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Training a neural network

e Suppose we have a supervised learning task with training data:

y = Y( W3h2+b3

In this lecture, we will study how to train a neural network to

produce the correct output y for a given input x. hy = ¢( W2h1 + b2)

Training of a neural network is tuning the values of its parameters

to fit to the training data. [ h; = (W1X +by) ]

e Two most common tasks:

e classification: the output is discrete (class label)
e regression: the output is a real number
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Classification problems: One-hot encoding of targets

e Classification tasks: a target can be represented as a one-hot vector y.
For example, for K = 3 classes:

1 0 0
class1: y = |0 class2: y = |1 class3: y = |0
0 0 1

K
{01} D y=1
j=1



Classification problems: softmax nonlinearity

e We want our neural network network to produce as output vector f whose j-th element f; is the
probability that input x belongs to class j. Thus, we need to make sure that:
0<£<1 i=1
1

K
=
e We can guarantee that by transforming the output h of the last layer in the following way:
_ __ eph
T Zﬁ:l exp hyr
e This nonlinearity is called softmax.

e If hj — oo and the other hj/; are fixed, then f; — [0, ...,0,1,0,...,0], which is a one-hot
representation of j, the index of the maximum element of h (thus soft max function).



Classification problems: Cross-entropy loss

e [t is common to tune parameters @ by minimizing the following loss function:

£(6) = ZZy(")Iogf x("), )

nljl

which is the negative log-likelihood for a probabilistic model with a categorical (also called multinoulli)
distribution for y whose parameters are given by f(x, 8)

.yf:;j.,

’:]x
<h

p(y | x,0) = Cat(y | f(x,0)) = where y;; =1

Il
i
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e Cross-entropy between two discrete probability distributions p and q is defined as

H(p,q) =— Y _ p(x)logq(x)

xXEX

thus our loss £ can be seen as the cross-entropy between the correct distribution defined by y(" and the
distribution f(x(”)7 0) defined by the output of the network.



Regression problems: Mean-squared error loss

e Regression tasks: targets are y(") € RX,

e We can tune the parameters of the network by minimizing the mean-squared error (MSE):

1o 2
£O)= 5> Hy(") - f(x(”),G)H .
n=1

e In the probabilistic view, the minimized function is the negative log-likelihood of the following
probability distribution:
p(y | x,8) = N(y | f(x,6),0°).



Minimization of the loss with gradient descent



Toy optimization problem

e Consider a simple linear regression problem with two parameters:
T
fx,w) =w x=wixi + wax

and a tiny data set: x!) = (2,2), y® =2, x® =(2,0), y@ =0

e The MSE loss function is a quadratic function 25
1 2 2 2.0
_ (n) _ (n)
L(w1, we) = D) z; (y f(x 7W)) 1
n= £ 10

which can be written in the matrix notation as 05

0.0

L(w) = %WTAW —b'w+c s

e We need to minimize £ wrt w (W1 and Wz). 30 35 10 05 00 05 1o 15

wi
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e Gradient is a vector of partial derivatives:

oL
Owy
gw)= [
oL
Awyy
e Gradient points in the direction of the greatest rate of
increase of £, its magnitude is the slope of the graph of £ in <)~

1075 s -1'./0 -05 00 05 10 15

that direction.
e For our quadratic function L(w) = %WTAW —b"w + ¢, the gradient is

g(w)=Aw—b



Gradient descent

Y ‘/:/
e Gradient descent: update the parameters in the 2.5 <[~ //:?
direction opposite to the gradient: aol 1D N\
6« 0 — ng(6) - , -
with some step size n (also called learning rate). § 101 N

e We reduce the error but do not end up at the 054

minimum, so we need to iterate 0.04

0t+1 =60:— ntg(ot) —0.51

1.0 T T T u f
-20 -15 -10 -05 0.0 05 1.0 15
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Gradient computation with

the backpropagation algorithm



Gradient descent for training deep neural networks

e We want to use gradient-descent optimization method to minimize
. & P [y= (W3h2+b3)]
loss function £(60):
0:i1 = 6: — n:g(0:) [hz = &( W2h1 + bz)]
e In order to do that, we need to compute gradient g(0).
e Parameters 0 include W1, by, Wy, by, W3, bs. [ hy = ¢( W1X+ b:) ]
e Backpropagation: An algorithm to compute gradient g(8) for a [ : ]
multilayer neural network. nput x
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e The chain rule is a formula to compute the derivative of a composite function:

F(x) = f(g(x))
F'(x) = f'(g(x))g'(x)

12



Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oL _ocoy w 0
20 — 9y 00
o _ Loy oh

-
~

aﬁ_waw @ @h@}/@
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Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oL _ocoy w 0
00 ~ Oy 06
oL _ oLy on
ow ~ Oy 0h Ow ) h () Y
N—— fi f
8L @ LIJ wT@

e We can compute the derivatives efficiently by storing intermediate results.
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Backpropagation: An example with scalars

e Consider a multi-layer model that operates only with scalars:
L=L(y), y=h(h0), h=h(xw)

e We can compute the derivatives wrt the model parameters 6 and w using the chain rule.

oc _ocoy w 0
90 — oy 06 0 B
oL _ocay o ERIE
ow ~ Oy 0h Ow O ) h () Y
—— X fi f L
oc J o J o
Oh Ay

e We can compute the derivatives efficiently by storing intermediate results.
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Chain rule for multi-variable functions

e For multi-variable functions, the chain rule can be written in terms of Jacobian matrices.

y=f(u), u=gkx) yeR" ueR" xeR"

o ...

Ox1 Oxy
Jacobian matrix: Jrog =

9ym ... O9ym

Ox1 Oxp

e The chain rule is:
Jrog(x) = Jr(u)dg(x)

or each element of the Jacobian is:

ay; _ XK: ﬁauk
8X,' =1 auk 8X,'
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Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"

e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay w 0

06; ~ <= dyi 96; l l

L <~ OL Oy . y

Db~ 2= Byx oh, O f f c
=1 X 1 2

AL = IL Oh

8W,' 8/7/ 8W,
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Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay w 0
96; ~ < By 0; l l

K

L - OL O . y

Ohy ~ 2= Dy, Ohy O f f c
- X - ’ oL

OL  ~— OL Oh s

8w,- o 8/7/ 8W,

e \We can compute the derivatives sequentially going from the outputs of the network towards the
inputs (thus the name of the algorithm backpropagation).
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Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay
a9

- w (7]
i~ 2 Oy, 06; )
K T 9/
RN Y " y
Ohi — 2~ Dy, Oy @ (<) (5 {E]
J o ) —
Oh Ayic

(‘:

Q

flar

L

oL 0L Oh

8W,' 8/7/ 8W,
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Backpropagation for multi-variable functions

e Consider a multi-layer model:
L=L(y), y=hh8), h=f(x,w) yeR heR xeR"
e We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

AL = OL Ay
a9

= w o
i Pt ayk 89 l,[ 5 lT 5
K ow; 80;
AL AL e ) y
Oh ~ 2= By, oh; @ f f c
J o U —
Oh Ayic

o
(‘:

Q

flar

L

oL 0L Oh

8W,' 8/7/ 8W,

e \We can compute the derivatives sequentially going from the outputs of the network towards the
inputs (thus the name of the algorithm backpropagation).
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Implementing backpropagation in software

e For each block of a neural network, we need to implement the following computations:
e forward computations y = f(x, )

e backward computations that transform the derivatives wrt the block’s outputs g—ﬁ into the

derivatives wrt all its inputs: g—ﬁ, %
J
9L _ g~ 0L O O
89j o =1 'Yk a@i T%
90,
K
0L _ 5~ 0L Oon x (1Y
Ox 4= Oy Ox - or —J or
ax Ay

e We will practice implementing forward and backward computations in the first assigment.

16



A historical note on backpropagation

e The algorithm that is now called backpropagation was proposed by many researchers (e.g.,
Linnainmaa, 1970; Werbos, 1982).

e In application to training multi-layer neural networks, the algorithm became popular after a paper
by Rumelhart, Hinton and Williams (1986).

17
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Analysis of convergence

of gradient descent



Effect of learning rate

e The learning rate 1 has a major effect on the convergence of the gradient descent.

0c1=0. —ng(6:)

25

2.0

15

1.0

w

0.5

0.0

-1.0 - 0 -
-20 -15 -1.0 -05 O. . . . -20 -15 -1.0 -05 0.0 05
wy

small n: too slow convergence large n: oscillates and can even diverge
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Analysis of convergence of gradient descent

Apart from the learning rate, what affects the rate of convergence of the gradient descent?

Let us analyze convergence of gradient descent for a quadratic function (Goh, 2017)

L(w) = %WTAW —b'w

e We can compute optimal w analytically: w, = A™'b

Gradient descent iterations:

wei1 = w; — (Aw; — b)

20


https://distill.pub/2017/momentum/

Properties of A

L(w) = %WTAW —b'w

e The axes of the ellipses of the contour plot are defined by the "

eigenvectors of matrix A.

e The eigenvalues A\, of A determine the curvature of the
objective function: Larger A\n, correspond to higher curvatures
in the corresponding direction.

0
-20 -15 -10 -0.5 0.0 05 10 15
wy
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Analysis of convergence of gradient descent

&

e Let us change the coordinate system such that the new basis is aligned
with the eigenvectors of A.

e We compute the eigenvalue decomposition of A:
A = Qdiag(A1,...,A)QT

where Q is an orthogonal matrix and A, are ordered eigenvalues
A< <<
e Then we use Q to rotate the coordinate system:
z=Q" (w—w.)

w=w,+Qz

-20 -15 -10 -05 00 05 10 15
w

old system w

2.
-20 -15 -10 -05 00 05 10 15
z

new system z

22



Analysis of convergence of gradient descent

e Change of basis: z=Q" (w —w.) and w = w. + Qz

e Gradient descent in the new coordinates:

ze1 = Q" (Wes1 —w.) = QT (wr — n(Aw; — b) — w..) \
= Q' (Qz: — n(A(w. + Qz:) — b)) T BT
=Q"(Qz: — n(b + AQz; — b)) old system w
=2z, —1Q"AQz: = z; — ndiag(\1, ..., Am)z:

e In the new coordinate system, we can write the update equation

separately for each element of z:

(Zm)er1 = (Zm)e = NAm(Zm)e = (1 — 0Am)(Zm):

2.
-20 -15 -10 -05 00 05 10 15
z

new system z

23



Analysis of convergence of gradient descent

e Gradient descent for the m-th element of z:

(zm)er1 = (1= nAm)(2m):
e Since the optimum z, = 0, the rate of convergence of z, (see, e.g, here) is defined by

rate(r) = el — 1,

e for convergence: |1 —nAm| <1
e ideally: |1 —nAm| =0

24


https://en.wikipedia.org/wiki/Rate_of_convergence

Analysis of convergence of gradient descent

e The overall convergence rate is determined by the slowest component (either A\; or Awy):
[T —nAl,

rate(n) = max|1 — nAm|

= max {|1 — A1}, |1 — nAuml}

A1 % Am A

e This overall rate is minimized when the rates for A\; and Ay are the same, which is true for the

(a7
T = B

learning rate

25



Analysis of convergence of gradient descent

e The rate of convergence for the optimal learning rate is

v — XM
DYYEY

A Am — 2\
rate(n.) = —‘ L+ Am !

A+ A\ !
11— — =
( 2 ) M A1+ v

. Am/A —1 . K(A)—1
- A/\/l/)\1+1 - K(A)+1

where (A) = A)‘—"l” is the condition number of matrix A.
e k(A) is a measure of how close to singular matrix A is.

e It is a measure of how poorly gradient descent will perform:
o k(A) =1 is ideal
e The larger k(A) is, the slower gradient descent will be.

26



Convergence of gradient descent

e For quadratic function c(w) = %WTAW — b w, the rate of convergence of the gradient descent is

determined by the condition number of matrix A:

05

0.0
-0.5

-1.0
-10 -05 00 05 1.0 15 20 25
wi

k(A) = 1: can converge in one iteration

N

04
-25 -20 -15 -10 -05 00 05 10
wy

Large x(A): slow convergence
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Quadratic approximation

e For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w) ~ L(we) +g" (w—we)+ %(w —w:) TH(w — w;)

e H is the matrix of second-order derivatives (called Hessian):

7626 ... 7626 20
Owj Owy Owy Owyy s
15
H= :
N ’ N 10
Awp 0wy Awp 0wy 05

e What is the Hessian matrix for the quadratic loss L(w) = %WTAW —b"w?

28



Quadratic approximation

e For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w)~ L(we) +g" (w—we)+ %(w —w:) TH(w — w;)

e H is the matrix of second-order derivatives (called Hessian):

7626 ... 7626 20
Owj Owy Owy Owyy .
H — . . : 15
1.0
Owp 0wy Owp 0wy 05

e What is the Hessian matrix for the quadratic loss L(w) = %WTAW —b"w?

e H = A: the convergence of the gradient descent is affected by the properties of the Hessian.

28



On Hessian matrix

e The eigenvalues of H determine the curvature of the objective
function: Larger A correspond to higher curvatures in the
corresponding direction.

e We can check whether a critical point w, (a point with zero
gradient) is a saddle point, a maximum or a minimum:

e if all eigenvalues of H are positive: wy is local minimum

e if all eigenvalues of H are negative: wy is local maximum

e if H has both positive and negative eigenvalues: wy is a saddle
point.

29



Newton’s method

e In principle, we could use the Hessian matrix in the
optimization procedure. 3.0

e This is done in the Newton's method: On each 25

iteration we find the minimum of the quadratic
approximation: 2.0

w2

1 15
w1 = w: — H; gt
1.0
e Can be efficient but not practical for large neural

networks: The computational complexity is o

F#para ms>. 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

wy
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Part 2. Tricks to improve training

of deep neural networks



Now we have everything?

We have a deep neural network model that maps input x to output f(x, 0).

We have a loss function, for example

1o 2
R
n=1

We have a gradient-descent optimizer
9t+1 =6:— th(et)

e We can compute the gradient g(0) efficiently with backpropagation.

32



Tricks to improve training of deep neural networks

1. Training on large data sets
e Mini-batch training
2. Improved optimizers

e Momentum method
e Adam

3. Input normalization
4. Weight initialization

5. Batch normalization

33



Mini-batch training

(stochastic gradient descent)



Mini-batch training

The cost function contains N terms corresponding to the training samples, for example:

1< 2
£O)= 5> Hy(") - f(x(”),G)H .
n=1

Large data sets are redundant: gradient computed on two different parts of data are likely to be

similar. Why to waste computations?

e We can compute gradient using only part of training data (a mini-batch B;):
oL 1 9 || (m (n 2
o 15 da b o)
90 " 1B]] ; 90 Hy (", 6)
n€B;

e By using mini-batches, we introduce “noise” to the gradient computations, thus the method is
called stochastic gradient descent.

Epoch: going through all of the training examples once (usually using mini-batch training).

35



Practical considerations for mini-batch training

e It is good to shuffle the data between epochs when producing mini-batches (otherwise gradient
estimates are biased towards a particular mini-batch split).

e Mini-batches need to be balanced for classes.

e The recent trend is to use as large batches as possible (depends on the GPU memory size).

e Using larger batch sizes reduces the amount of noise in the gradient estimates.
e Computing the gradient for multiple samples at the same time is computationally efficient (requires
matrix-matrix multiplications which are efficient, especially on GPUs).

36



Model fine-tuning during mini-batch training

e In mini-batch training, we always use noisy estimates
of the gradient. Therefore, the magnitude of the
gradient can be non-zero even when we are close to

N
&
[} ‘ <
.
L

the optimum.

e One way to reduce this effect is to anneal the learning 15

rate 7: towards the end of training. $ 10
e The simplest schedule is to decrease the learning rate 0.5 b
after every n updates. IR N ™
0.0 P ’,
e Another popular way to fine-tune a model is to use os oSN/
-o. , .

exponential moving average of the model parameters:

.0
-20 -15 -1.0 -05 00 05 1.0 15

6. =76, 1+ (1) "
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Improved optimization algorithms



Problems with gradient descent

e When the curvature of the objective function 237
substantially varies in different directions, the 2.0
optimization trajectory of the gradient descent s
can be zigzaging.

e Momentum method (Polyak, 1964): '

e We would like to move faster in directions with 0.5
small but consistent gradients.

e We would like to move slower in directions with 0.0
big but inconsistent gradients. 054

-1.0
-2.0 —15 —10 —05 .
W1

w2

-

o
L
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Momentum method (Polyak, 1964)

2.5
2.0
e Momentum method: Aggregate negative
. . 1.5
gradients in momentum m:

£ 1.0\

Mip1 = oMy — N8t
0.5

i1 =0 +myp

0.0 A
_051

0 . S : / . /
-20 -15 -1.0 -05 0.0 0.5 1.0 15
wy
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The intuition behind the momentum method

o

=}

w2

v

o

A ball moving on the error surface: The location |
of the ball represents the value of the
parameters (w1, wo). 207
e At t =0, the ball follows the gradient. Once it 159
has velocity, it no longer does steepest descent: 101
Its momentum makes it keep going in the o5
previous direction.
e |t damps oscillations in directions of high 7
curvature (by combining gradients with opposite  -051
signs) and it builds up speed in directions with a

-1.0
-2.0 —15 —10 —05 0. lAO 145

w1

gentle but consistent gradient.

e See (Goh, 2017) for the analysis the convergence of the momentum method.

Slide credit: (Hinton, 2012) 41
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Rprop (Reidmiller and Brau, 1992)

e The magnitude of the gradient can be very different for different weights and can change during
learning. This makes it hard to choose a single global learning rate.

e Rprop (full batch training): Use the sign of the gradient
gt

Vei+e

0:<—0;1—m,0

where g2 =g ® g and o is elementwise division.
e Adapt the learning rates 7, individually for each parameter:

e Increase the step size for a weight multiplicatively (e.g. times 1.2)
if the signs of its last two gradients agree

e Otherwise decrease the step size multiplicatively (e.g. times 0.5)

e Limit the step sizes

e This escapes from plateaus with tiny gradients quickly.

Slide credit: (Hinton, 2012) 42



RMSProp (Hinton, 2012)

e Rprop does not work well for mini-batch training:

e Consider a weight that gets a gradient of 4+0.1 on nine mini-batches and a gradient of -0.9 on the
tenth mini-batch: We want this weight to stay roughly where it is.

e Rprop would increment the weight nine times and decrement it once by about the same amount
(assuming any adaptation of the step sizes is small on this time-scale).

e So the weight would grow a lot.

e RMSprop: Divide the gradient by a number similar for adjacent mini-batches:
gt

vV Vt —+ €
Ve = fBve1 + (1 — B)gi

O <011 — 1

where we use the exponential moving average of g2.
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Adam (Kingma and Ba, 2014)

e RMSProp plus the exponential moving average of the gradient:

m
0« 60: 1 — "tﬁ
me = fime1 + (1 — Bi)g:
ve = Bove 1 + (1 - Bo)gr
e Correct the bias related to starting the estimates from zero:
me =me/(1 - B)
Ve =ve/(1— B2)
B% is By to the power of t.

e The update rule is again unit-less.

44


https://arxiv.org/pdf/1412.6980.pdf

Why Adam works well

m;
Ve + €
m; = fim;_1 + (1 - ,31)g:

ve = fove_1 + (1 — /BZ)gf

Gt < 0t71 -n

e In Adam, the effective step size |A;| is bounded. In the most common case:

A = nr} ~‘ ﬁ% <n  because E[g?] = E[g]* + El(g — Elg])?]

Thus, we never take too big steps (which can be the case for standard gradient descent).

e At convergence, when we start fluctuating around the optimum: E[g] ~ 0 and E[g?] > 0. The
effective step size gets smaller. Thus, Adam has a mechanism for automatic annealing of the

learning rate.
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Input normalization



Simple example: Linear regression

e Consider solving a linear regression problem (no bias term) with gradient descent

1 N T 2
cw) = 55> (vo—w'x)
n=1

e We know that the convergence of the gradient descent is determined by the properties of the
Hessian matrix. Let us compute the Hessian matrix:

VWE—2NZ(y,,—W x,,)( Xp) = anxnw——Zy,,x,,
N
Z X, = Cy

e We can see that the Hessian is equal to the sample covariance matrix of the inputs.

2 \
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Input normalization

e Liner regression: For fastest convergence, the covariance matrix of the inputs should be the
identity matrix H =Cx = I.
e We can achieve this by decorrelating the input components (whitening) using principal component
analysis (PCA):
XpCcA = Dil/zET(X — p,)

where EDE" = C is the eigenvalue decomposition of the covariance matrix of x.

e Multilayer neural networks are nonlinear models but normalizing the inputs usually improves
convergence as well.

e Simple: Centering+scaling to unit variance of all inputs (so that each component x; has zero mean
and unit variance).
e More advanced: ZCA (when we want to preserve the original dimensions, e.g., for images)

xzca = ED7Y2ET (x — p)

48



Weight initialization



lization of weights in a linear layer

e Let us consider a linear layer

X1 —>] —> V1
—>
. — NX ey
T Vi = Zj:l WijX; >
—>
XNy, —>| —> YN,

e It makes sense to initialize weights with random values. For example, we can draw the initial
values of the weights from some distribution p(w) with zero mean (w) = 0.

50



ance of signals in the forward computations

X1 —> — 1
N
(varxj) =1 - —> yi =32 wyx; [—> - (vary;) = Ncvarw
—>
XN, —>] —> YN,

e Suppose that the inputs x; are normalized to have zero mean and unit variance and they are also
uncorrelated. Then, the variance of the output signals is

N
_ 2
vary; = wjj var x;
j=1

e Its expectation under the weight (initial) distribution is

Ny Nx
(vary;) = Z <W,'12‘>Vaer = Z <W5> = Nyvarw

j=1 j=1

where var w is the variance of the initial weight values.
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Variance of signals in the forward computations

X1 —> —> ¥
— N
(varx;) =1 - —> wi ~ p(w) —> - (vary;) = Nyvarw
—> (w) =0
XN, ——>| —> YN,

e The variance of y; can grow (become larger than the variance of the inputs) or decrease
depending on N, and the values of the weights (determined by var w).

e When we stack multiple layers on top of each other: The variance can grow/decay quickly if the
weights are too large/small.

e |t is a good idea to keep the variance at a constant level: (vary;) = (varx;) = 1, which means
that we should select the distribution p(w) such that

varw = —
Ny

52



Variance of signals in the backward computations

e How about the variance of signals in the backpropagation phase?
e Let us assume that the inputs of the block g—f in the backward phase are also uncorrrelated and

have unit variance:

oL < oL
Ox Ay1
pam——
wij ~ p(w
<var%>:Nyvarw e — Y (w) l«— .- var gf =1
? oL {w) =0 oL I
Oxp,, < Ayn

e With similar arguments, the expected variance of the outputs is
oL
var — ) = N, varw
0xj
and if we want to keep the variance at a constant level, p(w) should be such that

varw = —
Ny
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Xavier's initialization

e Glorot and Bengio (2010) proposed to keep the balance between the forward and backward

variances by choosing the weight distribution p(w) such that

_2
Ny + N,

varw =

e If we use the uniform distribution wj ~ U [—A, A], the variance of the weights is

A A
2 2 2
varw = <W,--> = / w; p(wj)dw;; = / wj——dw; =2——"— = —
ij A ij ] ij A Gy 3 2A 3
e The proposed scheme is then

Ve V6
VN« + N, /N + N,

W,'J'NZ/{

which is perhaps the most popular intialization scheme (called Xavier's initialization).
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http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Batch normalization



Batch normalization (loffe and Szegedy, 2015)

e It usually helps if intermediate signals also have zero mean and unit variance.
e Batch normalization layer:

e Normalize intermediate signals x to zero mean and unit variance:

. X—p
X= ————
Vol +e
e The mean and standard deviation computed from the current mini-batch {x(l)7 . ,x(N)}:

1. 1,
p= 5K g2 = 25— py?
N 4 N 4
i=1 i=1
e The layer can control the mean and the variance of the outputs with two trainable parameters « and

B
y=70%x+8
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https://arxiv.org/pdf/1502.03167.pdf

Why BN facilitates training

e Santurkar et al. (2018): BN makes the optimization landscape smoother. This smoothness
induces a more predictive and stable behavior of the gradients, allowing for faster training.

e Bjorck et al. (2018): BN primarily enables training with larger learning rates, which is the cause
for faster convergence and better generalization.

e Important to remember: BN introduces dependencies between samples in a mini-batch in the
computational graph.
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https://arxiv.org/pdf/1805.11604.pdf
https://arxiv.org/pdf/1806.02375.pdf

Batch normalization: Training and evaluation modes

e The mean and standard deviation are computed for each mini-batch. What to do at test time
when we need to use a trained network for a test example?

e Batch normalization layer keeps track of the batch statistics (mean and standard deviation) during
training:
1
m — N ()
n+— (1 B)M—FBN ;le

N
o (1= B)o? + g S — )
i=1

where 3 is the momentum parameter (note confusing name). It is the running statistics & and o?

that are used at test time.
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Batch normalization: Training and evaluation modes

e Pytorch: If you have a batch normalization layer, the
behavior of the network in the training and evaluation
modes will be different:

e Training: Use statistics fg‘n a mini-batch, update
running statistics & and o2. o

e Evaluation: Use running statistics iz and o2, keep &
and o2 fixed.

model = nn.Sequential(
nn.Linear (1, 100),
nn.BatchNorm1d (100),
nn.RelLUQ),
nn.Linear (100, 1),

# Switch to training mode
model.train()
# train the model

# Switch to evaluation mode

model.eval()
# test the model
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Home assignment



Assignment 02_mlp

1. Implement and train a multilayer perceptron (MLP) network in PyTorch.
2. Implement backpropagation for a multilayer perceptron network in numpy. For each block of a
neural network, you need to implement the following computations:

e forward computations y = f(x, 0)
e backward computations that transform the derivatives wrt the block’s outputs % into the derivatives

oL 9L

wrt all its inputs: Bx 96
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Recommended reading

e Chapter 8 of the Deep Learning book.
e G. Hinton, 2012. Overview of mini-batch gradient descent.
e G. Goh, 2017. Why momentum really works.
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https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://distill.pub/2017/momentum/

