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Overfitting

• Good performance on training data but bad

performance on new, test data

(poor generalization).
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green: correct model, red: fitted model
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Why overfitting happens?

• Conventional wisdom: The model is too flexible

for the amount of training data.

• Wikipedia: An overfitted model is a statistical

model that contains more parameters than can

be justified by the data.

• Rule of thumb (one in ten rule) for logistic

regression: To keep the risk of overfitting low,

the number of examples should be ten times

larger than the number of parameters.
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How to detect overfitting?

• Use validation set (black dots) to evaluate the performance.
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Regularization

• Regularization is a technique used to solve the

overfitting problem.

• Neural networks are very powerful (universal

approximators), they can model very large and

complex datasets.
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Regularization methods

1. Limit model capacity:
• Reduce network size

• Weight decay

• Parameter sharing

2. Early stopping

3. Ensemble methods:
• Dropout

• Probabilistic treatment (e.g. Bayesian neural networks)

4. Data augmentation:
• Noise injection

• Transformations

• Adversarial training
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1. Limit model capacity



Reduce size of network

• Recall the conventional wisdom: Overfitting is likely to happen when a model contains more

parameters than can be justified by the data.

• Solution: Reduce the number of parameters.

• We can vary the number of neurons/the number of layers to find the architecture that works best

(on the validation data).

• Advantage: Conceptually easy.

• Disadvantage: Other regularization methods often give better accuracy.
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L2 regularization (Tikhonov, 1943)

• Add a penalty term Ω(w) to the training cost:

Lreg = L+ Ω(w) .

Ω(w) =
α

2
‖w‖2 =

α

2

∑
i

w 2
i

The penalty term is a function of parameters w, not data.

• L2 regularization pushes the solution towards zero.

w∗ unregularized solution

w̃ regularized solution

• L2 regularization is often called weight decay. For example, torch.optim.Adam(params, lr,

betas, eps, weight decay) implements L2 regularization with the hyperparameter α set by

parameter weight decay.
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L2 regularization vs weight decay

• Using term weight decay for L2-regularization may cause confusion.

• Weight decay as described by Hanson and Pratt (1988):

wt+1 = (1− λ)wt − η∇L (1)

• For standard stochastic gradient descent, weight decay is equivalent to L2 regularization:

Lreg = L+
α

2
‖w‖2

wt+1 = wt − η∇Lreg = wt − η∇L− ηαwt = (1− ηα)wt − η∇L

• For algorithms like Adam, weight decay as given in (1) is not equivalent to L2 regularization.

• Loshchilov and Hutter (2017) proposed a regularized version of Adam which tries to follow the

early-days definition of weight decay. It is available in PyTorch as torch.optim.AdamW.
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https://arxiv.org/abs/1711.05101


Why L2 regularization reduces overfitting

• Intuition: Smaller weights usually produce smoother functions (smaller magnitudes of derivatives).

• Consider a linear regression problem (no bias term for simplicity):

L(w) =
1

2N

N∑
n=1

(
yn − w>xn

)2

+
α

2
w>w

• Let us find the minimum by computing the gradient and equating it to zero:

∇wL =
2

2N

N∑
n=1

(
yn − w>xn

)
(−xn) +

α

2
w =

1

N

N∑
n=1

xnx>n w − 1

N

N∑
n=1

ynxn +
α

2
w

=

(
1

N

N∑
n=1

xnx>n + αI

)
w − 1

N

N∑
n=1

ynxn = 0

which yeilds

w =

(
1

N

N∑
n=1

xnx>n + αI

)−1(
1

N

N∑
n=1

ynxn

)
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Why weight decay reduces overfitting

• The solution of linear regression with weight decay:

w =

(
1

N

N∑
n=1

xnx>n + αI

)−1(
1

N

N∑
n=1

ynxn

)

• L2 regularization causes the learning algorithm to “perceive” the input as having higher variance.

This makes the weights shrink.

• The regularization effect is larger for the weight values determined by the minor (opposite to

principal) components of the data.
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2. Early stopping



Early stopping

• Monitor validation performance during training.

• Stop when it starts to deteriorate (with other

regularization techniques it might never start).

• Keeps solution close to the initialization.
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Why early stopping reduces overfitting

• Consider a liner regression problem with a linear model (no bias term). The loss is a quadratic

function with the minimum at w∗:

L(w) = L(w∗) +
1

2
(w − w∗)

>H(w − w∗)

• The update with gradient descent:

wt = wt−1 − εH(wt−1 − w∗)

wt − w∗ = wt−1 − w∗ − εH(wt−1 − w∗) = (I− εH)(wt − w∗)

• Using the eigendecomposition H = QΛQ> gives

Q>(wt − w∗) = Q>(QQ> − εQΛQ>)(wt − w∗) = (I− εΛ) Q>(wt−1 − w∗)︸ ︷︷ ︸
=(I−εΛ)Q>(wt−2−w∗)

= (I− εΛ)2Q>(wt−2 − w∗) = (I− εΛ)tQ>(w0 − w∗)

• Assuming w0 = 0, this yields

Q>wt = Q>w∗ − (I− εΛ)tQ>w∗ = [I− (I− εΛ)t ]Q>w∗
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Optimal solution with weight decay

• Now consider minimizing the same loss with a weight decay penalty:

Lα(w) = L(w∗) +
1

2
(w − w∗)

>H(w − w∗) +
α

2
w>w

The optimal weights w̃ can be found by equating the gradient to zero:

∇Lα = H(w − w∗) + αw = 0

w̃ = (H + αI)−1Hw∗

In the rotated coordinate system, the solution is given by

Q>w̃ = Q>(QΛQ> + αI)−1QΛQ>w∗

= Q>
[
Q(Λ + αI)Q>

]−1

QΛQw∗

= (Λ + αI)−1ΛQ>w∗
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Why early stopping reduces overfitting

• If we use L2 regularization:

Q>w̃ = (Λ + αI)−1ΛQ>w∗

• If we use early stopping after iteration t:

Q>wt = [I− (I− εΛ)t ]Q>w∗

• If the hyperparameters ε, α and t are chosen such

that

(Λ + αI)−1 = [I− (I− εΛ)t ]

then L2 regularization and early stopping can be

seen as equivalent.

w∗ unregularized solution

w̃ regularized solution
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Early stopping

• Early stopping stops training before

we go to a narrow hole in which the

model may generalize poorly.

training error
validation error

17



3. Ensemble methods



Ensemble methods

• Train several models and take average of their outputs.

• Also known as bagging or model averaging.

• It helps to make individual models different by

• varying models or algorithms

• varying hyperparameters

• varying data (dropping examples or dimensions)

• varying random seed
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Dropout (Hinton et al., 2012)

• At training time: For each data example x (or

mini-batch), randomly delete each hidden node with

probability p.

• Can be seen as

• injecting (multiplicative binary) noise

• training an ensemble of models with shared weights.

• For a network with N neurons, our ensemble contains

2N models.
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https://arxiv.org/abs/1207.0580
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Dropout as bagging
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Dropout: Training and evaluation modes

• At test time, neurons are not dropped. Therefore, we

need to adjust the activations to take into account the

difference between training and evaluation modes.

• If a signal x is dropped with probability p, the

expected value after the dropout is

E [x ] = (1− p)x

• PyTorch nn.Dropout layer:

• Training mode: zero signals with probability p and

scaled by factor 1
1−p

.

• Evaluation mode: do nothing.

model = nn.Sequential(

nn.Linear(1, 100),

nn.Tanh(),

nn.Dropout(0.02),

...

)

# Switch to training mode

model.train()

# training the model

...

# Switch to evaluation mode

model.eval()

# test the model
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Probabilistic treatment: Bayesian neural networks

• Bayesian neural networks were proposed in late 80s, popularized by David MacKay (1992).

• Bayesian methodology: one should combine predictions p(y | x,Mi ) given by all possible models:

p(y | x,D) =
∑
i

p(y | x,Mi )p(Mi | D)

weighting them by model evidence p(Mi | D).
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Probabilistic treatment: Bayesian neural networks

• If we fix the architecture of a neural network, the set of possible models is defined by all possible

parameter values w:

p(y | x,D) =

∫
p(y | x,w)p(w | D)dw

• We then need to evaluate the posterior distribution p(w | D) of the model parameters given the

training data. We do that using Bayes rule:

p(w | D) =
p(D|w)p(w)

p(D)

• We can use different strategies to approximate p(w | D):

• maximum a posteriori estimation (point estimates of w)

• variational approximation of p(w | D)

• draw samples from p(w | D)
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Weight decay as Bayesian prior

• To find maximum a a posteriori estimate, we can maximize the logarithm of the posterior:

F(w) = log p(w|D) = log p(D|w) + log p(w)− log p(D)

or minimize the following loss function:

L(w) = − log p(D|w)− log p(w)

• Recall that, for example, MSE can be viewed as − log p(D|w) for a Gaussian model:

1

N

N∑
n=1

∥∥∥y(n) − f(x(n),w)
∥∥∥2

= −β log
N∏

n=1

N (y(n) | f(x(n),w), σ2I) + const

• If we assume Gaussian prior p(w) = N (0, α−1I) we get:

− log p(w) = − log exp
(
−α

2
‖w‖2

)
+ const =

α

2
‖w‖2 + const

• Thus, L2 regularization is equivalent to maximum a posteriori estimation in a probabilistic model

with Gaussian prior (not really an ensemble method).
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Variational approximation of the posterior distribution

• Variational approximations: Within a selected family of

distributions q(w), for example, Gaussian:

q(w | θ) =
∏
i

N (wi | µi , σ
2
i ),

find the one that is closest to the true posterior

distribution p(w | D).
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• θ = {µi , σi} are called variational parameters, we need to tune them.

• Blundell et al. (2015) tune θ = {µi , σi} by minimizing the Kullback-Leibler (KL) divergence

between q(w | θ) and the true posterior distribution:

L(θ) = KL[q(w | θ)||p(w | D)] =

∫
q(w | θ) log

q(w | θ)

p(w)p(D | w)
dw

= KL[q(w | θ)||p(w)]︸ ︷︷ ︸
regularization term

−Eq(w|θ)[log p(D | w)]︸ ︷︷ ︸
fit to data
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Sampling approach: Stein variational gradient descent

• Liu and Wang (2016) find samples wk from the posterior

approximation q(w) that minimizes the KL divergence with

the true posterior.

• Each sample defines one neural network.

• We create an ensemble of neural networks.

• We do not postulate the form of q(w) explicitly.
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• We still can compute the gradient of the KL divergence, which yields the update rule:

wk ← wk + η
1

K

K∑
k′=1

k(wk′ ,wk )∇wk′ [log p(wk′ ) + log p(D | wk′ )]︸ ︷︷ ︸
smoothed gradient

+∇wj k(wk′ ,wk )︸ ︷︷ ︸
repulsive force

k(w,w′) is some kernel, for example, k(w,w′) = exp(− 1
h
‖w − w′‖2).

• The repulsive force term prevents all wk to collapse into the same values.
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Bayesian neural networks

• By using an ensemble of models, Bayesian neural

networks can reduce overfitting.

• BNNs can produces confidence intervals for their

predictions.

• BNNs can miss some of the modes in the posterior

distribution over the weights, thus the uncertainties

can be easily underestimated.

image from (Blundell et al., 2015)
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4. Data augmentation



Injecting noise (Sietsma and Dow, 1991)

• Inject random noise during training

(different noise instance in each epoch).

• Can be applied to input data, to hidden

activations, or to weights.

• Can be seen as data augmentation.

• Simple end effective.
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Image transformations

• In some domains it is easy to generate

more labeled data by transformations.

• Transformation of images: random crop,

translation, scaling, flip, rotation.

• The classification network learns to be

invariant to such transformations.

Image from (Dosovitskiy et al., 2014)
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mixup (Zhang et al., 2017)

• mixup constructs virtual training examples x̃, ỹ in the following way:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

where xi , xj are raw input vectors and yi , yj are one-hot label encodings. (xi , yi ) and (xj , yj) are

two examples drawn at random from the training set, λ ∈ [0, 1].

• mixup extends the training distribution by incorporating the prior knowledge that linear

interpolations of feature vectors should lead to linear interpolations of the associated targets.

• Note that for images, we take as training examples mixtures of two different images. Even though

the mixtures do not look like real images, this data augmentation method works and improves

generalization.
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Adversarial examples

• Training of neural networks:

1

N

N∑
n=1

L(x(n), y(n),w)→ min
w

where L(x(n), y(n)w) is, for example, a cross-entropy loss.

• Szegedy et al. (2014) discovered that it is very easy to fool a trained neural network. One can

modify a given input x such that the output of the network changes:

L(x + r, y,w)→ max
r

keeping the adversarial perturbation r small, for example, ‖r‖ ≤ ε.

• Modified input x + r is called an adversarial example.
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FGSM attack (Goodfellow et al., 2014)

• Finding adversarial examples is surprisingly easy. For example, with the fast gradient sign method

(FGSM):

x + r = x + ε sign(∇xL(w, x, y))

x, f (x) = “panda” sign(∇xL(w, x, y)) x + r, f (x) = “gibbon”
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Adversarial training

• Adversarial examples are difficult for neural networks, including them in the training set helps

reduce the test error. This is called adversarial training.

• Adversarial training is data augmentation with adversarial examples.

• The existence of adversarial examples motivated a new subfield of deep learning in which they

develop techniques to defend neural networks against adversarial attacks.

35



Madry’s defense

• Madry’s defense model (Madry et al., 2017) is one of the strongest defense models.

• Recall standard optimization:

E(x,y)∼D [L(w, x, y)]→ min
w

• Madry’s defense model:

min
w

E(x,y)∼D

[
max
δ∈S
L(w, x + δ, y)

]
• Instead of feeding clean training samples x, we feed the worst adversarial examples found with

another optimization procedure.

• Saddle point problem: composition of an inner maximization problem and an outer minimization

problem.
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Adversarial training helps develop more meaningful representations

• Gradients wrt inputs look much more meaningful for an adversarily trained network.

images from (Madry et al., 2018)
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Adversarial examples look more meaningful

images from (Madry et al., 2018)
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Rethinking generalization

(Zhang et al., 2016)

https://arxiv.org/pdf/1611.03530.pdf


Conventional wisdom

• The model is too flexible for the amount of

training data.

• Wikipedia: An overfitted model is a statistical

model that contains more parameters than can

be justified by the data.
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Rethinking generalization (Zhang et al., 2016)

• Deep neural networks easily fit random labels:

• The effective capacity of neural networks is sufficient for memorizing the entire data set.

• Optimization on random labels remains easy.

• Same networks exhibit remarkably small difference between training and test performance.

Fitting random labels and random pixels on CIFAR10.
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The role of explicit regularization

• Explicit regularization may improve generalization performance, but is neither necessary nor by

itself sufficient for controlling generalization error.

The training and test accuracy of various models on CIFAR10.
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Implicit regularization

• Batch normalization is usually found to improve the generalization performance, even though it

was not explicitly designed for regularization.

The training and test accuracy of various models on CIFAR10.

• Stochastic gradient descent (SGD) may acts as an implicit regularizer:

• For linear models, SGD always converges to a solution with small norm.
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Hyperparameter search



Selecting hyperparameters

• Hyperparameter search: use the performance on the validation set to select the optimal values of

the hyperparameters.

• Hyperparameters that you may want to tune:

• learning rate schedule

• transformations used for data augmentation

• weight decay coefficient

• dropout rate

• mini-batch size

• number of layers

• number of neurons

• convolution kernel width

• nonlinearity

• What works best in practice (this is not the case in the home assignment :-)):

• A large model combined with strong regularization.

• The training error is very low.
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Hyperparameter search: Grid search

• Select a fixed set of possible values for each

hyperparameter.

• Compute the validation loss for all hyperparameter

combinations.

• Problems:

• Many evaluations will be unnecessary if some

hyperparameters are non-influential.

• Computational cost increases exponentially with the

number of hyperparameters.

image from (Bergstra and Bengio, 2012)
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Hyperparameter search: Random search

• Random combinations of the hyperparameters are

formed and evaluated.

• Advantages:

• Random search does not waste evaluations for

non-influential hyperparameters.

• More convenient and faster than grid search.

image from (Bergstra and Bengio, 2012)
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Home assignment



Assignment 04 reg

• First notebook: Experiment with different regularization methods on a toy regression problem.

• Second notebook: Implement and tune a recommender system.

• In order to achieve good performance on the test set, you will have to use regularization

techniques and tune the (hyper)parameters.
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How to represent users or items

• A simple representation is a one-hot vector. For example, user i can be represented with vector zi
such that zi = 1, zj 6=i = 0.

• Better representaion:

• represent each user i as a vector wi

• treat all vectors wi as model parameters and tune them in the training procedure

• this is equivalent to Wzi where W is a matrix of “embeddings” (with vectors wi in its columns).

• This is implemented in torch.nn.Embedding(num embeddings, embedding dim)

• num embeddings is the size of the dictionary

• embedding dim is the size of each embedding vector wi
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Recommended reading

• Chapter 7 of Deep learning book

• References in the slides
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