Robotic Manipulation Exercise 1
Introduction to ROS, mujoco, and git

Robotic Operating System

- ROS stand for Robotic Operating System and was released 2007 by a company
known as Willow Garage.

- ROS is an open-source, meta-operating system for your robot.

- ROS is designed to be modular at a fine-grained scale.

- ROS is widely used in industry and academic research

ROS concept

- ROS is build up of nodes
- ROS nodes are registered through a ROS Master
- Nodes can communicate with each other via topics

- For more in depth knowledge about ROS you can read, for example,
http://wiki.ros.org/ROS/Introduction

ROS
Master

t;, Registration = Registratio nf/ﬂﬁ\
/ ROS \ / ROS j

<Messages—| <Messages—»|

'Node 2) Node n,

/ ROS
‘Node 1/

S _—__ =

j

Messages

http://wiki.ros.org/ROS/Introduction

ROS Workspace Environment

- Default workspace loaded with:

- Setup ROS workspace (http://wiki.ros.org/catkin/Tutorials/create_a_workspace)
- Always remember to or in your workspace after you

compiled the code in order to access the newly compiled ROS nodes.

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

Install MuJoCo

Download MuJoCo simulator from and put the simulator

code as well as your MudoCo key into the folder ~/.mujoco/, i.e.: (you can find the
“mjkey.txt” file in “MyCourses > For Aalto users”)

$ Is ~/.mujoco o

mmmmm

L
o
mjkey.txt mijpro200 = —
L V) “4—
$ Is ~/.mujoco/mjpro200 oo - <
bin doc include model sample

Inside ~/.mujoco folder run:

$ ~/.mujoco/mjpro200/bin/simulate ~/.mujoco/mjpro200/model/humanoid.xml

http://www.mujoco.org

Test ROS

Use three terminals

- First terminal (roscore)

b source ~/ros/devel/setup.zs

> roscore

- Second terminal (publisher)

b source ~/ros/devel/setup.zs

- Third terminal (subscriber)

TF

- Arobotic system typically has many 3D coordinate frames that change over
time. These coordinate systems are naturally expressed in a transformation
(TF) tree — http://wiki.ros.org/tf2

- tf maintains the relationship between coordinate frames in a tree structure

buffered in time, and lets the user transform points, vectors, etc between any
two coordinate frames at any desired point in time.

http://wiki.ros.org/tf2

RViz and TF tree

le Panels Help

™y interact |77 Move Camera | [JSelect <4 FocusCamera == Measure .# 2DPoseEstimate . 2D NavGoal

O pisplays
~ @ Global Options
Fixed Frame base._link
Background Color [l 48;48; 48
Frame Rate 30
Default Light v
~ ¥ Global status: Ok
v Fixed Frame ~ OK
» @ Grid v
~ i, RobotModel v
» v status: Ok
Visual Enabled V.
Collision Enabled — -y
Update Interval 0 hagt
Alpha 02
Robot Description robot_description
TF Prefix
» Links
W TF
» v status: Ok Wy Vet
Show Names
Show Axes
Show Arrows
Marker Scale
Update Interval
Frame Timeout !
» Frames
» Tree

L
PR i R

s

[

Alpha
Amount of transparency to apply to the links.

@ Publish Point

&+

View Jrames Resik

e 1579005934 660

Braxdcaser: hobots:

cae: 10000000 Haz
0000 (1SN005944 660 sec 0kl)
gt 0.000 sec

e oM)

secokl)

publisher
10201 1,

 wansform: 157905944.644 0.016 sec 0kl)

Bul

Brasdcaser: oo

length: 4900 sec

st publisher
este: 10204 He

cnt wansform: 1579005944.644 (0016 sec ok
Bu

Tumi_lnkd

Brasd

gt 4900 sec

sse_publisher
e: 10203 Hz

[Most recent wansform: 1579005944.644 (0,016 sec 0kl)
Buller kngsh: 4900 sec

[

lumi_tik6

Broadcasier: frobas_stste_pubis
Average e 10000 00

Most ecent 2

form: 0,000 (1SN00944 660 sec ol
Buffer lengh: 0.000 sec

publir
10204 Hz
1579005044644 (0.016 sec k)
agsh: .90 sec

e publisher
4 e
s 4644 (0.016 sec ok
agsh: 490 sec

obot_stste_publisher

0.000(1N005944 660 sec 0kl)
ngth 0,000 sec

robot_stste_publisher
cae: 10000000 Haz

0.000(1SM005944 660 sec okl)
length: 0.000 sec

frobot_stske_publisher
e: 10208 Hz
790005044644 0.016 sec ok
 kengeh: .90 sec

0016 sec0k)

Git

- Qitis a version-control system.
- In this course, gitlab is used for storing all exercises. If you have no previous

knowledge of git and/or gitlab then please read up about it online at, e.g.

https://docs.qgitlab.com/ee/qitlab-basics/
- To use Aalto gitlab you need to log in to https:/version.aalto.fii and then set up your

ssh key https:/docs.gitlab.com/ee/qitlab-basics/create-your-ssh-keys.htmi
- Or follow these two links here and here.

https://docs.gitlab.com/ee/gitlab-basics/
https://version.aalto.fi/
https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html
https://subscription.packtpub.com/book/application_development/9781783986842/2/ch02lvl1sec18/generating-your-ssh-key-on-unix-like-systems
https://subscription.packtpub.com/book/application_development/9781783986842/2/ch02lvl1sec20/adding-your-ssh-key-to-gitlab

gitlab group, forking the course material, and
pushing code

Interactive session during the exercise session.
For the gitlab repository, we created one subgroup for each one of you. You
can use the following pattern to access that:

https://version.aalto.fi/gitlab/robotic_manipulation_students_projects 2021/<your email address without @aalto.fi>
for example if your email address is eshagh.kargar@aalto.fi use:
https://version.aalto.fi/gitlab/robotic_manipulation_students_projects 2021/eshagh.kargar

On your computer, remember to always clone your newly forked exercise
repository into the src directory of your ROS workspace

https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2020/
https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2020/eshagh.kargar

Exercise file system

The file system for each exercise is visualized in the figure to the right

The src folder contains the template code you

need to fix —— CMakelLists.txt
— doc

The feedback folder will contain the TA's L exercisel.pdf

feedback and points awarded — feeﬂback :

In the report folder you will upload the - ?2;0‘:%6 s

exercise report as a pdf — sr¢

The docs folder will contain all necessary ros_intro.cpp

information for the current exercise.
Other files are ROS specific which you do not need to touch.

What did we not cover?

- Specifically to ROS, we did not cover concepts such as:

- ROS Services http://wiki.ros.org/Services,

- ROS Parameter Server http://wiki.ros.org/Parameter,

- ROS Bags http://wiki.ros.org/Bags,

- and much more http://wiki.ros.org/ROS/Concepts.
- With respect to Git we did not cover concepts such as

- Git Branching and Merging https://git-scm.com/book/en/v2/

- Git-Branching-Basic-Branching-and-Merging

- git-diff https://git-scm.com/docs/qgit-diff

- and much more http://thepilcrow.net/ explaining-basic-concepts-git-and-github/
- You will probably not need to master nor need these concepts during the

course, but it is good to know about them.

https://git-scm.com/book/en/v2/

