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Training a neural network

• Suppose we have a supervised learning task with training data:

{(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}.

• In this lecture, we will study how to train a neural network to

produce the correct output y for a given input x.

• Training of a neural network is tuning the values of its parameters

to fit to the training data.

• Two most common tasks:

• classification: the output is discrete (class label)

• regression: the output is a real number
input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)
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Classification problems: One-hot encoding of targets

• Classification tasks: a target can be represented as a one-hot vector y.

For example, for K = 3 classes:

class 1: y =

1

0

0

 class 2: y =

0

1

0

 class 3: y =

0

0

1


yj ∈ {0, 1}

K∑
j=1

yj = 1
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Classification problems: softmax nonlinearity

• We want our neural network network to produce as output vector f whose j-th element fj is the

probability that input x belongs to class j . Thus, we need to make sure that:

0 ≤ fj ≤ 1
K∑
j=1

fj = 1

• We can guarantee that by transforming the output h of the last layer in the following way:

fj =
exp hj∑K

j′=1 exp hj′

• This nonlinearity is called softmax.

• If hj →∞ and the other hj′ 6=j are fixed, then fj → [0, ..., 0, 1, 0, ..., 0], which is a one-hot

representation of j , the index of the maximum element of h (thus soft max function).
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Classification problems: Cross-entropy loss

• It is common to tune parameters θ by minimizing the following loss function:

L(θ) = −
1

N

N∑
n=1

K∑
j=1

y
(n)
j log fj (x(n),θ)

which is the negative log-likelihood for a probabilistic model with a categorical (also called multinoulli)

distribution for y whose parameters are given by f(x,θ)

p(y | x,θ) = Cat(y | f(x,θ)) =
K∏
j=1

f
yj
j = fj′ where yj′ = 1

• Cross-entropy between two discrete probability distributions p and q is defined as

H(p, q) = −
∑
x∈X

p(x) log q(x)

thus our loss L can be seen as the cross-entropy between the correct distribution defined by y(n) and the

distribution f(x(n),θ) defined by the output of the network.

4



Regression problems: Mean-squared error loss

• Regression tasks: targets are y(n) ∈ RK .

• We can tune the parameters of the network by minimizing the mean-squared error (MSE):

L(θ) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

.

• In the probabilistic view, the minimized function is the negative log-likelihood of the following

probability distribution:

p(y | x,θ) = N (y | f(x,θ), σ2I) .
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Minimization of the loss with gradient descent



Toy optimization problem

• Consider a simple linear regression problem with two parameters:

f (x,w) = w>x = w1x1 + w2x2

and a tiny data set: x(1) = (2, 2), y (1) = 2, x(2) = (2, 0), y (2) = 0

• The MSE loss function is a quadratic function

L(w1,w2) =
1

2

2∑
n=1

(
y (n) − f (x(n),w)

)2

which can be written in the matrix notation as

L(w) =
1

2
w>Aw − b>w + c

• We need to minimize L wrt w (w1 and w2). 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
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Gradient

• Gradient is a vector of partial derivatives:

g(w) =


∂L
∂w1

...
∂L
∂wM


• Gradient points in the direction of the greatest rate of

increase of L, its magnitude is the slope of the graph of L in

that direction. 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
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• For our quadratic function L(w) = 1
2
w>Aw − b>w + c, the gradient is

g(w) = Aw − b
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Gradient descent

• Gradient descent: update the parameters in the

direction opposite to the gradient:

θ ← θ − ηg(θ)

with some step size η (also called learning rate).

• We reduce the error but do not end up at the

minimum, so we need to iterate

θt+1 = θt − ηtg(θt)
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Gradient computation with

the backpropagation algorithm



Gradient descent for training deep neural networks

• We want to use gradient-descent optimization method to minimize

loss function L(θ):

θt+1 = θt − ηtg(θt)

• In order to do that, we need to compute gradient g(θ).

• Parameters θ include W1, b1, W2, b2, W3, b3.

• Backpropagation: An algorithm to compute gradient g(θ) for a

multilayer neural network.
input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)
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Chain rule

• The chain rule is a formula to compute the derivative of a composite function:

F (x) = f (g(x))

F ′(x) = f ′(g(x))g ′(x)
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Backpropagation: An example with scalars

• Consider a multi-layer model that operates only with scalars:

L = L(y), y = f2(h, θ), h = f1(x ,w)

• We can compute the derivatives wrt the model parameters θ and w using the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

• We can compute the derivatives efficiently by storing intermediate results.
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Chain rule for multi-variable functions

• For multi-variable functions, the chain rule can be written in terms of Jacobian matrices.

y = f (u), u = g(x) y ∈ RM , u ∈ RK , x ∈ RN

Jacobian matrix: Jf ◦g =


∂y1
∂x1

· · · ∂y1
∂xN

...
. . .

...
∂yM
∂x1

· · · ∂yM
∂xN


• The chain rule is:

Jf ◦g (x) = Jf (u)Jg (x)

or each element of the Jacobian is:

∂yj
∂xi

=
K∑

k=1

∂yj
∂uk

∂uk
∂xi
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Backpropagation for multi-variable functions

• Consider a multi-layer model:

L = L(y), y = f2(h,θ), h = f1(x,w) y ∈ RK , h ∈ RL, x ∈ RN

• We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=
K∑

k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=
L∑

l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

• We can compute the derivatives sequentially going from the outputs of the network towards the

inputs (thus the name of the algorithm backpropagation).
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Implementing backpropagation in software

• For each block of a neural network, we need to implement the following computations:

• forward computations y = f (x,θ)

• backward computations that transform the derivatives wrt the block’s outputs ∂L
∂yk

into the

derivatives wrt all its inputs: ∂L
∂xl

, ∂L
∂θj

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂xl

=
K∑

k=1

∂L
∂yk

∂yk
∂xl f

θ

x y

∂L
∂yk

∂L
∂xl

∂L
∂θj

• We will practice implementing forward and backward computations in the first assigment.
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A historical note on backpropagation

• The algorithm that is now called backpropagation was proposed by many researchers (e.g.,

Linnainmaa, 1970; Werbos, 1982).

• In application to training multi-layer neural networks, the algorithm became popular after a paper

by Rumelhart, Hinton and Williams (1986).
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Analysis of convergence

of gradient descent



Effect of learning rate

• The learning rate η has a major effect on the convergence of the gradient descent.

θt+1 = θt − ηg(θt)
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small η: too slow convergence large η: oscillates and can even diverge
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Analysis of convergence of gradient descent

• Apart from the learning rate, what affects the rate of convergence of the gradient descent?

• Let us analyze convergence of gradient descent for a quadratic function (Goh, 2017)

L(w) =
1

2
w>Aw − b>w

• We can compute optimal w analytically: w∗ = A−1b

• Gradient descent iterations:

wt+1 = wt − η(Awt − b)

20
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Properties of A

L(w) =
1

2
w>Aw − b>w

• The axes of the ellipses of the contour plot are defined by the

eigenvectors of matrix A.

• The eigenvalues λm of A determine the curvature of the

objective function: Larger λm correspond to higher curvatures

in the corresponding direction.
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Analysis of convergence of gradient descent

• Let us change the coordinate system such that the new basis is aligned

with the eigenvectors of A.

• We compute the eigenvalue decomposition of A:

A = Q diag(λ1, . . . , λM)Q>

where Q is an orthogonal matrix and λm are ordered eigenvalues

λ1 ≤ λ2 ≤ ... ≤ λM .

• Then we use Q to rotate the coordinate system:

z = Q>(w − w∗)

w = w∗ + Qz
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Analysis of convergence of gradient descent

• Change of basis: z = Q>(w − w∗) and w = w∗ + Qz

• Gradient descent in the new coordinates:

zt+1 = Q>(wt+1 − w∗) = Q>(wt − η(Awt − b)− w∗)

= Q>(Qzt − η(A(w∗ + Qzt)− b))

= Q>(Qzt − η(b + AQzt − b))

= zt − ηQ>AQzt = zt − η diag(λ1, . . . , λM)zt

• In the new coordinate system, we can write the update equation

separately for each element of z:

(zm)t+1 = (zm)t − ηλm(zm)t = (1− ηλm)(zm)t
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Analysis of convergence of gradient descent

• Gradient descent for the m-th element of z:

(zm)t+1 = (1− ηλm)(zm)t

• Since the optimum z∗ = 0, the rate of convergence of zm (see, e.g, here) is defined by

rate(η) =
|(zm)t+1|
|(zm)t |

= |1− ηλm|

• for convergence: |1− ηλm| < 1

• ideally: |1− ηλm| = 0

24
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Analysis of convergence of gradient descent

• The overall convergence rate is determined by the slowest component (either λ1 or λM):

rate(η) = max
m
|1− ηλm|

= max {|1− ηλ1|, |1− ηλM |}

λ

|1− ηλ|

1

λ1
λ1+λM

2
λM

• This overall rate is minimized when the rates for λ1 and λM are the same, which is true for the

learning rate

η∗ =

(
λ1 + λM

2

)−1
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Analysis of convergence of gradient descent

• The rate of convergence for the optimal learning rate is

rate(η∗) =

∣∣∣∣∣1−
(
λ1 + λM

2

)−1

λ1

∣∣∣∣∣ =

∣∣∣∣λ1 + λM − 2λ1

λ1 + λM

∣∣∣∣ =
λM − λ1

λM + λ1

=
λM/λ1 − 1

λM/λ1 + 1
=
κ(A)− 1

κ(A) + 1

where κ(A) = λM
λ1

is the condition number of matrix A.

• κ(A) is a measure of how close to singular matrix A is.

• It is a measure of how poorly gradient descent will perform:

• κ(A) = 1 is ideal

• The larger κ(A) is, the slower gradient descent will be.
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Convergence of gradient descent

• For quadratic function c(w) = 1
2
w>Aw − b>w, the rate of convergence of the gradient descent is

determined by the condition number of matrix A:
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Quadratic approximation

• For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w) ≈ L(wt) + g>(w − wt) +
1

2
(w − wt)

>H(w − wt)

• H is the matrix of second-order derivatives (called Hessian):

H =


∂2L

∂w1∂w1
· · · ∂2L

∂w1∂wM

...
. . .

...
∂2L

∂wM∂w1
· · · ∂2L

∂wM∂wM


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• What is the Hessian matrix for the quadratic loss L(w) = 1
2
w>Aw − b>w?

• H = A: the convergence of the gradient descent is affected by the properties of the Hessian.
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On Hessian matrix

• The eigenvalues of H determine the curvature of the objective

function: Larger λ correspond to higher curvatures in the

corresponding direction.

• We can check whether a critical point w∗ (a point with zero

gradient) is a saddle point, a maximum or a minimum:

• if all eigenvalues of H are positive: w∗ is local minimum

• if all eigenvalues of H are negative: w∗ is local maximum

• if H has both positive and negative eigenvalues: w∗ is a saddle
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Newton’s method

• In principle, we could use the Hessian matrix in the

optimization procedure.

• This is done in the Newton’s method: On each

iteration we find the minimum of the quadratic

approximation:

wt+1 = wt −H−1
t gt

• Can be efficient but not practical for large neural

networks: The computational complexity is

#params3.
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Part 2. Tricks to improve training

of deep neural networks



Now we have everything?

• We have a deep neural network model that maps input x to output f(x,θ).

• We have a loss function, for example

L(w) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

• We have a gradient-descent optimizer

θt+1 = θt − ηtg(θt)

• We can compute the gradient g(θ) efficiently with backpropagation.
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Tricks to improve training of deep neural networks

1. Training on large data sets

• Mini-batch training

2. Improved optimizers

• Momentum method

• Adam

3. Input normalization

4. Weight initialization

5. Batch normalization

33



Mini-batch training

(stochastic gradient descent)



Mini-batch training

• The cost function contains N terms corresponding to the training samples, for example:

L(θ) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

.

• Large data sets are redundant: gradient computed on two different parts of data are likely to be

similar. Why to waste computations?

• We can compute gradient using only part of training data (a mini-batch Bj):

∂L
∂θ
≈ 1

|Bj |
∑
n∈Bj

∂

∂θ

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

• By using mini-batches, we introduce “noise” to the gradient computations, thus the method is

called stochastic gradient descent.

• Epoch: going through all of the training examples once (usually using mini-batch training).
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Practical considerations for mini-batch training

• It is good to shuffle the data between epochs when producing mini-batches (otherwise gradient

estimates are biased towards a particular mini-batch split).

• Mini-batches need to be balanced for classes.

• The recent trend is to use as large batches as possible (depends on the GPU memory size).

• Using larger batch sizes reduces the amount of noise in the gradient estimates.

• Computing the gradient for multiple samples at the same time is computationally efficient (requires

matrix-matrix multiplications which are efficient, especially on GPUs).
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Model fine-tuning during mini-batch training

• In mini-batch training, we always use noisy estimates

of the gradient. Therefore, the magnitude of the

gradient can be non-zero even when we are close to

the optimum.

• One way to reduce this effect is to anneal the learning

rate ηt towards the end of training.

• The simplest schedule is to decrease the learning rate

after every n updates.

• Another popular way to fine-tune a model is to use

exponential moving average of the model parameters:

θ′t = γθ′t−1 + (1− γ)θt
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Improved optimization algorithms



Problems with gradient descent

• When the curvature of the objective function

substantially varies in different directions, the

optimization trajectory of the gradient descent

can be zigzaging.

• Momentum method (Polyak, 1964):

• We would like to move faster in directions with

small but consistent gradients.

• We would like to move slower in directions with

big but inconsistent gradients.
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Momentum method (Polyak, 1964)

• Momentum method: Aggregate negative

gradients in momentum m:

mt+1 = αmt − ηtgt

θt+1 = θt + mt+1
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The intuition behind the momentum method

Slide credit: (Hinton, 2012)

• A ball moving on the error surface: The location

of the ball represents the value of the

parameters (w1, w2).

• At t = 0, the ball follows the gradient. Once it

has velocity, it no longer does steepest descent:

Its momentum makes it keep going in the

previous direction.

• It damps oscillations in directions of high

curvature (by combining gradients with opposite

signs) and it builds up speed in directions with a

gentle but consistent gradient.
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• See (Goh, 2017) for the analysis the convergence of the momentum method.
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Rprop (Reidmiller and Brau, 1992)

Slide credit: (Hinton, 2012)

• The magnitude of the gradient can be very different for different weights and can change during

learning. This makes it hard to choose a single global learning rate.

• Rprop (full batch training): Use the sign of the gradient

θt ← θt−1 − ηt �
gt√

g2
t + ε

where g2 = g � g and a
b is elementwise division.

• Adapt the learning rates ηt individually for each parameter:

• Increase the step size for a weight multiplicatively (e.g. times 1.2)

if the signs of its last two gradients agree

• Otherwise decrease the step size multiplicatively (e.g. times 0.5)

• Limit the step sizes

• This escapes from plateaus with tiny gradients quickly.
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RMSProp (Hinton, 2012)

• Rprop does not work well for mini-batch training:

• Consider a weight that gets a gradient of +0.1 on nine mini-batches and a gradient of -0.9 on the

tenth mini-batch: We want this weight to stay roughly where it is.

• Rprop would increment the weight nine times and decrement it once by about the same amount

(assuming any adaptation of the step sizes is small on this time-scale).

• So the weight would grow a lot.

• RMSprop: Divide the gradient by a number similar for adjacent mini-batches:

θt ← θt−1 − ηt
gt√

vt + ε

vt = βvt−1 + (1− β)g2
t

where we use the exponential moving average of g2
t .
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Adam (Kingma and Ba, 2014)

• RMSProp plus the exponential moving average of the gradient:

θt ← θt−1 − ηt
m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

• Correct the bias related to starting the estimates from zero:

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

βt
1 is β1 to the power of t.

• The update rule is again unit-less.
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Why Adam works well

θt ← θt−1 − η
m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

• In Adam, the effective step size |∆t | is bounded. In the most common case:

|∆t | =

∣∣∣∣η m̂t√
v̂t

∣∣∣∣ ≈
∣∣∣∣∣η E [g ]√

E [g 2]

∣∣∣∣∣ ≤ η because E [g 2] = E [g ]2 + E [(g − E [g ])2]

Thus, we never take too big steps (which can be the case for standard gradient descent).

• At convergence, when we start fluctuating around the optimum: E [g ] ≈ 0 and E [g 2] > 0. The

effective step size gets smaller. Thus, Adam has a mechanism for automatic annealing of the

learning rate.
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Input normalization



Simple example: Linear regression

• Consider solving a linear regression problem (no bias term) with gradient descent

L(w) =
1

2N

N∑
n=1

(
yn − w>xn

)2

• We know that the convergence of the gradient descent is determined by the properties of the

Hessian matrix. Let us compute the Hessian matrix:

∇wL =
2

2N

N∑
n=1

(
yn − w>xn

)
(−xn) =

1

N

N∑
n=1

xnx>n w − 1

N

N∑
n=1

ynxn

H =
1

N

N∑
n=1

xnx>n = Cx

• We can see that the Hessian is equal to the sample covariance matrix of the inputs.

47



Input normalization

• Liner regression: For fastest convergence, the covariance matrix of the inputs should be the

identity matrix H = Cx = I.

• We can achieve this by decorrelating the input components (whitening) using principal component

analysis (PCA):

xPCA = D−1/2E>(x− µ)

where EDE> = C is the eigenvalue decomposition of the covariance matrix of x.

• Multilayer neural networks are nonlinear models but normalizing the inputs usually improves
convergence as well.

• Simple: Centering+scaling to unit variance of all inputs (so that each component xi has zero mean

and unit variance).

• More advanced: ZCA (when we want to preserve the original dimensions, e.g., for images)

xZCA = ED−1/2E>(x− µ)
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Weight initialization



Initialization of weights in a linear layer

• Let us consider a linear layer

x1

...

xNx

yi =
∑Nx

j=1 wijxj

y1

...

yNy

• It makes sense to initialize weights with random values. For example, we can draw the initial

values of the weights from some distribution p(w) with zero mean 〈w〉 = 0.
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Variance of signals in the forward computations

x1

...

xNx

yi =
∑Nx

j=1 wijxj

y1

...

yNy

〈var xj〉 = 1 〈var yi 〉 = Nx varw

• Suppose that the inputs xj are normalized to have zero mean and unit variance and they are also

uncorrelated. Then, the variance of the output signals is

var yi =

Nx∑
j=1

w 2
ij var xj

• Its expectation under the weight (initial) distribution is

〈var yi 〉 =

Nx∑
j=1

〈
w 2

ij

〉
var xj =

Nx∑
j=1

〈
w 2

ij

〉
= Nx varw

where varw is the variance of the initial weight values.
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Variance of signals in the forward computations

x1

...

xNx

wij ∼ p(w)

〈w〉 = 0

y1

...

yNy

〈var xj〉 = 1 〈var yi 〉 = Nx varw

• The variance of yi can grow (become larger than the variance of the inputs) or decrease

depending on Nx and the values of the weights (determined by varw).

• When we stack multiple layers on top of each other: The variance can grow/decay quickly if the

weights are too large/small.

• It is a good idea to keep the variance at a constant level: 〈var yi 〉 = 〈var xj〉 = 1, which means

that we should select the distribution p(w) such that

varw =
1

Nx
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Variance of signals in the backward computations

• How about the variance of signals in the backpropagation phase?

• Let us assume that the inputs of the block ∂L
∂yi

in the backward phase are also uncorrrelated and

have unit variance:
∂L
∂x1

...

∂L
∂xNx

wij ∼ p(w)

〈w〉 = 0

∂L
∂y1

...

∂L
∂yNy

〈
var ∂L

∂xj

〉
= Ny varw var ∂L

∂yi
= 1

• With similar arguments, the expected variance of the outputs is〈
var

∂L
∂xj

〉
= Ny varw

and if we want to keep the variance at a constant level, p(w) should be such that

varw =
1

Ny
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Xavier’s initialization

• Glorot and Bengio (2010) proposed to keep the balance between the forward and backward

variances by choosing the weight distribution p(w) such that

varw =
2

Nx + Ny

• If we use the uniform distribution wij ∼ U [−∆,∆], the variance of the weights is

varw =
〈
w 2

ij

〉
=

∫ ∆

−∆

w 2
ij p(wij)dwij =

∫ ∆

−∆

w 2
ij

1

2∆
dwij = 2

∆3

3

1

2∆
=

∆2

3

• The proposed scheme is then

wij ∼ U

[
−

√
6√

Nx + Ny

,

√
6√

Nx + Ny

]

which is perhaps the most popular intialization scheme (called Xavier’s initialization).
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Batch normalization



Batch normalization (Ioffe and Szegedy, 2015)

• It usually helps if intermediate signals also have zero mean and unit variance.

• Batch normalization layer:

• Normalize intermediate signals x to zero mean and unit variance:

x̃ =
x− µ
√
σ2 + ε

• The mean and standard deviation computed from the current mini-batch {x(1), . . . , x(N)}:

µ =
1

N

N∑
i=1

x(i) σ2 =
1

N

N∑
i=1

(x(i) − µ)2

• The layer can control the mean and the variance of the outputs with two trainable parameters γ and

β

y = γ � x̃ + β
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Why BN facilitates training

• Santurkar et al. (2018): BN makes the optimization landscape smoother. This smoothness

induces a more predictive and stable behavior of the gradients, allowing for faster training.

• Bjorck et al. (2018): BN primarily enables training with larger learning rates, which is the cause

for faster convergence and better generalization.

• Important to remember: BN introduces dependencies between samples in a mini-batch in the

computational graph.
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Batch normalization: Training and evaluation modes

• The mean and standard deviation are computed for each mini-batch. What to do at test time

when we need to use a trained network for a test example?

• Batch normalization layer keeps track of the batch statistics (mean and standard deviation) during

training:

µ← (1− β)µ + β
1

N

N∑
i=1

x(i)

σ2 ← (1− β)σ2 + β
1

N

N∑
i=1

(x(i) − µ)2

where β is the momentum parameter (note confusing name). It is the running statistics µ and σ2

that are used at test time.
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Batch normalization: Training and evaluation modes

• Pytorch: If you have a batch normalization layer, the

behavior of the network in the training and evaluation

modes will be different:

• Training: Use statistics from a mini-batch, update

running statistics µ and σ2.

• Evaluation: Use running statistics µ and σ2, keep µ

and σ2 fixed.

model = nn.Sequential(

nn.Linear(1, 100),

nn.BatchNorm1d(100),

nn.ReLU(),

nn.Linear(100, 1),

)

# Switch to training mode

model.train()

# train the model

...

# Switch to evaluation mode

model.eval()

# test the model
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Home assignment



Assignment 02 mlp

1. Implement and train a multilayer perceptron (MLP) network in PyTorch.

2. Implement backpropagation for a multilayer perceptron network in numpy. For each block of a

neural network, you need to implement the following computations:

• forward computations y = f (x,θ)

• backward computations that transform the derivatives wrt the block’s outputs ∂L
∂y

into the derivatives

wrt all its inputs: ∂L
∂x

, ∂L
∂θ

f

θ

x y

∂L
∂y

∂L
∂h

∂L
∂θ
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Recommended reading

• Chapter 8 of the Deep Learning book.

• G. Hinton, 2012. Overview of mini-batch gradient descent.

• G. Goh, 2017. Why momentum really works.
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