Lecture 3

Topics: Level curves, review of limits and continuity in 1 variable. Limits is 2 variables. Intro to partial derivatives.

- Introduced the concept of a level curve (and level surface). Talked about familiar applications such as the contour lines on topographic maps and isotherms on weather maps and so on.
- Viewed some surface and level curves on maple (code is in the materials sections).
- Emphasized that a curve is the graph of a function of one variable and the level curve of function of two variables. eg $y=f(x)=x+1$ or $F(x, y)=y-x=1$.
- Reviewed limits in 1 variable. Left and right hand limits. Looked a the example $\sin (x) / x$.
- Reviewed continuity in one variable
- Introduced limits of two variables and noted that there are now infinitely-many paths along which a point can be approached.
- Looked at the examples $x y /\left(x^{\wedge} 2+y^{\wedge} 2\right)$ and $2 x^{\wedge} 2 y /\left(x^{\wedge} 4+y^{\wedge} 2\right)$. In both cases we found the limit at $(0,0)$ does not exist. We then looked at 3D computer plots of the surfaces to understand what the surfaces look like near the point $(0,0)$ which is not in their domains. And also to understand the how limits along different curves give different values. The Maple code and pdf can be found in "materials".
- Showed that limit at $(0,0)$ of $x^{\wedge} 3 /\left(x^{\wedge} 2+y^{\wedge} 2\right)$ exists and is equal to zero by using the "Squeeze Theorem".
- Introductory ideas on the "derivative of a function of two variables"
- Extra material on smooth curves (useful for homework 2, \#3) - this was not covered during the lecture

Where to find this material

- Adams and Essex
- 1.2-1.5 (we only revied a small part of this but it is background you should know).
- 12.1-12.3
- Corral, 2.1, 2.2
- Guichard, 2.3, 14.1, 14.2, 14.3
- Active Calculus.
- 9.1, 10.1, 10.2
- For review of single variable limits see sections 1.2 and 1.7 of this book in the same series https://activecalculus.org/single/]

Note: The content added during the live lecture is all in orange

Level curves

This is actually a familiar idea. We want to represent a surface in terms of a plot in the xy-plane

A level (set) of curve $f(x, y)$ at level c is the set of points

$$
\{(x, y) \mid f(x, y)=c\}
$$

That is, the solutions to $f(x, y)=c$
Example Sketch some level curves of $f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& f(x, y)=\text { negative value No solutions } \\
& f(x, y)=0 \\
& f(x, y)=1 \\
& f(x, y)=4
\end{aligned}
$$

combining these

$\left[\begin{array}{c}\text { contour } \\ \text { plot }\end{array}\right.$

Level curves (2)
A conceptual point $\binom{$ useful later in }{ the course }
Let $g(x)=x+1$ which is a function of one variable
The graph of $g(x)$ is

We can rewrite this line as follows

$$
y=x+1 \Leftrightarrow \underbrace{}_{f(x, y)}-x=1
$$

Let $f(x, y)=y-x$ which is a function of two variable
The level curve $f(x, y)=1$ is the same line

Level surfaces

If we have a function of 3 variable, $f(x, y, z)$, then we can not sketch its graph as we would need a 4th dimension to record the values of f.

However, we can sketch the level set (surface) of $f(x, y, x)$
Example Let $f(x, y, z)=e^{x^{2}+y^{2}+z^{2}}$ sketch the level surface $f=6$

$$
\begin{aligned}
& e^{x^{2}+y^{2}+z^{2}}=6 \\
\Rightarrow & x^{2}+y^{2}+z^{2}=\ln (6) \text { sphere }
\end{aligned}
$$

Let's now look at some computer plots (code in MyCourses)

Limits (1 variable review)
Intuitive defintion of a limit:
We say $\lim _{x \rightarrow a} f(x)=L$ if and only if $f(x)$ can be made as close to L as we wish by choosing x sufficiently close to a.
(note: this says nothing about that falue $f(a)$, in fact it does not even need to be defined)

Formal defintion (not required for this course)
$\forall \varepsilon>0, \exists \delta>0$ such that $|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$
Fact:
$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=L$
from the right from the left
Continuity:
$f(x)$ is continuous at $x=a \Leftrightarrow \lim _{x \rightarrow a} f(x)=f(a)$
Examples

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=4 \\
& \lim _{x \rightarrow 3^{+}} f(x)=2
\end{aligned}
$$

$\therefore \lim _{x \rightarrow 3} f(x)$ does not exist and $f(x)$ is not continuous at $x=3$

Limits in 2 variables (2)
(3) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}$

TEST PATHS:

- Along the x-axis: $\lim _{x \rightarrow 0}\left(\frac{0}{x^{4}}=0\right.$
- Along the y-axis: $\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0$
- Along the line $y=x: \lim _{x \rightarrow 0} \frac{2 x^{3}}{x^{4}+x^{2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{2 x}{x^{2}+1} \text { Fut Factor }_{x^{2}} \\
& =0
\end{aligned}
$$

ok. This is getting boring... let's be smart and test all lines at once (except $x=0$) by setting $y=k x$

- Along the lines $y=k x$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 x^{2}(k x)}{x^{4}+k^{2} x^{2}} & =\lim _{x \rightarrow 0} \frac{2 k x}{x^{2}+k^{2}} \\
& =0 \frac{\text { for all valuer }}{\text { of } k}
\end{aligned}
$$

So we see that the limit is 0 along all lines. But it would be a mistake to conclude that the limit is in fact 0 . How can this be!!!!!

- Along the path $y=x^{2}$

$$
\begin{aligned}
\lim _{\substack{x \rightarrow 0 \\
y=}} \frac{2 x^{2} y}{x^{4}+y^{2}} & =\lim _{x \rightarrow 0} \frac{2 x^{4}}{x^{4}+x^{4}} \\
& =\lim _{x \rightarrow 0} 1 \\
& =1
\end{aligned}
$$

We conclude
that The limit does not exist

Limits in 2 variables (3)
(4) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}}$

We will use the squeeze theorem to show that this limit exists.

If $a(x) \leq b(x) \leq c(x)$ and $\lim _{x \rightarrow x_{0}} a(x)=\lim _{x \rightarrow x_{0}} c(x)=L$ then
$\lim _{x \rightarrow x_{0}} b(x)=L$
Similarly in 2 -variables
Think! $\cdot y^{2} \geqslant 0$, so $x^{2}+y^{2} \geqslant x^{2}$

$$
\Rightarrow \frac{1}{x^{2}+y^{2}} \leqslant \frac{1}{x^{2}}
$$

$$
00 \leqslant\left|\frac{x^{3}}{x^{2}+y^{2}}\right| \leqslant\left(\frac{x^{3}}{x^{2}}|=|x|\right.
$$

11
0

$$
\text { as } x \rightarrow 0
$$

So by the squeeze theorem

$$
\frac{x^{3}}{x^{2}+y^{2}} \rightarrow 0 \text { as }(x, y) \rightarrow(0,0)
$$

For the examples we just did let's now:

1. Look at plots of the surfaces to help understand what is going on
2. Also look at the level curves to get a different way of understanding. (This is related to Assigments 2, question \#6)

The Maple code and output plots are available on MyCourse

Note about smooth curves
(Not covered during lecture - might help with exercises sheet 2, \#3) Example

Parametrize $\quad x=t^{3}, y=t^{2}$
These are smooth functions of t.

But $\vec{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t\right\rangle$

$$
\vec{r}^{\prime}(0)=\langle 0,0\rangle
$$

motion comes to a stop at the non-smooth point

Example $\quad x(t)=t^{2}, y(t)=t^{4}$

$$
\vec{r}^{\prime}(0)=\langle 0,0\rangle
$$

but this curve is smooth (parabola)

Fact:
At a point where the curve is not smooth, $\vec{r}^{\prime}(t)=\langle 0,0\rangle$ or $\vec{r}^{\prime}(t)$ is not defined (does not exist)

But the converse is not true, as illustrated by the above example.

