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Image classification task

• Example classification problem: Classify images of handwritten digits from the MNIST dataset.

• Inputs x(n) are images 28× 28 pixels.

• Targets y (n): One of the 10 classes.
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Spatial structure matters

• If we change the order of the pixels (in the same way for all images), the classification task

becomes much harder for humans.

• This suggests that our model can and should benefit from using the spatial information.
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Image classification with a multilayer perceptron

• We can solve the classification task using

a multilayer perceptron model (MLP)

that we considered in the first lecture.

• We can flatten the images (for example,

stack the columns of the images into one

vector) and feed to the MLP model.
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Problem 1: MLP ignores the spatial structure

• If we shuffle the pixels, we simply feed the

pixels into different inputs of the MLP.

• This means that the MLP ignores the

spatial structure and essentially solves a

more difficult problem.
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Problem 1: MLP ignores the spatial structure

• Small translations of the input image (for

example, shifting the image one pixel to the

left/right/top/bottom) result in significant

changes of the MLP inputs, therefore the

outputs of the MLP will change in an

unpredictable way.

• The MLP has to learn to be invariant to such

transformations, which may require a

considerable amount of training.
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Problem 2: Number of parameters

• Let us use an MLP with the following structure to solve

the MNIST classification task.

• Let us count the number of parameters in the network

(ignoring the bias terms b):

28× 28× 225 + 225× 144 + 144× 10 = 210240

• If we want to process images that contain millions of

pixels, the number of parameters would be several orders

of magnitude larger. input x

784 pixels

h1 = relu(W1x + b1)

225 units

h2 = relu(W2h1 + b2)

144 units

f = softmax(W3h2 + b3)

10 outputs
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Motivation for a layer of a new type

• We want to design an alternative to the fully-connected layer that would address these problems:

• Take into account the order of the inputs

• Reduce the number of parameters

• Change the outputs in a predictable way for simple transformations such as translation
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Convolutional layer



Fully-connected layer as a starting point

• Let us consider an input with one-dimensional structure. For example, we want to process time

series and the order of the inputs is determined by the time of the measurements.

• Let us start with a fully-connected layer that has 5 inputs and 5 outputs:

x1 x2 x3 x4 x5

• The layer has 5× 5 = 25 parameters (ignoring the bias terms).
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Local connectivity

• We can reduce the number of parameters by using only local connections.

• Now the outputs also have an order because each output corresponds to a particular location in

the inputs.

• The layer has now 13 parameters.
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Parameter sharing

• We can further reduce the number of parameters by using weight sharing (arrows with the same

color represent shared weights).

• Now the layer has only 3 parameters.

• Why parameter sharing is useful: patterns that appear in different parts of the input sequence will

activate neurons in the corresponding location of the output layer.
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1d convolutional layer

• The computations performed in such a layer:

yi =
∑

∆i=−1,0,1

w∆ixi+∆i + b

• The layer is called a (one-dimensional) convolutional layer because the computations are closely

related to (one-dimensional) convolution:

(w ∗ x)[t] =
∑
a

w [a]x [t − a]
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1d convolutional layer

• Inputs and outputs of such a layer usually contain multiple elements (usually called channels):

yi,o =
∑
∆i

∑
c

w∆i,o,cx∆i,c + bo

• Weights w∆i,o,c are usually called kernel.

• There are two ways to process inputs at the borders:

no padding (different output size)

0 0

padding (usually with zeros)
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Inputs with 2d structure

• Same ideas can be used for inputs with 2d

spatial structure like images.

• Local connectivity: output is affected by

inputs in its neighborhood.

• Shared parameters: same colors represent

shared weights.

b1,W1
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2d convolutional layer: Forward computations

• Simplified example: inputs with one

channel (black-and-white images)

outputs with one channel.

• Slide the filter across the entire input

and compute dot products between

input entries and filter weights.

• Computations can be parallelized.
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2d convolutional layer as feature detector

• We can view the filter that we used in this example as a simple feature detector.

• Note that the filter has the shape of a corner. And the output is maximum at the position where

this corner is present in the input image.
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2d convolutional layer with multiple channels

• Inputs may contain multiple channels (RGB images).

• We need to detect multiple features using multiple filters. Therefore, a convolutional layer

contains multiple channels:

yi,j,o =
∑
∆i

∑
∆j

∑
c

w∆i,∆j,o,cxi+∆i,j+∆j,c + bo

• Just like in multilayer perceptrons, the output of a convolutional layer is usually run through a

nonlinear activation function, such as ReLU:

y ′i,j,o = relu(yi,j,o)
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Convolution ∗

• One filter learns to detect a feature in the input:
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2d convolutional layer in PyTorch

• torch.nn.Conv2d(in channels, out channels, kernel size, stride, padding)
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• Convolution visualization

• The size of the output will be different:

Ho =
1

s
(Hi + 2p − k − (k − 1)(d − 1)) + 1
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Why do we need padding?

• With padding, the output of a convolutional layer can have the same height and width as the

input.

• It is easier to design networks when the height and width is preserved.

• To use skip connections x + conv(x), like in ResNet, we need the dimensions to match.

• With padding, we can use deeper networks. Without padding, the size would reduce quickly with

adding new layers.

• Padding improves the performance by keeping information at the borders.
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Convolutional layer is equivariant to translation

• Shifting the input image by one pixel to the right changes the output in the same way: it is

shifted by one pixel to the right.
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• A function f is equivariant with respect to T if

f (T (x)) = T (f (x)).

• A function f is invariant with respect to a transformation T if

f (T (x)) = f (x).

The result through f does not change when you apply the transformation to the input.
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Convolutional networks



Example: MNIST classification

• Let us build a convolutional neural network (a network with convolutional layers) to solve the

MNIST classification task.

• The input is 28× 28 pixels and 1 channel.

• First convolutional layer:

• 9 filters with 5 × 5 kernel and padding.

• First hidden layer: 28× 28 pixels and 9 channels

• The number of parameters in the first layer (ignoring

biases):
5× 5× 9 = 225

• Compare with the fully connected layer:

28× 28× 225 = 176400
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Example: MNIST classification

• Let us count the number of signals in the first layer:

28× 28× 9 = 7056

• Compare with the fully connected layer: 225

• The number of intermediate signals is much larger in

the convolutional layer. To process such a

high-dimensional signal, we need a significant amount

of computations in the rest of the network.

• In order to decrease the amount of computations, it makes sense to reduce the number of

intermediate signals.

• We can do so by a pooling layer.
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Pooling layer

• A common way is to take the maximum value in a

small window (max pooling).

• For instance if we use max pooling with a filter of

size 2x2 we discard 75 percent of the values.

• Pooling helps to make the representation

approximately invariant to small translations of the

input.
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Example: MNIST classification

• After adding a 2× 2 pooling layer.
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Stack more layers

• Note: Each unit looks at all the channels of the

previous layer.
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Full network

• Finally, we flatten the outputs of the last convolutional layer and feed

them to a fully-connected layer with 10 outputs.

• We apply the softmax nonlinearity to the outputs and use the

cross-entropy loss.

• The network can be trained by any gradient-based optimization

procedure, for example, Adam.

• The gradients are computed by backpropagation as in the multilayer

perceptron. The biggest difference is that we need to take into

account parameter sharing inside the convolutional layers.
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Backpropagation through a convolutional layer

• Forward computations in a convolutional layer:

yi,j,o =
∑
∆i

∑
∆j

∑
c

w∆i,∆j,o,cxi+∆i,j+∆j,c + bo

• Backward computations in a convolutional layer:

∂L
∂w∆i,∆j,o,c

=
∑
i

∑
j

∂L
∂yi,j,o

xi+∆i,j+∆j,c

∂L
∂xi,j,c

=
∑
∆i

∑
∆j

∑
o

∂L
∂yi−∆i,j−∆j,o

w∆i,∆j,o,c

• The latter operation is called transposed convolution.

x

y

∂L
∂x

∂L
∂y
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Modern convolutional neural networks



Historical note: First convolutional networks

• Fukushima (1980) proposed neocognitron, a neural net-

work architecture with:

• Multiple layers of local feature detectors

• Weight sharing

• (LeCun et al., 1989): A convolutional network applied to

handwritten character recognition

• The method became the basis of a nationally deployed

check-reading systems.
Fukushima’s Neocognitron

• (Waibel et al., 1989): Time-delay neural network which were similar to conv nets but applied to

audio (in a moving window).

• (LeCun et al., 1998): LeNet-5, a classical architecture of a convolutional neural networks.
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AlexNet (Krizhevsky, 2012)

image source:oreilly.com

• Five convolutional layers and three fully-connected layers

• ReLU nonlinearities after convolutional layers, dropout
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VGG-19 (Simonyan & Zisserman, 2015)

• Suppose we have c input and c output channels.

• One convolutional layer with 7× 7 filters:

• 49c2 parameters

• If we stack three 3× 3 conv layers:

• Effective receptive field is 7 × 7

• 27c2 parameters (45% less)
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VGG-19 (Simonyan & Zisserman, 2015)

• Compared to AlexNet:

• Smaller (3 × 3) filters

• Deeper network (more layers)
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ResNet (He et al, 2016)

• Training deeper networks is a more difficult optimization problem:

• Experiments: deeper networks tend to have higher training error.

• Deeper networks should not produce higher training error compared to more shallow networks (extra

layers can learn simple identity mappings if needed).
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ResNet (He et al, 2016)

• ResNet:

• Instead of learning f (x), layers learn x + h(x).

• If an identity mapping is optimal, it is easier to push residual h(x) to zero than to learn an identity

mapping with f (x).

• Compared to VGG:

• Skip connections

• More layers
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Why residual connections help training

• Balduzzi et al. (2017) identified the problem with gradients in deep networks without residual

connections. Experiment with a randomly initialized MLP f : R→ R, each hidden layer contains

200 neurons with ReLU activations:

1-layer feedforward 24-layer feedforward 50-layer resnet

Gradients ∂f
∂x

(x) as a function of the input.

• Gradients are shattered for deep network without skip connections: Small changes of the input has

significant effect on the gradient. Thus the optimization becomes more difficult.

40

https://arxiv.org/pdf/1702.08591.pdf


Batch normalization in convolutional networks

• Batch normalization facilitates faster convergence of the optimization procedure.

• BatchNorm2d: The batch statistics are computed across all examples in a mini-batch and all pixels.

µ =
1

NWH

N∑
n=1

W∑
i=1

H∑
j=1

x(n)
ij σ2 =

1

NWH

N∑
n=1

W∑
i=1

H∑
j=1

(x(n)
ij − µ)2

µ and σ2 have as many elements as there are channels in z.

• Each channel c of the input map is transformed using the batch statistics and the BatchNorm

parameters γc and βc :

y
(n)
ijc = γc

z
(n)
ijc − µc√
σ2
c + ε

+ βc
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Applications of convolutional networks



Advantages of convolutional networks

• Advantages of convolutional networks

• Take into account the order of the inputs.

• Can process input sequences with varying lengths (due to parameter sharing).

• The computations can be effectively parallelized.

• For these reasons, convolutional networks have been used for processing images, text data,

speech, analyzing game positions and even for predicting protein folding.
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Temporal convolutions

• WaveNet (van den Oord et al., 2016): an autoregressive model of speech:

p(x) =
T∏
t=1

p(xt |x1, . . . , xt−1)

• The conditional distribution p(xt |x1, . . . , xt−1) is modeled with a 1d convolutional network:

One needs lots of

layers to model

long-term

dependencies
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WaveNet: Dilated convolutions

• Stack of dilated causal convolutional layers:

• Dilated convolutions allow fast growth of the receptive field which is good for modeling long-term

dependencies.

• WaveNet (van den Oord, 2016) is the state-of-the-art model for speech generation.
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Semantic segmentation

• Segmentation: Generating pixel-wise segmentations giving the class of the object visible at each

pixel, or ”background” otherwise.

input image output segmentation map

• We need to classify each pixel of the input image.
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Semantic segmentation with U-Net (Ronneberger et al, 2015)

• The contracting path (left side) is needed to extract high-level features.

• The expansive path (right side) is needed to make the classification decisions on the pixel level

(transposed convolutions are used here). The expansive path uses representations from the

contracting path (via skip connections and concatenation).
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https://arxiv.org/abs/1505.04597


Convolutional model for neural machine translation (Gehring et al., 2017)

• Translation task: we need to translate a sentence in the

source language into a sentence in the target language.

• Convolutional networks are used to encode the source

sentence (sequence of words) and use that

representation to compute the probabilities of words in

the output sequence.
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https://arxiv.org/pdf/1705.03122.pdf


Convolutional networks in reinforcement learning

• In RL, convolutional networks are used to process sensory

inputs with two-dimensional structure.

• Example: AlphaZero (Silver et al, 2017), an RL algorithm

that achieves superhuman performance in the games of Go,

chess and shogi.

• Deep convolutional networks are used to compute the

probability of the next move pt and the probability vt that the

player wins the game from the current position (to build a

search tree).
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https://deepmind.com/documents/119/agz_unformatted_nature.pdf


Protein folding problem (DeepMind blog)

• Proteins are large, complex molecules essential to all of life. What any given protein can do

depends on its unique 3D structure.

• Proteins are comprised of chains of amino acids. The information about the sequence of amino

acids is contained in DNA.

• Protein folding problem: Predicting how these chains will fold into the 3D structure of a protein.
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https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery


CASP competition

• The Critical Assessment of protein Structure

Prediction (CASP): a biennial global competition

established in 1994, is the standard for assessing

predictive techniques.

• In 2020, DeepMind’s AlphaFold 2 model has

achieved “unprecedented progress in the ability of

computational methods to predict protein

structure”.
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AlphaFold 2 (Senior et al., 2020)

• The input of the model is a sequence of amino

acids. Each sequence is represented as a 2d matrix

in which each element corresponds to one pair of

amino acids. The features (channels) of each pixel

are produced using an external model.

• The output is the distances between the Cβ atoms

of pairs of amino acid residues of a protein. The

output can also be represented as a 2d matrix.

• A convolutional neural network is used to predict

the outputs from the inputs.
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https://www.nature.com/articles/s41586-019-1923-7


Recommended reading

• Chapter 9 of Deep Learning book

• References in the slides
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Home assignment



Assignment 03 cnn

• Implement and train three convolutional networks

1. CNN inspired by classical LeNet-5

2. VGG-style network

3. ResNet
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