Aalto University

CS-E4890: Deep Learning
Lecture 2: Optimization

Alexander Ilin

- Suppose we have a supervised learning task with training data: $\left\{\left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}\right),\left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)}\right), \ldots,\left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)}\right)\right\}$.
- In this lecture, we will study how to train a neural network to produce the correct output \mathbf{y} for a given input \mathbf{x}.
- Training of a neural network is tuning the values of its parameters to fit to the training data.
- Two most common tasks:
- classification: the output is discrete (class label)

- regression: the output is a real number

Classification problems: One-hot encoding of targets

- Classification tasks: a target can be represented as a one-hot vector \mathbf{y}.

For example, for $K=3$ classes:

$$
\begin{gathered}
\text { class 1: } y=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { class 2: } y=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { class } 3: y=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
y_{j} \in\{0,1\} \quad \sum_{j=1}^{K} y_{j}=1
\end{gathered}
$$

Classification problems: softmax nonlinearity

- We want our neural network network to produce as output vector \mathbf{f} whose j-th element f_{j} is the probability that input \mathbf{x} belongs to class j. Thus, we need to make sure that:

$$
0 \leq f_{j} \leq 1 \quad \sum_{j=1}^{K} f_{j}=1
$$

- We can guarantee that by transforming the output \mathbf{h} of the last layer in the following way:

$$
f_{j}=\frac{\exp h_{j}}{\sum_{j^{\prime}=1}^{K} \exp h_{j^{\prime}}}
$$

- This nonlinearity is called softmax.
- If $h_{j} \rightarrow \infty$ and the other $h_{j^{\prime} \neq j}$ are fixed, then $f_{j} \rightarrow[0, \ldots, 0,1,0, \ldots, 0]$, which is a one-hot representation of j, the index of the maximum element of \mathbf{h} (thus soft max function).

Classification problems: Cross-entropy loss

- It is common to tune parameters $\boldsymbol{\theta}$ by minimizing the following loss function:

$$
\mathcal{L}(\boldsymbol{\theta})=-\frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{K} y_{j}^{(n)} \log f_{j}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)
$$

which is the negative log-likelihood for a probabilistic model with a categorical (also called multinoulli) distribution for \mathbf{y} whose parameters are given by $\mathbf{f}(\mathbf{x}, \boldsymbol{\theta})$

$$
p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})=\operatorname{Cat}(\mathbf{y} \mid \mathbf{f}(\mathbf{x}, \boldsymbol{\theta}))=\prod_{j=1}^{K} f_{j}^{y_{j}}=f_{j^{\prime}} \quad \text { where } y_{j^{\prime}}=1
$$

- Cross-entropy between two discrete probability distributions p and q is defined as

$$
\mathcal{H}(p, q)=-\sum_{x \in \mathcal{X}} p(x) \log q(x)
$$

thus our loss \mathcal{L} can be seen as the cross-entropy between the correct distribution defined by $\mathbf{y}^{(n)}$ and the distribution $\mathbf{f}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)$ defined by the output of the network.

- Regression tasks: targets are $\mathbf{y}^{(n)} \in \mathbb{R}^{K}$.
- We can tune the parameters of the network by minimizing the mean-squared error (MSE):

$$
\mathcal{L}(\boldsymbol{\theta})=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{y}^{(n)}-\mathbf{f}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)\right\|^{2}
$$

- In the probabilistic view, the minimized function is the negative log-likelihood of the following probability distribution:

$$
p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})=\mathcal{N}\left(\mathbf{y} \mid \mathbf{f}(\mathbf{x}, \boldsymbol{\theta}), \sigma^{2} \mathbf{I}\right)
$$

Minimization of the loss with gradient descent

- Consider a simple linear regression problem with two parameters:

$$
f(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\top} \mathbf{x}=w_{1} x_{1}+w_{2} x_{2}
$$

and a tiny data set: $\mathbf{x}^{(1)}=(2,2), y^{(1)}=2, \quad \mathbf{x}^{(2)}=(2,0), y^{(2)}=0$

- The MSE loss function is a quadratic function

$$
\mathcal{L}\left(w_{1}, w_{2}\right)=\frac{1}{2} \sum_{n=1}^{2}\left(y^{(n)}-f\left(\mathbf{x}^{(n)}, \mathbf{w}\right)\right)^{2}
$$

which can be written in the matrix notation as

$$
\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}+\mathbf{c}
$$

- We need to minimize \mathcal{L} wrt $\mathbf{w}\left(w_{1}\right.$ and $\left.w_{2}\right)$.

Gradient

- Gradient is a vector of partial derivatives:

$$
\mathbf{g}(\mathbf{w})=\left(\begin{array}{c}
\frac{\partial \mathcal{L}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{L}}{\partial w_{M}}
\end{array}\right)
$$

- Gradient points in the direction of the greatest rate of increase of \mathcal{L}, its magnitude is the slope of the graph of \mathcal{L} in that direction.

- For our quadratic function $\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}+\mathbf{c}$, the gradient is

$$
\mathbf{g}(\mathbf{w})=\mathbf{A} \mathbf{w}-\mathbf{b}
$$

Gradient descent

- Gradient descent: update the parameters in the direction opposite to the gradient:

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \mathbf{g}(\boldsymbol{\theta})
$$

with some step size η (also called learning rate).

- We reduce the error but do not end up at the minimum, so we need to iterate

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \mathbf{g}\left(\boldsymbol{\theta}_{t}\right)
$$

Gradient computation with
 the backpropagation algorithm

- We want to use gradient-descent optimization method to minimize loss function $\mathcal{L}(\boldsymbol{\theta})$:

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \mathbf{g}\left(\boldsymbol{\theta}_{t}\right)
$$

- In order to do that, we need to compute gradient $\mathbf{g}(\boldsymbol{\theta})$.
- Parameters $\boldsymbol{\theta}$ include $\mathbf{W}_{1}, \mathbf{b}_{1}, \mathbf{W}_{2}, \mathbf{b}_{2}, \mathbf{W}_{3}, \mathbf{b}_{3}$.
- Backpropagation: An algorithm to compute gradient $\mathbf{g}(\boldsymbol{\theta})$ for a multilayer neural network.

Chain rule

- The chain rule is a formula to compute the derivative of a composite function:

$$
\begin{aligned}
F(x) & =f(g(x)) \\
F^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

- Consider a multi-layer model that operates only with scalars:

$$
\mathcal{L}=\mathcal{L}(y), \quad y=f_{2}(h, \theta), \quad h=f_{1}(x, w)
$$

- We can compute the derivatives wrt the model parameters θ and w using the chain rule.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta} & =\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial \theta} \\
\frac{\partial \mathcal{L}}{\partial w} & =\underbrace{\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial h}}_{\frac{\partial \mathcal{L}}{\partial h}} \frac{\partial h}{\partial w}
\end{aligned}
$$

- Consider a multi-layer model that operates only with scalars:

$$
\mathcal{L}=\mathcal{L}(y), \quad y=f_{2}(h, \theta), \quad h=f_{1}(x, w)
$$

- We can compute the derivatives wrt the model parameters θ and w using the chain rule.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta} & =\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial \theta} \\
\frac{\partial \mathcal{L}}{\partial w} & =\underbrace{\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial h}}_{\frac{\partial \mathcal{L}}{\partial h}} \frac{\partial h}{\partial w}
\end{aligned}
$$

- We can compute the derivatives efficiently by storing intermediate results.
- Consider a multi-layer model that operates only with scalars:

$$
\mathcal{L}=\mathcal{L}(y), \quad y=f_{2}(h, \theta), \quad h=f_{1}(x, w)
$$

- We can compute the derivatives wrt the model parameters θ and w using the chain rule.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta} & =\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial \theta} \\
\frac{\partial \mathcal{L}}{\partial w} & =\underbrace{\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial h}}_{\frac{\partial \mathcal{L}}{\partial h}} \frac{\partial h}{\partial w}
\end{aligned}
$$

- We can compute the derivatives efficiently by storing intermediate results.
- Consider a multi-layer model that operates only with scalars:

$$
\mathcal{L}=\mathcal{L}(y), \quad y=f_{2}(h, \theta), \quad h=f_{1}(x, w)
$$

- We can compute the derivatives wrt the model parameters θ and w using the chain rule.

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta} & =\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial \theta} \\
\frac{\partial \mathcal{L}}{\partial w} & =\underbrace{\frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial h}}_{\frac{\partial \mathcal{L}}{\partial h}} \frac{\partial h}{\partial w}
\end{aligned}
$$

- We can compute the derivatives efficiently by storing intermediate results.
- For multi-variable functions, the chain rule can be written in terms of Jacobian matrices.

$$
\begin{aligned}
& \mathbf{y}=f(\mathbf{u}), \quad \mathbf{u}=g(\mathbf{x}) \quad \mathbf{y} \in \mathbb{R}^{M}, \mathbf{u} \in \mathbb{R}^{K}, \mathbf{x} \in \mathbb{R}^{N} \\
& \text { Jacobian matrix: } \mathbf{J}_{f \circ g}=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{M}}{\partial x_{1}} & \cdots & \frac{\partial y_{M}}{\partial x_{N}}
\end{array}\right]
\end{aligned}
$$

- The chain rule is:

$$
\mathbf{J}_{f \circ g}(\mathbf{x})=\mathbf{J}_{f}(\mathbf{u}) \mathbf{J}_{g}(\mathbf{x})
$$

or each element of the Jacobian is:

$$
\frac{\partial y_{j}}{\partial x_{i}}=\sum_{k=1}^{K} \frac{\partial y_{j}}{\partial u_{k}} \frac{\partial u_{k}}{\partial x_{i}}
$$

- Consider a multi-layer model:

$$
\mathcal{L}=\mathcal{L}(\mathbf{y}), \quad \mathbf{y}=f_{2}(\mathbf{h}, \boldsymbol{\theta}), \quad \mathbf{h}=f_{1}(\mathbf{x}, \mathbf{w}) \quad \mathbf{y} \in \mathbb{R}^{K}, \mathbf{h} \in \mathbb{R}^{L}, \mathbf{x} \in \mathbb{R}^{N}
$$

- We apply the chain rule to compute the derivatives wrt the model parameters (and re-use intermediate derivatives):

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{j}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial \theta_{j}} \\
\frac{\partial \mathcal{L}}{\partial h_{l}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial h_{l}} \\
\frac{\partial \mathcal{L}}{\partial w_{i}} & =\sum_{l=1}^{L} \frac{\partial \mathcal{L}}{\partial h_{l}} \frac{\partial h_{l}}{\partial w_{i}}
\end{aligned}
$$

- Consider a multi-layer model:

$$
\mathcal{L}=\mathcal{L}(\mathbf{y}), \quad \mathbf{y}=f_{2}(\mathbf{h}, \boldsymbol{\theta}), \quad \mathbf{h}=f_{1}(\mathbf{x}, \mathbf{w}) \quad \mathbf{y} \in \mathbb{R}^{K}, \mathbf{h} \in \mathbb{R}^{L}, \mathbf{x} \in \mathbb{R}^{N}
$$

- We apply the chain rule to compute the derivatives wrt the model parameters (and re-use intermediate derivatives):

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{j}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial \theta_{j}} \\
\frac{\partial \mathcal{L}}{\partial h_{l}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial h_{l}} \\
\frac{\partial \mathcal{L}}{\partial w_{i}} & =\sum_{l=1}^{L} \frac{\partial \mathcal{L}}{\partial h_{l}} \frac{\partial h_{l}}{\partial w_{i}}
\end{aligned}
$$

- We can compute the derivatives sequentially going from the outputs of the network towards the inputs (thus the name of the algorithm backpropagation).
- Consider a multi-layer model:

$$
\mathcal{L}=\mathcal{L}(\mathbf{y}), \quad \mathbf{y}=f_{2}(\mathbf{h}, \boldsymbol{\theta}), \quad \mathbf{h}=f_{1}(\mathbf{x}, \mathbf{w}) \quad \mathbf{y} \in \mathbb{R}^{K}, \mathbf{h} \in \mathbb{R}^{L}, \mathbf{x} \in \mathbb{R}^{N}
$$

- We apply the chain rule to compute the derivatives wrt the model parameters (and re-use intermediate derivatives):

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{j}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial \theta_{j}} \\
\frac{\partial \mathcal{L}}{\partial h_{l}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial h_{l}} \\
\frac{\partial \mathcal{L}}{\partial w_{i}} & =\sum_{l=1}^{L} \frac{\partial \mathcal{L}}{\partial h_{l}} \frac{\partial h_{l}}{\partial w_{i}}
\end{aligned}
$$

- We can compute the derivatives sequentially going from the outputs of the network towards the inputs (thus the name of the algorithm backpropagation).
- Consider a multi-layer model:

$$
\mathcal{L}=\mathcal{L}(\mathbf{y}), \quad \mathbf{y}=f_{2}(\mathbf{h}, \boldsymbol{\theta}), \quad \mathbf{h}=f_{1}(\mathbf{x}, \mathbf{w}) \quad \mathbf{y} \in \mathbb{R}^{K}, \mathbf{h} \in \mathbb{R}^{L}, \mathbf{x} \in \mathbb{R}^{N}
$$

- We apply the chain rule to compute the derivatives wrt the model parameters (and re-use intermediate derivatives):

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{j}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial \theta_{j}} \\
\frac{\partial \mathcal{L}}{\partial h_{l}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial h_{l}} \\
\frac{\partial \mathcal{L}}{\partial w_{i}} & =\sum_{l=1}^{L} \frac{\partial \mathcal{L}}{\partial h_{l}} \frac{\partial h_{l}}{\partial w_{i}}
\end{aligned}
$$

- We can compute the derivatives sequentially going from the outputs of the network towards the inputs (thus the name of the algorithm backpropagation).
- For each block of a neural network, we need to implement the following computations:
- forward computations $\mathbf{y}=f(\mathbf{x}, \boldsymbol{\theta})$
- backward computations that transform the derivatives wrt the block's outputs $\frac{\partial \mathcal{L}}{\partial y_{k}}$ into the derivatives wrt all its inputs: $\frac{\partial \mathcal{L}}{\partial x_{l}}, \frac{\partial \mathcal{L}}{\partial \theta_{j}}$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta_{j}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial \theta_{j}} \\
\frac{\partial \mathcal{L}}{\partial x_{l}} & =\sum_{k=1}^{K} \frac{\partial \mathcal{L}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{l}}
\end{aligned}
$$

- We will practice implementing forward and backward computations in the first assigment.
- The algorithm that is now called backpropagation was proposed by many researchers (e.g., Linnainmaa, 1970; Werbos, 1982).
- In application to training multi-layer neural networks, the algorithm became popular after a paper by Rumelhart, Hinton and Williams (1986).

Analysis of convergence of gradient descent

Effect of learning rate

- The learning rate η has a major effect on the convergence of the gradient descent.

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta \mathbf{g}\left(\boldsymbol{\theta}_{t}\right)
$$

large η : oscillates and can even diverge

- Apart from the learning rate, what affects the rate of convergence of the gradient descent?
- Let us analyze convergence of gradient descent for a quadratic function (Goh, 2017)

$$
\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}
$$

- We can compute optimal \mathbf{w} analytically: $\mathbf{w}_{*}=\mathbf{A}^{-1} \mathbf{b}$
- Gradient descent iterations:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta\left(\mathbf{A} \mathbf{w}_{t}-\mathbf{b}\right)
$$

Properties of \mathbf{A}

$$
\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A w}-\mathbf{b}^{\top} \mathbf{w}
$$

- The axes of the ellipses of the contour plot are defined by the eigenvectors of matrix \mathbf{A}.
- The eigenvalues λ_{m} of \mathbf{A} determine the curvature of the objective function: Larger λ_{m} correspond to higher curvatures in the corresponding direction.

Analysis of convergence of gradient descent

- Let us change the coordinate system such that the new basis is aligned with the eigenvectors of \mathbf{A}.
- We compute the eigenvalue decomposition of \mathbf{A} :

$$
\mathbf{A}=\mathbf{Q} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{M}\right) \mathbf{Q}^{\top}
$$

where \mathbf{Q} is an orthogonal matrix and λ_{m} are ordered eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{M}$.

- Then we use \mathbf{Q} to rotate the coordinate system:

$$
\begin{aligned}
\mathbf{z} & =\mathbf{Q}^{\top}\left(\mathbf{w}-\mathbf{w}_{*}\right) \\
\mathbf{w} & =\mathbf{w}_{*}+\mathbf{Q} \mathbf{z}
\end{aligned}
$$

old system w

Analysis of convergence of gradient descent

- Change of basis: $\mathbf{z}=\mathbf{Q}^{\top}\left(\mathbf{w}-\mathbf{w}_{*}\right)$ and $\mathbf{w}=\mathbf{w}_{*}+\mathbf{Q z}$
- Gradient descent in the new coordinates:

$$
\begin{aligned}
\mathbf{z}_{t+1} & =\mathbf{Q}^{\top}\left(\mathbf{w}_{t+1}-\mathbf{w}_{*}\right)=\mathbf{Q}^{\top}\left(\mathbf{w}_{t}-\eta\left(\mathbf{A} \mathbf{w}_{t}-\mathbf{b}\right)-\mathbf{w}_{*}\right) \\
& =\mathbf{Q}^{\top}\left(\mathbf{Q} \mathbf{z}_{t}-\eta\left(\mathbf{A}\left(\mathbf{w}_{*}+\mathbf{Q} \mathbf{z}_{t}\right)-\mathbf{b}\right)\right) \\
& =\mathbf{Q}^{\top}\left(\mathbf{Q} \mathbf{z}_{t}-\eta\left(\mathbf{b}+\mathbf{A} \mathbf{Q} \mathbf{z}_{t}-\mathbf{b}\right)\right) \\
& =\mathbf{z}_{t}-\eta \mathbf{Q}^{\top} \mathbf{A} \mathbf{Q} \mathbf{z}_{t}=\mathbf{z}_{t}-\eta \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{M}\right) \mathbf{z}_{t}
\end{aligned}
$$

- In the new coordinate system, we can write the update equation separately for each element of \mathbf{z} :

$$
\left(z_{m}\right)_{t+1}=\left(z_{m}\right)_{t}-\eta \lambda_{m}\left(z_{m}\right)_{t}=\left(1-\eta \lambda_{m}\right)\left(z_{m}\right)_{t}
$$

old system w

Analysis of convergence of gradient descent

- Gradient descent for the m-th element of \mathbf{z} :

$$
\left(z_{m}\right)_{t+1}=\left(1-\eta \lambda_{m}\right)\left(z_{m}\right)_{t}
$$

- Since the optimum $\mathbf{z}_{*}=0$, the rate of convergence of z_{m} (see, e.g, here) is defined by

$$
\operatorname{rate}(\eta)=\frac{\left|\left(z_{m}\right)_{t+1}\right|}{\left|\left(z_{m}\right)_{t}\right|}=\left|1-\eta \lambda_{m}\right|
$$

- for convergence: $\left|1-\eta \lambda_{m}\right|<1$
- ideally: $\left|1-\eta \lambda_{m}\right|=0$

Analysis of convergence of gradient descent

- The overall convergence rate is determined by the slowest component (either λ_{1} or λ_{M}):

$$
\begin{aligned}
\operatorname{rate}(\eta) & =\max _{m}\left|1-\eta \lambda_{m}\right| \\
& =\max \left\{\left|1-\eta \lambda_{1}\right|,\left|1-\eta \lambda_{M}\right|\right\}
\end{aligned}
$$

- This overall rate is minimized when the rates for λ_{1} and λ_{M} are the same, which is true for the learning rate

$$
\eta_{*}=\left(\frac{\lambda_{1}+\lambda_{M}}{2}\right)^{-1}
$$

Analysis of convergence of gradient descent

- The rate of convergence for the optimal learning rate is

$$
\begin{aligned}
\operatorname{rate}\left(\eta_{*}\right) & =\left|1-\left(\frac{\lambda_{1}+\lambda_{M}}{2}\right)^{-1} \lambda_{1}\right|=\left|\frac{\lambda_{1}+\lambda_{M}-2 \lambda_{1}}{\lambda_{1}+\lambda_{M}}\right|=\frac{\lambda_{M}-\lambda_{1}}{\lambda_{M}+\lambda_{1}} \\
& =\frac{\lambda_{M} / \lambda_{1}-1}{\lambda_{M} / \lambda_{1}+1}=\frac{\kappa(\mathbf{A})-1}{\kappa(\mathbf{A})+1}
\end{aligned}
$$

where $\kappa(\mathbf{A})=\frac{\lambda_{M}}{\lambda_{1}}$ is the condition number of matrix \mathbf{A}.

- $\kappa(\mathbf{A})$ is a measure of how close to singular matrix \mathbf{A} is.
- It is a measure of how poorly gradient descent will perform:
- $\kappa(\mathbf{A})=1$ is ideal
- The larger $\kappa(\mathbf{A})$ is, the slower gradient descent will be.

Convergence of gradient descent

- For quadratic function $c(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}$, the rate of convergence of the gradient descent is determined by the condition number of matrix \mathbf{A} :

$\kappa(\mathbf{A})=1$: can converge in one iteration

Large $\kappa(\mathbf{A})$: slow convergence

Quadratic approximation

- For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

$$
\mathcal{L}(\mathbf{w}) \approx \mathcal{L}\left(\mathbf{w}_{t}\right)+\mathbf{g}^{\top}\left(\mathbf{w}-\mathbf{w}_{t}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{H}\left(\mathbf{w}-\mathbf{w}_{t}\right)
$$

- \mathbf{H} is the matrix of second-order derivatives (called Hessian):

$$
\mathbf{H}=\left(\begin{array}{ccc}
\frac{\partial^{2} \mathcal{L}}{\partial w_{1} \partial w_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{1} \partial w_{M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} \mathcal{L}}{\partial w_{M} \partial w_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{M} \partial w_{M}}
\end{array}\right)
$$

- What is the Hessian matrix for the quadratic loss $\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}$?

Quadratic approximation

- For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

$$
\mathcal{L}(\mathbf{w}) \approx \mathcal{L}\left(\mathbf{w}_{t}\right)+\mathbf{g}^{\top}\left(\mathbf{w}-\mathbf{w}_{t}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{t}\right)^{\top} \mathbf{H}\left(\mathbf{w}-\mathbf{w}_{t}\right)
$$

- \mathbf{H} is the matrix of second-order derivatives (called Hessian):

$$
\mathbf{H}=\left(\begin{array}{ccc}
\frac{\partial^{2} \mathcal{L}}{\partial w_{1} \partial w_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{1} \partial w_{M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} \mathcal{L}}{\partial w_{M} \partial w_{1}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial w_{M} \partial w_{M}}
\end{array}\right)
$$

- What is the Hessian matrix for the quadratic loss $\mathcal{L}(\mathbf{w})=\frac{1}{2} \mathbf{w}^{\top} \mathbf{A} \mathbf{w}-\mathbf{b}^{\top} \mathbf{w}$?
- $\mathbf{H}=\mathbf{A}$: the convergence of the gradient descent is affected by the properties of the Hessian.
- The eigenvalues of \mathbf{H} determine the curvature of the objective function: Larger λ correspond to higher curvatures in the corresponding direction.
- We can check whether a critical point \mathbf{w}_{*} (a point with zero gradient) is a saddle point, a maximum or a minimum:
- if all eigenvalues of \mathbf{H} are positive: \mathbf{w}_{*} is local minimum
- if all eigenvalues of \mathbf{H} are negative: \mathbf{w}_{*} is local maximum
- if \mathbf{H} has both positive and negative eigenvalues: \mathbf{w}_{*} is a saddle point.

- In principle, we could use the Hessian matrix in the optimization procedure.
- This is done in the Newton's method: On each iteration we find the minimum of the quadratic approximation:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\mathbf{H}_{t}^{-1} \mathbf{g}_{t}
$$

- Can be efficient but not practical for large neural networks: The computational complexity is \#params ${ }^{3}$.

Part 2. Tricks to improve training of deep neural networks

- We have a deep neural network model that maps input \mathbf{x} to output $f(x, \theta)$.
- We have a loss function, for example

$$
\mathcal{L}(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{y}^{(n)}-\mathbf{f}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)\right\|^{2}
$$

- We have a gradient-descent optimizer

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \mathbf{g}\left(\boldsymbol{\theta}_{t}\right)
$$

- We can compute the gradient $\mathbf{g}(\boldsymbol{\theta})$ efficiently with backpropagation.

1. Training on large data sets

- Mini-batch training

2. Improved optimizers

- Momentum method
- Adam

3. Input normalization
4. Weight initialization
5. Batch normalization

Mini-batch training

(stochastic gradient descent)

- The cost function contains N terms corresponding to the training samples, for example:

$$
\mathcal{L}(\boldsymbol{\theta})=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{y}^{(n)}-\mathbf{f}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)\right\|^{2}
$$

- Large data sets are redundant: gradient computed on two different parts of data are likely to be similar. Why to waste computations?
- We can compute gradient using only part of training data (a mini-batch \mathcal{B}_{j}):

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \approx \frac{1}{\left|\mathcal{B}_{j}\right|} \sum_{n \in \mathcal{B}_{j}} \frac{\partial}{\partial \boldsymbol{\theta}}\left\|\mathbf{y}^{(n)}-\mathbf{f}\left(\mathbf{x}^{(n)}, \boldsymbol{\theta}\right)\right\|^{2}
$$

- By using mini-batches, we introduce "noise" to the gradient computations, thus the method is called stochastic gradient descent.
- Epoch: going through all of the training examples once (usually using mini-batch training).
- It is good to shuffle the data between epochs when producing mini-batches (otherwise gradient estimates are biased towards a particular mini-batch split).
- Mini-batches need to be balanced for classes.
- The recent trend is to use as large batches as possible (depends on the GPU memory size).
- Using larger batch sizes reduces the amount of noise in the gradient estimates.
- Computing the gradient for multiple samples at the same time is computationally efficient (requires matrix-matrix multiplications which are efficient, especially on GPUs).

Model fine-tuning during mini-batch training

- In mini-batch training, we always use noisy estimates of the gradient. Therefore, the magnitude of the gradient can be non-zero even when we are close to the optimum.
- One way to reduce this effect is to anneal the learning rate η_{t} towards the end of training.
- The simplest schedule is to decrease the learning rate after every n updates.
- Another popular way to fine-tune a model is to use exponential moving average of the model parameters:

$$
\boldsymbol{\theta}_{t}^{\prime}=\gamma \boldsymbol{\theta}_{t-1}^{\prime}+(1-\gamma) \boldsymbol{\theta}_{t}
$$

Improved optimization algorithms

Problems with gradient descent

- When the curvature of the objective function substantially varies in different directions, the optimization trajectory of the gradient descent can be zigzaging.
- Momentum method (Polyak, 1964):
- We would like to move faster in directions with small but consistent gradients.
- We would like to move slower in directions with big but inconsistent gradients.

- Momentum method: Aggregate negative gradients in momentum m:

$$
\begin{aligned}
\mathbf{m}_{t+1} & =\alpha \mathbf{m}_{t}-\eta_{t} \mathbf{g}_{t} \\
\boldsymbol{\theta}_{t+1} & =\boldsymbol{\theta}_{t}+\mathbf{m}_{t+1}
\end{aligned}
$$

- A ball moving on the error surface: The location of the ball represents the value of the parameters $\left(w_{1}, w_{2}\right)$.
- At $t=0$, the ball follows the gradient. Once it has velocity, it no longer does steepest descent: Its momentum makes it keep going in the previous direction.
- It damps oscillations in directions of high curvature (by combining gradients with opposite signs) and it builds up speed in directions with a gentle but consistent gradient.

- See (Goh, 2017) for the analysis the convergence of the momentum method.
- The magnitude of the gradient can be very different for different weights and can change during learning. This makes it hard to choose a single global learning rate.
- Rprop (full batch training): Use the sign of the gradient

$$
\boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1}-\boldsymbol{\eta}_{t} \odot \frac{\mathbf{g}_{t}}{\sqrt{\mathbf{g}_{t}^{2}+\epsilon}}
$$

where $\mathbf{g}^{2}=\mathbf{g} \odot \mathbf{g}$ and $\frac{\mathbf{a}}{\mathbf{b}}$ is elementwise division.

- Adapt the learning rates $\boldsymbol{\eta}_{\boldsymbol{t}}$ individually for each parameter:
- Increase the step size for a weight multiplicatively (e.g. times 1.2) if the signs of its last two gradients agree
- Otherwise decrease the step size multiplicatively (e.g. times 0.5)
- Limit the step sizes
- This escapes from plateaus with tiny gradients quickly.
- Rprop does not work well for mini-batch training:
- Consider a weight that gets a gradient of +0.1 on nine mini-batches and a gradient of -0.9 on the tenth mini-batch: We want this weight to stay roughly where it is.
- Rprop would increment the weight nine times and decrement it once by about the same amount (assuming any adaptation of the step sizes is small on this time-scale).
- So the weight would grow a lot.
- RMSprop: Divide the gradient by a number similar for adjacent mini-batches:

$$
\begin{aligned}
& \boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1}-\eta_{t} \frac{\mathbf{g}_{t}}{\sqrt{\mathbf{v}_{t}+\epsilon}} \\
& \mathbf{v}_{t}=\beta \mathbf{v}_{t-1}+(1-\beta) \mathbf{g}_{t}^{2}
\end{aligned}
$$

where we use the exponential moving average of \mathbf{g}_{t}^{2}.

Adam (Kingma and Ba, 2014)

- RMSProp plus the exponential moving average of the gradient:

$$
\begin{aligned}
\boldsymbol{\theta}_{t} & \leftarrow \boldsymbol{\theta}_{t-1}-\eta_{t} \frac{\widehat{\mathbf{m}}_{t}}{\sqrt{\widehat{\mathbf{v}}_{t}}+\epsilon} \\
\mathbf{m}_{t} & =\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\
\mathbf{v}_{t} & =\beta_{2} \mathbf{v}_{t-1}+\left(1-\beta_{2}\right) \mathbf{g}_{t}^{2}
\end{aligned}
$$

- Correct the bias related to starting the estimates from zero:

$$
\begin{aligned}
\widehat{\mathbf{m}}_{t} & =\mathbf{m}_{t} /\left(1-\beta_{1}^{t}\right) \\
\widehat{\mathbf{v}}_{t} & =\mathbf{v}_{t} /\left(1-\beta_{2}^{t}\right)
\end{aligned}
$$

β_{1}^{t} is β_{1} to the power of t.

- The update rule is again unit-less.

$$
\begin{aligned}
\boldsymbol{\theta}_{t} & \leftarrow \boldsymbol{\theta}_{t-1}-\eta \frac{\widehat{\mathbf{m}}_{t}}{\sqrt{\widehat{\mathbf{v}}_{t}}+\epsilon} \\
\mathbf{m}_{t} & =\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\
\mathbf{v}_{t} & =\beta_{2} \mathbf{v}_{t-1}+\left(1-\beta_{2}\right) \mathbf{g}_{t}^{2}
\end{aligned}
$$

- In Adam, the effective step size $\left|\Delta_{t}\right|$ is bounded. In the most common case:

$$
\left|\Delta_{t}\right|=\left|\eta \frac{\widehat{\mathbf{m}}_{t}}{\sqrt{\widehat{\mathbf{v}}_{t}}}\right| \approx\left|\eta \frac{E[g]}{\sqrt{E\left[g^{2}\right]}}\right| \leq \eta \quad \text { because } E\left[g^{2}\right]=E[g]^{2}+E\left[(g-E[g])^{2}\right]
$$

Thus, we never take too big steps (which can be the case for standard gradient descent).

- At convergence, when we start fluctuating around the optimum: $E[g] \approx 0$ and $E\left[g^{2}\right]>0$. The effective step size gets smaller. Thus, Adam has a mechanism for automatic annealing of the learning rate.

Input normalization

- Consider solving a linear regression problem (no bias term) with gradient descent

$$
\mathcal{L}(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}
$$

- We know that the convergence of the gradient descent is determined by the properties of the Hessian matrix. Let us compute the Hessian matrix:

$$
\begin{aligned}
\nabla_{\mathbf{w}} \mathcal{L} & =\frac{2}{2 N} \sum_{n=1}^{N}\left(y_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)\left(-\mathbf{x}_{n}\right)=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} \mathbf{w}-\frac{1}{N} \sum_{n=1}^{N} y_{n} \mathbf{x}_{n} \\
\mathbf{H} & =\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}=\mathbf{C}_{\mathbf{x}}
\end{aligned}
$$

- We can see that the Hessian is equal to the sample covariance matrix of the inputs.

Input normalization

- Liner regression: For fastest convergence, the covariance matrix of the inputs should be the identity matrix $\mathbf{H}=\mathbf{C}_{\mathrm{x}}=\mathbf{I}$.
- We can achieve this by decorrelating the input components (whitening) using principal component analysis (PCA):

$$
\mathbf{x}_{P C A}=\mathbf{D}^{-1 / 2} \mathbf{E}^{\top}(\mathbf{x}-\boldsymbol{\mu})
$$

where $\mathbf{E D E}^{\top}=\mathbf{C}$ is the eigenvalue decomposition of the covariance matrix of \mathbf{x}.

- Multilayer neural networks are nonlinear models but normalizing the inputs usually improves convergence as well.
- Simple: Centering+scaling to unit variance of all inputs (so that each component x_{i} has zero mean and unit variance).
- More advanced: ZCA (when we want to preserve the original dimensions, e.g., for images)

$$
\mathbf{x}_{\mathrm{ZCA}}=\mathbf{E D}^{-1 / 2} \mathbf{E}^{\top}(\mathbf{x}-\boldsymbol{\mu})
$$

Weight initialization

- Let us consider a linear layer

- It makes sense to initialize weights with random values. For example, we can draw the initial values of the weights from some distribution $p(w)$ with zero mean $\langle w\rangle=0$.

$$
\begin{aligned}
& x_{1} \longrightarrow \\
&\left\langle\operatorname{var} x_{j}\right\rangle=1 \longrightarrow \\
& x_{N_{x}} \longrightarrow y_{1} \\
& y_{i}=\sum_{j=1}^{N_{x}} w_{i j} x_{j} \longrightarrow \cdots\left\langle\operatorname{var} y_{i}\right\rangle=N_{x} \operatorname{var} w \\
& y_{N_{y}}
\end{aligned}
$$

- Suppose that the inputs x_{j} are normalized to have zero mean and unit variance and they are also uncorrelated. Then, the variance of the output signals is

$$
\operatorname{var} y_{i}=\sum_{j=1}^{N_{x}} w_{i j}^{2} \operatorname{var} x_{j}
$$

- Its expectation under the weight (initial) distribution is

$$
\left\langle\operatorname{var} y_{i}\right\rangle=\sum_{j=1}^{N_{x}}\left\langle w_{i j}^{2}\right\rangle \operatorname{var} x_{j}=\sum_{j=1}^{N_{x}}\left\langle w_{i j}^{2}\right\rangle=N_{x} \operatorname{var} w
$$

where var w is the variance of the initial weight values.

$$
\begin{aligned}
x_{1} & \longrightarrow \\
\left\langle\operatorname{var} x_{j}\right\rangle=1 & \cdots
\end{aligned} \begin{aligned}
& \longrightarrow y_{1} \\
& x_{N_{x}} \longrightarrow \\
& w_{i j} \sim p(w) \\
&\langle w\rangle=0
\end{aligned} \quad \longrightarrow \cdots\left\langle\operatorname{var} y_{i}\right\rangle=N_{x} \operatorname{var} w
$$

- The variance of y_{i} can grow (become larger than the variance of the inputs) or decrease depending on N_{x} and the values of the weights (determined by var w).
- When we stack multiple layers on top of each other: The variance can grow/decay quickly if the weights are too large/small.
- It is a good idea to keep the variance at a constant level: $\left\langle\operatorname{var} y_{i}\right\rangle=\left\langle\operatorname{var} x_{j}\right\rangle=1$, which means that we should select the distribution $p(w)$ such that

$$
\operatorname{var} w=\frac{1}{N_{x}}
$$

Variance of signals in the backward computations

- How about the variance of signals in the backpropagation phase?
- Let us assume that the inputs of the block $\frac{\partial \mathcal{L}}{\partial y_{i}}$ in the backward phase are also uncorrrelated and have unit variance:
- With similar arguments, the expected variance of the outputs is

$$
\left\langle\operatorname{var} \frac{\partial \mathcal{L}}{\partial x_{j}}\right\rangle=N_{y} \operatorname{var} w
$$

and if we want to keep the variance at a constant level, $p(w)$ should be such that

$$
\operatorname{var} w=\frac{1}{N_{y}}
$$

- Glorot and Bengio (2010) proposed to keep the balance between the forward and backward variances by choosing the weight distribution $p(w)$ such that

$$
\operatorname{var} w=\frac{2}{N_{x}+N_{y}}
$$

- If we use the uniform distribution $w_{i j} \sim \mathcal{U}[-\Delta, \Delta]$, the variance of the weights is

$$
\operatorname{var} w=\left\langle w_{i j}^{2}\right\rangle=\int_{-\Delta}^{\Delta} w_{i j}^{2} p\left(w_{i j}\right) d w_{i j}=\int_{-\Delta}^{\Delta} w_{i j}^{2} \frac{1}{2 \Delta} d w_{i j}=2 \frac{\Delta^{3}}{3} \frac{1}{2 \Delta}=\frac{\Delta^{2}}{3}
$$

- The proposed scheme is then

$$
w_{i j} \sim \mathcal{U}\left[-\frac{\sqrt{6}}{\sqrt{N_{x}+N_{y}}}, \frac{\sqrt{6}}{\sqrt{N_{x}+N_{y}}}\right]
$$

which is perhaps the most popular intialization scheme (called Xavier's initialization).

Batch normalization

Batch normalization (loffe and Szegedy, 2015)

- It usually helps if intermediate signals also have zero mean and unit variance.
- Batch normalization layer:
- Normalize intermediate signals x to zero mean and unit variance:

$$
\tilde{\mathbf{x}}=\frac{\mathbf{x}-\boldsymbol{\mu}}{\sqrt{\boldsymbol{\sigma}^{2}+\epsilon}}
$$

- The mean and standard deviation computed from the current mini-batch $\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right\}$:

$$
\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \quad \boldsymbol{\sigma}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{2}
$$

- The layer can control the mean and the variance of the outputs with two trainable parameters γ and $\boldsymbol{\beta}$

$$
\mathbf{y}=\gamma \odot \tilde{\mathbf{x}}+\boldsymbol{\beta}
$$

- Santurkar et al. (2018): BN makes the optimization landscape smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.
- Bjorck et al. (2018): BN primarily enables training with larger learning rates, which is the cause for faster convergence and better generalization.
- Important to remember: BN introduces dependencies between samples in a mini-batch in the computational graph.
- The mean and standard deviation are computed for each mini-batch. What to do at test time when we need to use a trained network for a test example?
- Batch normalization layer keeps track of the batch statistics (mean and standard deviation) during training:

$$
\begin{aligned}
\overline{\boldsymbol{\mu}} & \leftarrow(1-\beta) \overline{\boldsymbol{\mu}}+\beta \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \\
\overline{\boldsymbol{\sigma}^{2}} & \leftarrow(1-\beta) \overline{\boldsymbol{\sigma}^{2}}+\beta \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\overline{\boldsymbol{\mu}}\right)^{2}
\end{aligned}
$$

where β is the momentum parameter (note confusing name). It is the running statistics $\bar{\mu}$ and $\overline{\sigma^{2}}$ that are used at test time.

- Pytorch: If you have a batch normalization layer, the behavior of the network in the training and evaluation modes will be different:
- Training: Use statistics from a mini-batch, update running statistics $\bar{\mu}$ and $\overline{\sigma^{2}}$.
- Evaluation: Use running statistics $\bar{\mu}$ and $\overline{\sigma^{2}}$, keep $\bar{\mu}$ and $\overline{\sigma^{2}}$ fixed.

```
model = nn.Sequential(
        nn.Linear(1, 100),
        nn.BatchNorm1d(100),
        nn.ReLU(),
        nn.Linear(100, 1),
)
# Switch to training mode
model.train()
# train the model
# Switch to evaluation mode
model.eval()
# test the model
```

Home assignment

Assignment 02 mlp

1. Implement and train a multilayer perceptron (MLP) network in PyTorch.
2. Implement backpropagation for a multilayer perceptron network in numpy. For each block of a neural network, you need to implement the following computations:

- forward computations $\mathbf{y}=f(\mathbf{x}, \boldsymbol{\theta})$
- backward computations that transform the derivatives wrt the block's outputs $\frac{\partial \mathcal{L}}{\partial y}$ into the derivatives wrt all its inputs: $\frac{\partial \mathcal{L}}{\partial \mathbf{x}}, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$

- Chapter 8 of the Deep Learning book.
- G. Hinton, 2012. Overview of mini-batch gradient descent.
- G. Goh, 2017. Why momentum really works.

