4} n_e^2 \langle \sigma v \rangle E_{\alpha} V_p - C_B T^{1/2} n_e^2 V_p$$

Fusion power must exceed radiative (and thermal conductive-convective) losses: Lawson criterion

Energy leaks continuously out of the plasma ⇒ needs to be compensated by additional heating

 Total kinetic energy in plasma:

$$W_p = 3n_e k_B T V_p$$

 Heating power is consumed to raise W_p and to compensate (transport) losses:

$$P_{heat} = dW_p / dt + P_{trans}$$

⇒ Energy confinement time:

$$au_{\scriptscriptstyle E} \equiv W_{\scriptscriptstyle p} \, / \, (P_{\scriptscriptstyle heat} \, extstyle - \, dW_{\scriptscriptstyle p} \, / \, dt)$$

 \Rightarrow (Time-dependent) power balance (using $Q \equiv P_{fusion} / P_{aux}$ and equation for P_{heat} shown earlier)

$$n_e^2 \langle \text{OV} \rangle E_\alpha \left(\frac{Q+5}{4Q} \right) - C_B T^{1/2} n_e^2 = \frac{3n_e k_B T}{\tau} + \frac{d}{dt} (3n_e k_B T)$$

E

For a 50-50 mix of D-T, the product of density and energy confinement time must exceed 10²⁰ s m⁻³

Overleaf
$$\rightarrow$$

$$n_e^2 \langle \text{OV} \rangle E_\alpha \left(\frac{Q+5}{4Q} \right) - C_B T^{1/2} n_e^2 = \frac{3n_e k_B T}{\tau_E} + \frac{d}{dt} (3n_e k_B T)$$

Steady-state:

$$(d/dt=0)$$

$$n_e^2 \langle \sigma v \rangle E_\alpha \left(\frac{Q+5}{4Q} \right) - C_B T^{1/2} n_e^2 = \frac{3n_e k_B T}{\tau_E}$$

• Break-even (Q = 1):

$$n_e \tau_E = \frac{3k_B T}{\frac{3}{2} \langle \sigma v \rangle E_\alpha - C_B T^{\frac{1}{2}}}$$

 \Rightarrow For 50-50 D-T, min $n_e \tau_E$ at T = 25 keV \Rightarrow $n_e \tau_E \ge 10^{20}$ s m⁻³

The D-T reaction requires the lowest product of density and confinement time

 $\langle \sigma v \rangle = const.$

 $n_e \tau_E \ge 10^{20} \text{ s m}^{-3}$

Allowing for a temperature-dependent reaction rate, the Lawson criterion becomes a triple product

Requirements for ignition are more stringent than for break-even

Power balance, steady-state

$$n_e \tau_E = \frac{3k_B T}{\langle \text{ov} \rangle E_\alpha \left(\frac{Q+5}{4Q} \right) - C_B T^{\frac{1}{2}}}$$

Ignition (P_{aux} = 0,
 Q →∞):

$$n_e \tau_E = \frac{3k_B T}{\frac{1}{4} \langle \sigma v \rangle E_\alpha - C_B T}$$

 \Rightarrow For 50-50 D-T, a minimum product of $n_e \tau_E$ at T = 25 keV

$$\Rightarrow$$
 $n_e \tau_E \ge 1.5 \times 10^{20} \text{ s m}^{-3}$

Limitations and uncertainties of the Lawson criterion values

- Original Lawson criterion did not take into account P_{α} heating, nor helium ash, and intrinsic and extrinsic impurities
- τ_E is function of n and T (and device parameters);
 determined experimentally ⇒ approach to ignition
- Conversion efficiencies of input power sources and output thermal energy to electric energy: ~30%
- Profiles of n and T, peaking in the center, lead to increase in minimum triple product
- Lawson criterion for inertial confinement (IC) system takes on a slightly different form ⇒ to be discuss together with IC systems

Lawson criterion becomes more stringent when considering D-T dilution due to helium ash

- D-T fusion α's =
 3.5 MeV ⇒
 become thermal
 He²+ at <10 keV
- ⇒ dilution of D-T
- ⇒ Accumulation of He²+ in the center may quench fusion process

Lawson criterion becomes **EVEN** more stringent when considering impurities

$$\rho^* = 5,$$
 $C(Z=6), W(Z=74)$
 $P_{brems} \sim Z^2)$

- Additional dilution and radiative losses due to impurities ⇒ upper limit of nτ_E
- ⇒ Only very small concentrations of high-Z impurities, such as W, can be tolerated (< 5x10⁻⁵)

Energy confinement time depends on many plasma and device parameters

- **Confinement times** of close to 1 s have been achieved in tokamaks
- **⇒ Next-step devices** are expected to reach 8 s, due to larger size (R)

 $\tau_{E,IPB\,98(y)} \propto I^{0.97} R^{0.08} P^{-0.63} n^{0.41}$ $\times M^{0.20} R^{1.93} \epsilon^{0.23} \kappa^{0.67}$

Nucl. Fusion 39 (1999) 2175.

Approach to ignition depends on actual values and gradients of T and τ_{F}

- Max. P_{aux} required at
 ~5 keV ⇒ P_α starts to
 dominate for T > 5 keV
- At T ≈ 10 keV, ignition
 reach ⇒ P_{aux} → 0
- P_α non-linear with T
 ⇒ unstable
 equilibrium
- Lack of experimental data

Wesson "Tokamaks" (1996)

D-T reaction has the highest power density at lowest temperature, but produces (too) many fast neutrons

Fuel	<ov>/T²</ov>	Neutro- nicity	E _{fus} [MeV]	Power density [Wm ⁻³ kPa ⁻²]
D-T	1.24x10 ⁻²⁴	0.80	17.6	34
D-D	1.28x10 ⁻²⁶	0.66	12.5	0.5
D-3He	2.24x10 ⁻²⁶	~0.05	18.3	0.43
p- ¹¹ Be	3.01x10 ⁻²⁷	~0.001	8.7	0.014

 Fast neutrons + high neutronicity (fraction of fusion energy released in neutrons) lead to radiation damage and plant safety issues

Fusion of D-D is significantly more beneficial than D-T

D+D	50%: T (1.01 MeV) + p (3.02 MeV)	
	50%: 3He (0.82 MeV) + n (2.45 MeV)	
D+3He	⁴ He (3.6 MeV) + p (14.7 MeV)	
p+11B	3 ⁴ He (1.7 MeV) + 8.7 MeV	

- D-D does not require control of fuel mix
- D-D reaction results in 1 MeV tritons ⇒ self-heating + additional D-T burn
- Advanced fuels (³He, ¹¹B) low neutronicity, but requires significantly higher densities, temperatures, and confinement (higher triple products)

Deuterium and tritium are abundantly available

- Deuterium may be distilled from any form of water ⇒
 widely available, harmless, and virtually inexhaustible
 (33 mg in each liter/kg of water)
- Tritium is an unstable radioactive isotope ⇒ half-life of 12.3 yr (beta decay):

$$T \rightarrow {}^{3}He + e^{-} + \overline{\nu}_{e}$$

- Tritium currently being produced externally in fission plants (CANDU reactors)
- In future plants, breeding of tritium by nuclear reaction (video: 3min 16s) of fusion neutrons with Li:

$$n + {}^{6}Li \rightarrow {}^{4}He + T$$
 + 4.8 MeV
 $n + {}^{7}Li \rightarrow {}^{4}He + T + n$ - 2.5 MeV

Replacing an electron with a muon permits fusion at significantly lower (room) temperatures

- Creating muons requires energies >> fusion output
- Limited muon cycle due to sticking to
 α-particles
- Muons have a short life time

Summary

- A high-temperature plasma at sufficient confinement is required to achieve fusion conditions
 - Magnetic, inertial and gravitational systems
- Break-even and ignition conditions are described by the Lawson criterion
 - Self-heating has to exceed radiative and transport losses
 - Presence of helium and impurities significantly limits the operational space
- Fusion of deuterium-tritium is currently favored: highest cross-section (power density) at lowest temperature
 - Fuel is abundantly available, though D-D reaction more favorable for future devices

