A

Aalto University

CS-E4890: Deep Learning
Lecture 2: Optimization

Alexander llin

Training a neural network

e Suppose we have a supervised learning task with training data:

y = Y(W3h2+b3

In this lecture, we will study how to train a neural network to

produce the correct output y for a given input x. hy = ¢(W2h1 + b2)

Training of a neural network is tuning the values of its parameters

to fit to the training data. [h; = (W1X +by)]

e Two most common tasks:

e classification: the output is discrete (class label)
e regression: the output is a real number

mput X

Classification problems: One-hot encoding of targets

e Classification tasks: a target can be represented as a one-hot vector y.
For example, for K = 3 classes:

1 0 0
class1: y = |0 class2: y = |1 class3: y = |0
0 0 1

K
{01} D y=1
j=1

Classification problems: softmax nonlinearity

e We want our neural network network to produce as output vector f whose j-th element f; is the
probability that input x belongs to class j. Thus, we need to make sure that:
0<£<1 i=1
1

K
=
e We can guarantee that by transforming the output h of the last layer in the following way:
_ __ eph
T Zﬁ:l exp hyr
e This nonlinearity is called softmax.

e If hj — oo and the other hj/; are fixed, then f; — [0, ...,0,1,0,...,0], which is a one-hot
representation of j, the index of the maximum element of h (thus soft max function).

Classification problems: Cross-entropy loss

e [t is common to tune parameters @ by minimizing the following loss function:

£(6) = ZZy(")Iogf x("),)

nljl

which is the negative log-likelihood for a probabilistic model with a categorical (also called multinoulli)
distribution for y whose parameters are given by f(x, 8)

.yf:;j.,

’:]x
<h

p(y | x,0) = Cat(y | f(x,0)) = where y;; =1

Il
i

J

e Cross-entropy between two discrete probability distributions p and q is defined as

H(p,q) =— Y _ p(x)logq(x)

xXEX

thus our loss £ can be seen as the cross-entropy between the correct distribution defined by y(" and the
distribution f(x(”)7 0) defined by the output of the network.

Regression problems: Mean-squared error loss

e Regression tasks: targets are y(") € RX,

e We can tune the parameters of the network by minimizing the mean-squared error (MSE):

1o 2
£O)= 5> Hy(") - f(x(”),G)H .
n=1

e In the probabilistic view, the minimized function is the negative log-likelihood of the following
probability distribution:
p(y | x,8) = N(y | f(x,6),0°).

Minimization of the loss with gradient descent

Toy optimization problem

e Consider a simple linear regression problem with two parameters:
T
fx,w) =w x=wixi + wax

and a tiny data set: x!) = (2,2), y® =2, x® =(2,0), y@ =0

e The MSE loss function is a quadratic function 25
1 2 2 2.0
_ (n) _ (n)
L(w1, we) = D) z; (y f(x 7W)) 1
n= £ 10

which can be written in the matrix notation as 05

0.0

L(w) = %WTAW —b'w+c s

e We need to minimize £ wrt w (W1 and Wz). 30 35 10 05 00 05 1o 15

wi

~ o "."/
! . N

e Gradient is a vector of partial derivatives:

oL
Owy
gw)= [
oL
Awyy
e Gradient points in the direction of the greatest rate of
increase of £, its magnitude is the slope of the graph of £ in <)~

1075 s -1'./0 -05 00 05 10 15

that direction.
e For our quadratic function L(w) = %WTAW —b"w + ¢, the gradient is

g(w)=Aw—b

Gradient descent

Y ‘/:/
e Gradient descent: update the parameters in the 2.5 <[~ //:?
direction opposite to the gradient: aol 1D N\
6« 0 — ng(6) - , -
with some step size n (also called learning rate). § 101 N

e We reduce the error but do not end up at the 054

minimum, so we need to iterate 0.04

0t+1 =60:— ntg(ot) —0.51

1.0 T T T u f
-20 -15 -10 -05 0.0 05 1.0 15
wy

Gradient computation with

the backpropagation algorithm

Gradient descent for training deep neural networks

e We want to use gradient-descent optimization method to minimize
. & P [y= (W3h2+b3)]
loss function £(60):
0:i1 = 6: — n:g(0:) [hz = &(W2h1 + bz)]
e In order to do that, we need to compute gradient g(0).
e Parameters 0 include W1, by, Wy, by, W3, bs. [hy = ¢(W1X+ b:)]
e Backpropagation: An algorithm to compute gradient g(8) for a [:]
multilayer neural network. nput x

11

e The chain rule is a formula to compute the derivative of a composite function:

F(x) = f(g(x))
F'(x) = f'(g(x))g'(x)

12

Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oL _ocoy w 0
20 — 9y 00
o _ Loy oh

-
~

aﬁ_waw @ @h@}/@

13

Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oL _ocoy w 0
00 ~ Oy 06
oL _ oLy on
ow ~ Oy 0h Ow) h () Y
N—— fi f
8L @ LIJ wT@

e We can compute the derivatives efficiently by storing intermediate results.

13

Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oc _ocoy w 0
90 — oy 06 B
oL _ocay o %
ow ~ Oy 0h Ow O) h () Y
—— X fi f L
oc J o J o
Oh Ay

e We can compute the derivatives efficiently by storing intermediate results.

13

Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oc _ocoy w 0
90 — oy 06 0 B
oL _ocay o ERIE
ow ~ Oy 0h Ow O) h () Y
—— X fi f L
oc J o J o
Oh Ay

e We can compute the derivatives efficiently by storing intermediate results.

13

Chain rule for multi-variable functions

e For multi-variable functions, the chain rule can be written in terms of Jacobian matrices.

y=f(u), u=gkx) yeR" ueR" xeR"

o ...

Ox1 Oxy
Jacobian matrix: Jrog =

9ym ... O9ym

Ox1 Oxp

e The chain rule is:
Jrog(x) = Jr(u)dg(x)

or each element of the Jacobian is:

ay; _ XK: ﬁauk
8X,' =1 auk 8X,'

14

Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"

e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay w 0

06; ~ <= dyi 96; l l

L <~ OL Oy . y

Db~ 2= Byx oh, O f f c
=1 X 1 2

AL = IL Oh

8W,' 8/7/ 8W,

15

Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay w 0
96; ~ < By 0; l l

K

L - OL O . y

Ohy ~ 2= Dy, Ohy O f f c
- X - ’ oL

OL ~— OL Oh s

8w,- o 8/7/ 8W,

e \We can compute the derivatives sequentially going from the outputs of the network towards the
inputs (thus the name of the algorithm backpropagation).

15

Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay
a9

- w (7]
i~ 2 Oy, 06;)
K T 9/
RN Y " y
Ohi — 2~ Dy, Oy @ (<) (5 {E]
J o) —
Oh Ayic

(‘:

Q

flar

L

oL 0L Oh

8W,' 8/7/ 8W,

e \We can compute the derivatives sequentially going from the outputs of the network towards the
inputs (thus the name of the algorithm backpropagation).

15

Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay
a9

= w o
i Pt ayk 89 l,[5 lT 5
K ow; 80;
AL AL e) y
Oh ~ 2= By, oh; @ f f c
J o U —
Oh Ayic

o
(‘:

Q

flar

L

oL 0L Oh

8W,' 8/7/ 8W,

e \We can compute the derivatives sequentially going from the outputs of the network towards the
inputs (thus the name of the algorithm backpropagation).

15

Implementing backpropagation in software

e For each block of a neural network, we need to implement the following computations:
e forward computations y = f(x,)

e backward computations that transform the derivatives wrt the block’s outputs g—ﬁ into the

derivatives wrt all its inputs: g—ﬁ, %
J
9L _ g~ 0L O O
89j o =1 'Yk a@i T%
90,
K
0L _ 5~ 0L Oon x (1Y
Ox 4= Oy Ox - or —J or
ax Ay

e We will practice implementing forward and backward computations in the first assigment.

16

A historical note on backpropagation

e The algorithm that is now called backpropagation was proposed by many researchers (e.g.,
Linnainmaa, 1970; Werbos, 1982).

e In application to training multi-layer neural networks, the algorithm became popular after a paper
by Rumelhart, Hinton and Williams (1986).

17

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

Analysis of convergence

of gradient descent

Effect of learning rate

e The learning rate 1 has a major effect on the convergence of the gradient descent.

0c1=0. —ng(6:)

25

2.0

15

1.0

w

0.5

0.0

-1.0 - 0 -
-20 -15 -1.0 -05 O. . . . -20 -15 -1.0 -05 0.0 05
wy

small n: too slow convergence large n: oscillates and can even diverge

19

Analysis of convergence of gradient descent

Apart from the learning rate, what affects the rate of convergence of the gradient descent?

Let us analyze convergence of gradient descent for a quadratic function (Goh, 2017)

L(w) = %WTAW —b'w

e We can compute optimal w analytically: w, = A™'b

Gradient descent iterations:

wei1 = w; — (Aw; — b)

20

https://distill.pub/2017/momentum/

Properties of A

L(w) = %WTAW —b'w

e The axes of the ellipses of the contour plot are defined by the "

eigenvectors of matrix A.

e The eigenvalues A\, of A determine the curvature of the
objective function: Larger A\n, correspond to higher curvatures
in the corresponding direction.

0
-20 -15 -10 -0.5 0.0 05 10 15
wy

21

Analysis of convergence of gradient descent

&

e Let us change the coordinate system such that the new basis is aligned
with the eigenvectors of A.

e We compute the eigenvalue decomposition of A:
A = Qdiag(A1,...,A)QT

where Q is an orthogonal matrix and A, are ordered eigenvalues
A< <<
e Then we use Q to rotate the coordinate system:
z=Q" (w—w.)

w=w,+Qz

-20 -15 -10 -05 00 05 10 15
w

old system w

2.
-20 -15 -10 -05 00 05 10 15
z

new system z

22

Analysis of convergence of gradient descent

e Change of basis: z=Q" (w —w.) and w = w. + Qz

e Gradient descent in the new coordinates:

ze1 = Q" (Wes1 —w.) = QT (wr — n(Aw; — b) — w..) \
= Q' (Qz: — n(A(w. + Qz:) — b)) T BT
=Q"(Qz: — n(b + AQz; — b)) old system w
=2z, —1Q"AQz: = z; — ndiag(\1, ..., Am)z:

e In the new coordinate system, we can write the update equation

separately for each element of z:

(Zm)er1 = (Zm)e = NAm(Zm)e = (1 — 0Am)(Zm):

2.
-20 -15 -10 -05 00 05 10 15
z

new system z

23

Analysis of convergence of gradient descent

e Gradient descent for the m-th element of z:

(zm)er1 = (1= nAm)(2m):
e Since the optimum z, = 0, the rate of convergence of z, (see, e.g, here) is defined by

rate(r) = el — 1,

e for convergence: |1 —nAm| <1
e ideally: |1 —nAm| =0

24

https://en.wikipedia.org/wiki/Rate_of_convergence

Analysis of convergence of gradient descent

e The overall convergence rate is determined by the slowest component (either A\; or Awy):
[T —nAl,

rate(n) = max|1 — nAm|

= max {|1 — A1}, |1 — nAuml}

A1 % Am A

e This overall rate is minimized when the rates for A\; and Ay are the same, which is true for the

(a7
T = B

learning rate

25

Analysis of convergence of gradient descent

e The rate of convergence for the optimal learning rate is

v — XM
DYYEY

A Am — 2\
rate(n.) = —‘ L+ Am !

A+ A\ !
11— — =
(2) M A1+ v

. Am/A —1 . K(A)—1
- A/\/l/)\1+1 - K(A)+1

where (A) = A)‘—"l” is the condition number of matrix A.
e k(A) is a measure of how close to singular matrix A is.

e It is a measure of how poorly gradient descent will perform:
o k(A) =1 is ideal
e The larger k(A) is, the slower gradient descent will be.

26

Convergence of gradient descent

e For quadratic function c(w) = %WTAW — b w, the rate of convergence of the gradient descent is

determined by the condition number of matrix A:

05

0.0
-0.5

-1.0
-10 -05 00 05 1.0 15 20 25
wi

k(A) = 1: can converge in one iteration

N

04
-25 -20 -15 -10 -05 00 05 10
wy

Large x(A): slow convergence

27

Quadratic approximation

e For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w) ~ L(we) +g" (w—we)+ %(w —w:) TH(w — w;)

e H is the matrix of second-order derivatives (called Hessian):

7626 ... 7626 20
Owj Owy Owy Owyy s
15
H= :
N ’ N 10
Awp 0wy Awp 0wy 05

e What is the Hessian matrix for the quadratic loss L(w) = %WTAW —b"w?

28

Quadratic approximation

e For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w)~ L(we) +g" (w—we)+ %(w —w:) TH(w — w;)

e H is the matrix of second-order derivatives (called Hessian):

7626 ... 7626 20
Owj Owy Owy Owyy .
H — . . : 15
1.0
Owp 0wy Owp 0wy 05

e What is the Hessian matrix for the quadratic loss L(w) = %WTAW —b"w?

e H = A: the convergence of the gradient descent is affected by the properties of the Hessian.

28

On Hessian matrix

e The eigenvalues of H determine the curvature of the objective
function: Larger A correspond to higher curvatures in the
corresponding direction.

e We can check whether a critical point w, (a point with zero
gradient) is a saddle point, a maximum or a minimum:

e if all eigenvalues of H are positive: wy is local minimum

e if all eigenvalues of H are negative: wy is local maximum

e if H has both positive and negative eigenvalues: wy is a saddle
point.

29

Newton’s method

e In principle, we could use the Hessian matrix in the
optimization procedure. 3.0

e This is done in the Newton's method: On each 25

iteration we find the minimum of the quadratic
approximation: 2.0

w2

1 15
w1 = w: — H; gt
1.0
e Can be efficient but not practical for large neural

networks: The computational complexity is o

F#para ms>. 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

wy

30

Part 2. Tricks to improve training

of deep neural networks

Now we have everything?

We have a deep neural network model that maps input x to output f(x, 0).

We have a loss function, for example

1o 2
R
n=1

We have a gradient-descent optimizer
9t+1 =6:— th(et)

e We can compute the gradient g(0) efficiently with backpropagation.

32

Tricks to improve training of deep neural networks

1. Training on large data sets
e Mini-batch training
2. Improved optimizers

e Momentum method
e Adam

3. Input normalization
4. Weight initialization

5. Batch normalization

33

Mini-batch training

(stochastic gradient descent)

Mini-batch training

The cost function contains N terms corresponding to the training samples, for example:

1< 2
£O)= 5> Hy(") - f(x(”),G)H .
n=1

Large data sets are redundant: gradient computed on two different parts of data are likely to be

similar. Why to waste computations?

e We can compute gradient using only part of training data (a mini-batch B;):
oL 1 9 || (m (n 2
o 15 da b o)
90 " 1B]] ; 90 Hy (", 6)
n€B;

e By using mini-batches, we introduce “noise” to the gradient computations, thus the method is
called stochastic gradient descent.

Epoch: going through all of the training examples once (usually using mini-batch training).

35

Practical considerations for mini-batch training

e It is good to shuffle the data between epochs when producing mini-batches (otherwise gradient
estimates are biased towards a particular mini-batch split).

e Mini-batches need to be balanced for classes.

e The recent trend is to use as large batches as possible (depends on the GPU memory size).

e Using larger batch sizes reduces the amount of noise in the gradient estimates.
e Computing the gradient for multiple samples at the same time is computationally efficient (requires
matrix-matrix multiplications which are efficient, especially on GPUs).

36

Model fine-tuning during mini-batch training

e In mini-batch training, we always use noisy estimates
of the gradient. Therefore, the magnitude of the
gradient can be non-zero even when we are close to

N
&
[} ‘ <
.
L

the optimum.

e One way to reduce this effect is to anneal the learning 15

rate 7: towards the end of training. $ 10
e The simplest schedule is to decrease the learning rate 0.5 b
after every n updates. IR N ™
0.0 P ’,
e Another popular way to fine-tune a model is to use os oSN/
-o. , .

exponential moving average of the model parameters:

.0
-20 -15 -1.0 -05 00 05 1.0 15

6. =76, 1+ (1) "

37

Improved optimization algorithms

Problems with gradient descent

e When the curvature of the objective function 237
substantially varies in different directions, the 2.0
optimization trajectory of the gradient descent s
can be zigzaging.

e Momentum method (Polyak, 1964): '

e We would like to move faster in directions with 0.5
small but consistent gradients.

e We would like to move slower in directions with 0.0
big but inconsistent gradients. 054

-1.0
-2.0 —15 —10 —05 .
W1

w2

-

o
L

39

Momentum method (Polyak, 1964)

2.5
2.0
e Momentum method: Aggregate negative
. . 1.5
gradients in momentum m:

£ 1.0\

Mip1 = oMy — N8t
0.5

i1 =0 +myp

0.0 A
_051

0 . S : / . /
-20 -15 -1.0 -05 0.0 0.5 1.0 15
wy

40

The intuition behind the momentum method

o

=}

w2

v

o

A ball moving on the error surface: The location |
of the ball represents the value of the
parameters (w1, wo). 207
e At t =0, the ball follows the gradient. Once it 159
has velocity, it no longer does steepest descent: 101
Its momentum makes it keep going in the o5
previous direction.
e |t damps oscillations in directions of high 7
curvature (by combining gradients with opposite -051
signs) and it builds up speed in directions with a

-1.0
-2.0 —15 —10 —05 0. lAO 145

w1

gentle but consistent gradient.

e See (Goh, 2017) for the analysis the convergence of the momentum method.

Slide credit: (Hinton, 2012) 41

https://distill.pub/2017/momentum/

Rprop (Reidmiller and Brau, 1992)

e The magnitude of the gradient can be very different for different weights and can change during
learning. This makes it hard to choose a single global learning rate.

e Rprop (full batch training): Use the sign of the gradient
gt

Vei+e

0:<—0;1—m,0

where g2 =g ® g and o is elementwise division.
e Adapt the learning rates 7, individually for each parameter:

e Increase the step size for a weight multiplicatively (e.g. times 1.2)
if the signs of its last two gradients agree

e Otherwise decrease the step size multiplicatively (e.g. times 0.5)

e Limit the step sizes

e This escapes from plateaus with tiny gradients quickly.

Slide credit: (Hinton, 2012) 42

RMSProp (Hinton, 2012)

e Rprop does not work well for mini-batch training:

e Consider a weight that gets a gradient of 4+0.1 on nine mini-batches and a gradient of -0.9 on the
tenth mini-batch: We want this weight to stay roughly where it is.

e Rprop would increment the weight nine times and decrement it once by about the same amount
(assuming any adaptation of the step sizes is small on this time-scale).

e So the weight would grow a lot.

e RMSprop: Divide the gradient by a number similar for adjacent mini-batches:
gt

vV Vt —+ €
Ve = fBve1 + (1 — B)gi

O <011 — 1

where we use the exponential moving average of g2.

43

Adam (Kingma and Ba, 2014)

e RMSProp plus the exponential moving average of the gradient:

m
0« 60: 1 — "tﬁ
me = fime1 + (1 — Bi)g:
ve = Bove 1 + (1 - Bo)gr
e Correct the bias related to starting the estimates from zero:
me =me/(1 - B)
Ve =ve/(1— B2)
B% is By to the power of t.

e The update rule is again unit-less.

44

https://arxiv.org/pdf/1412.6980.pdf

Why Adam works well

m;
Ve + €
m; = fim;_1 + (1 - ,31)g:

ve = fove_1 + (1 — /BZ)gf

Gt < 0t71 -n

e In Adam, the effective step size |A;| is bounded. In the most common case:

A = nr} ~‘ ﬁ% <n because E[g?] = E[g]* + El(g — Elg])?]

Thus, we never take too big steps (which can be the case for standard gradient descent).

e At convergence, when we start fluctuating around the optimum: E[g] ~ 0 and E[g?] > 0. The
effective step size gets smaller. Thus, Adam has a mechanism for automatic annealing of the

learning rate.

45

Input normalization

Simple example: Linear regression

e Consider solving a linear regression problem (no bias term) with gradient descent

1 N T 2
cw) = 55> (vo—w'x)
n=1

e We know that the convergence of the gradient descent is determined by the properties of the
Hessian matrix. Let us compute the Hessian matrix:

VWE—2NZ(y,,—W x,,)(Xp) = anxnw——Zy,,x,,
N
Z X, = Cy

e We can see that the Hessian is equal to the sample covariance matrix of the inputs.

2 \

47

Input normalization

e Liner regression: For fastest convergence, the covariance matrix of the inputs should be the
identity matrix H =Cx = I.
e We can achieve this by decorrelating the input components (whitening) using principal component
analysis (PCA):
XpCcA = Dil/zET(X — p,)

where EDE" = C is the eigenvalue decomposition of the covariance matrix of x.

e Multilayer neural networks are nonlinear models but normalizing the inputs usually improves
convergence as well.

e Simple: Centering+scaling to unit variance of all inputs (so that each component x; has zero mean
and unit variance).
e More advanced: ZCA (when we want to preserve the original dimensions, e.g., for images)

xzca = ED7Y2ET (x — p)

48

Weight initialization

lization of weights in a linear layer

e Let us consider a linear layer

X1 —>] —> V1
—>
. — NX ey
T Vi = Zj:l WijX; >
—>
XNy, —>| —> YN,

e It makes sense to initialize weights with random values. For example, we can draw the initial
values of the weights from some distribution p(w) with zero mean (w) = 0.

50

ance of signals in the forward computations

X1 —> — 1
N
(varxj) =1 - —> yi =32 wyx; [—> - (vary;) = Ncvarw
—>
XN, —>] —> YN,

e Suppose that the inputs x; are normalized to have zero mean and unit variance and they are also
uncorrelated. Then, the variance of the output signals is

N
_ 2
vary; = wjj var x;
j=1

e Its expectation under the weight (initial) distribution is

Ny Nx
(vary;) = Z <W,'12‘>Vaer = Z <W5> = Nyvarw

j=1 j=1

where var w is the variance of the initial weight values.

51

Variance of signals in the forward computations

X1 —> —> ¥
— N
(varx;) =1 - —> wi ~ p(w) —> - (vary;) = Nyvarw
—> (w) =0
XN, ——>| —> YN,

e The variance of y; can grow (become larger than the variance of the inputs) or decrease
depending on N, and the values of the weights (determined by var w).

e When we stack multiple layers on top of each other: The variance can grow/decay quickly if the
weights are too large/small.

e |t is a good idea to keep the variance at a constant level: (vary;) = (varx;) = 1, which means
that we should select the distribution p(w) such that

varw = —
Ny

52

Variance of signals in the backward computations

e How about the variance of signals in the backpropagation phase?
e Let us assume that the inputs of the block g—f in the backward phase are also uncorrrelated and

have unit variance:

oL < oL
Ox Ay1
pam——
wij ~ p(w
<var%>:Nyvarw e — Y (w) l«— .- var gf =1
? oL {w) =0 oL I
Oxp,, < Ayn

e With similar arguments, the expected variance of the outputs is
oL
var —) = N, varw
0xj
and if we want to keep the variance at a constant level, p(w) should be such that

varw = —
Ny

53

Xavier's initialization

e Glorot and Bengio (2010) proposed to keep the balance between the forward and backward

variances by choosing the weight distribution p(w) such that

_2
Ny + N,

varw =

e If we use the uniform distribution wj ~ U [—A, A], the variance of the weights is

A A
2 2 2
varw = <W,--> = / w; p(wj)dw;; = / wj——dw; =2——"— = —
ij A ij] ij A Gy 3 2A 3
e The proposed scheme is then

Ve V6
VN« + N, /N + N,

W,'J'NZ/{

which is perhaps the most popular intialization scheme (called Xavier's initialization).

54

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Batch normalization

Batch normalization (loffe and Szegedy, 2015)

e It usually helps if intermediate signals also have zero mean and unit variance.
e Batch normalization layer:

e Normalize intermediate signals x to zero mean and unit variance:

. X—p
X= ————
Vol +e
e The mean and standard deviation computed from the current mini-batch {x(l)7 . ,x(N)}:

1. 1,
p= 5K g2 = 25— py?
N 4 N 4
i=1 i=1
e The layer can control the mean and the variance of the outputs with two trainable parameters « and

B
y=70%x+8

56

https://arxiv.org/pdf/1502.03167.pdf

Why BN facilitates training

e Santurkar et al. (2018): BN makes the optimization landscape smoother. This smoothness
induces a more predictive and stable behavior of the gradients, allowing for faster training.

e Bjorck et al. (2018): BN primarily enables training with larger learning rates, which is the cause
for faster convergence and better generalization.

e Important to remember: BN introduces dependencies between samples in a mini-batch in the
computational graph.

57

https://arxiv.org/pdf/1805.11604.pdf
https://arxiv.org/pdf/1806.02375.pdf

Batch normalization: Training and evaluation modes

e The mean and standard deviation are computed for each mini-batch. What to do at test time
when we need to use a trained network for a test example?

e Batch normalization layer keeps track of the batch statistics (mean and standard deviation) during
training:
1
m — N ()
n+— (1 B)M—FBN ;le

N
o (1= B)o? + g S —)
i=1

where 3 is the momentum parameter (note confusing name). It is the running statistics & and o?

that are used at test time.

58

Batch normalization: Training and evaluation modes

e Pytorch: If you have a batch normalization layer, the
behavior of the network in the training and evaluation
modes will be different:

e Training: Use statistics fg‘n a mini-batch, update
running statistics & and o2. o

e Evaluation: Use running statistics iz and o2, keep &
and o2 fixed.

model = nn.Sequential(
nn.Linear (1, 100),
nn.BatchNorm1d (100),
nn.RelLUQ),
nn.Linear (100, 1),

Switch to training mode
model.train()
train the model

Switch to evaluation mode

model.eval()
test the model

59

Home assignment

Assignment 02_mlp

1. Implement and train a multilayer perceptron (MLP) network in PyTorch.
2. Implement backpropagation for a multilayer perceptron network in numpy. For each block of a
neural network, you need to implement the following computations:

e forward computations y = f(x, 0)
e backward computations that transform the derivatives wrt the block’s outputs % into the derivatives

oL 9L

wrt all its inputs: Bx 96

61

Recommended reading

e Chapter 8 of the Deep Learning book.
e G. Hinton, 2012. Overview of mini-batch gradient descent.
e G. Goh, 2017. Why momentum really works.

62

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://distill.pub/2017/momentum/

