
CS-E4890: Deep Learning

Deep autoencoders

Alexander Ilin

Motivation

• Supervised learning problems: datasets consist of input-output pairs

(x(1), y(1)), . . . , (x(n), y(n))

• Deep learning: supervised learning solved.

• Unsupervised learning: Make computers learn from unlabeled data

x(1), . . . , x(n)

• Unsupervised learning seems important for building intelligent systems that can learn quickly. We

humans learn a lot from unlabeled data.

• Unsupervised learning can be useful in practical applications:

• detect samples that look different from training population (novelty/anomaly detection)

• visualize data, discover patterns (information visualization)

• generate new samples which look similar to the training data (generative models)

1

Representation learning

• We can use unlabeled data to do representation learning.

• Representation learning: extract features that may be useful for future (downstream) tasks

x
f−→ z

• Extracted features might work better than raw data in supervised learning tasks (especially with

little labeled data):

x
f−→ z→ y

• Problem: we do not know for which downstream tasks we need to prepare.

• We can extract patterns (features) that appear frequently in the data and hope that those

features will be useful later.

2

Bottleneck autoencoders

Principal component analysis (PCA)

• One of the simplest methods of unsupervised learning is PCA.

• Assume that the data have been centered by subtracting its mean: x← x− E{x}.

• The first principal component is found by maximizing the variance of the data multiplied by a

unit-length vector w1:

y1 = w>1 x , ‖w1‖ = 1

E{y 2
1 } = E{xx>} = w>1 E{xx>}w1 = w>1 Cxw1

w∗1 = arg max
w1

w>1 Cxw1, s.t. ‖w1‖ = 1

The solution is given by the first dominant eigenvector of the co-

variance matrix Cx.
5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

8

• The second principal component is found by maximizing the variance in the subspace orthogonal

to the first eigenvector of Cx (and so on).

4

PCA as minimum mean-square error compression

• We find an m-dimensional subspace spanned by orthonormal basis

W
n×m

=
[
w1 ... wm

]
W>W = I

• We project n-dimensional data vectors x onto the subspace: z = W>x.

• The reconstruction of x that stays within the m-dimensional subspace defined by W:

x̂ = Wz =
m∑
i=1

(w>i x)wi = WW>x

• We find W such that the mean-square error between original data

and reconstruction is minimized:

WPCA = arg min
W

E{

∥∥∥∥∥x−WW>x︸ ︷︷ ︸
x̂

∥∥∥∥∥
2

} , s.t. W>W = I x x̂

z

W>x Wz

reconstruction

loss

5

PCA as a bootleneck autoencoder

• PCA as an autoencoder: We learn a mapping from x to x:

x̂ = g(f (x))

encoder: f (x) = Wf x + bf

decoder: x̂ = g(z) = Wgz + bg

L = E{‖x− g(f (x))‖2}
x x̂

z

f g

reconstruction

loss

• If we do not restrict f and g , we can learn a trivial identity mapping:

x̂ = g(f (x)) = (WgWf) x + (Wgbf + bg) = x, if Wg = W−1
f and bg = −Wgbf

• If the dimensionality of z is smaller than the dimensionality of x, autoencoding is useful: we

compress the data.

• z is often called a bottleneck.

• Thus PCA can be implemented with a bottleneck autoencoder.

6

How can we improve compression?

• We have a linear autoencoder:

x̂ = g(f (x))

f (x) = Wf x + bf

g(z) = Wgz + bg

• How can we improve compression so that we get a smaller

reconstruction error

E{‖x− g(f (x))‖2}

with a bottleneck layer of the same size?

• We can use nonlinear encoder f and decoder g .

x x̂

z

f g

reconstruction

loss

7

How can we improve compression?

• We have a linear autoencoder:

x̂ = g(f (x))

f (x) = Wf x + bf

g(z) = Wgz + bg

• How can we improve compression so that we get a smaller

reconstruction error

E{‖x− g(f (x))‖2}

with a bottleneck layer of the same size?

• We can use nonlinear encoder f and decoder g .

x x̂

z

f g

reconstruction

loss

7

Deep autoencoders

• Deep autoencoder: both the encoder and the decoder are deep

neural networks.

• The optimization criterion is the mean-squared reconstruction error:

θf ,θg = arg min
θf ,θg

E{‖x− g(z,θg)‖2} , z = f (x,θf)

• Bottleneck autoencoder: To prevent learning a trivial (identity)

function, we use z with fewer dimensions (a bottleneck layer).

• Bottleneck autoencoders were proposed by Bourlard and

Kamp (1988), Oja (1991).
x

z

f

x̂

g

8

Deep autoencoders can learn complex data manifolds

• In this hypothetical example, the data lie on

one-dimensional manifold.

• Principal component analysis is not be able to learn the

one-dimensional manifold because it is a linear model.

• With a nonlinear autoencoder, we can learn a curved

data manifold.

• In our example, colors represents the values of the latent

code z that may be found by an autoencoder.

A one-dimensional data manifold in the

two-dimensional space.

9

Deep autoencoders can learn complex data manifolds

• In this hypothetical example, the data lie on

one-dimensional manifold.

• Principal component analysis is not be able to learn the

one-dimensional manifold because it is a linear model.

• With a nonlinear autoencoder, we can learn a curved

data manifold.

• In our example, colors represents the values of the latent

code z that may be found by an autoencoder.
A one-dimensional data manifold in the

two-dimensional space.

9

Deep autoencoder as feature extractor

• The most popular use case for deep autoencoders is data compression.

• Consider, for example, reinforcement learning (RL) tasks such as playing Doom (Ha and

Schmidhuber, 2018).

• Learning from raw images (pixels) is likely to require a huge number of training episodes because

the amount of input data is large.

• The authors first compress the data using an autoencoder and then train the agent using as

observations compressed representations z.

10

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122

Deep bottleneck autoencoder: MNIST example

• In the home assignment,

you will train a

bottleneck autoencoder

for the MNIST dataset.

• Visualization of the

z-space using t-SNE:

40 20 0 20 40
40

30

20

10

0

10

20

30
0
1
2
3
4
5
6
7
8
9

x

z

f

x̂

g

11

Denoising autoencoders

Denoising autoencoder (Vincent et al., 2008)

• Feed inputs corrupted with noise (for example, Gaussian):

x̃ = x + ε with εi ∼ N (0, σ2)

• Train x̂ = g(f (x̃)) to minimize the reconstruction error:

c = E{‖x̂− x‖2}

• One can view adding noise to inputs as a way to regularize

the autoencoder (regularization by noise injection) but there

is more theory behind denoising autoencoders. x̃

z

f

x̂

g

13

What does denoising autoencoder learn?

• For Gaussian corruption εi ∼ N (0, σ2), the

optimal denoising is

d(x̃) = x̃ + σ2∇x̃ log p(x̃)

(see Alain and Bengio, 2014, Raphan and Simoncelli, 2011)

• d(·) learns to point towards higher probability

density.

• Thus, by learning the optimal denoising function

d(x), we implicitly model the data distribution

p(x).

Image from (Alain and Bengio, 2014)

14

https://arxiv.org/abs/1211.4246
https://www.cns.nyu.edu/pub/eero/raphan10.pdf
https://arxiv.org/abs/1211.4246

Denoising autoencoder: variance MNIST example

• In the home assignment, we create a synthetic

dataset (which we call variance MNIST).

• For this dataset, a vanilla bottleneck autoencoder with mean-squared error reconstruction loss

cannot extract high-level features z that would capture the shapes of the digits.

• A denoising autoencoder can extract meaningful

features. Visualization of the z-space using t-SNE:

40 20 0 20 40

40

30

20

10

0

10

20

30 0
1
2
3
4
5
6
7
8
9

15

Converting autoencoders into

generative models with latent variables

Generative models

• Generative models:

• learn to represent the data distribution p(x)

• can be used to generate new examples from p(x).

• An example: a mixture-of-Gaussians model

p(x | θ) = w1N (x | µ1, σ
2
1) + w2N (x | µ2, σ

2
2)

Parameters θ = {w1, µ1, σ1,w2, µ2, σ2} can be estimated

by maximum likelihood.

• This model is an example of an explicit density model:

p(x | θ) has an explicit parametric form.

17

Converting autoencoders into generative models

• Vanilla autoencoders are not generative models.

• We cannot generate new samples from p(x).

• We cannot compute the probability that a new sample x comes

from the same distribution (e.g., for novelty detection).

• We can build a generative model, for example, in this way:

• Assume that variables z are normally distributed:

z ∼ N (0, I)

• Data samples x are nonlinear transformations of latent variables z:

x = g(z,θ) + ε

with possibly noise added: ε ∼ N (0, σ2I)

• Function g(z,θ) can be modeled as a neural network.

• Now we can draw samples from the model.

z

z

g

x̂

x

x

f

18

Converting autoencoders into generative models

• Vanilla autoencoders are not generative models.

• We cannot generate new samples from p(x).

• We cannot compute the probability that a new sample x comes

from the same distribution (e.g., for novelty detection).

• We can build a generative model, for example, in this way:

• Assume that variables z are normally distributed:

z ∼ N (0, I)

• Data samples x are nonlinear transformations of latent variables z:

x = g(z,θ) + ε

with possibly noise added: ε ∼ N (0, σ2I)

• Function g(z,θ) can be modeled as a neural network.

• Now we can draw samples from the model.

z

z

g

x̂

x

x

f

18

Latent variable model

• Our model contains latent (unobserved) variables z:

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• A simple example to illustrate the idea: We model

one-dimensional data x as a Gaussian variable z

transformed with nonlinearity g with some noise added.

• We need to learn the latent variable model from training

data {xi}. We should tune parameters θ, σ2 so that the

training examples are likely to be produced by the model.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x

p(x)

z

p(z)

g(z)

19

Learning the parameters of the latent variable model

• We can tune parameters θ, σ2 by maximizing the probability of the training data (maximum

likelihood estimate):
θML = arg max

θ
log p(x1, ..., xN | θ)

log p(x1, ..., xN | θ) =
N∑
i=1

log p(xi | θ) =
N∑
i=1

log

∫
p(xi | zi ,θ)p(zi)dz

• The probability density functions are defined by our

model:

p(xi | zi ,θ) = N (xi | g(zi ,θ), σ2I)

p(zi) = N (zi | 0, I)

• Direct optimization of log p(x1, ..., xN | θ) is difficult

because the above integrals are intractable.
3 2 1 0 1 2 3

3

2

1

0

1

2

3

x

p(x)

z

p(z)

g(z)

20

ML estimation with the EM algorithm

• The classical way to estimate parameters θ of a latent

variable model

p(x1, ..., xN , z1, ..., zN | θ) =
N∏
i=1

p(xi | zi ,θ)p(zi)

is the expectation-maximization (EM) algorithm.

• The EM-algorithm iterates between two steps: E-step

and M-step.

• E-step: Compute posterior probabilities p(zi | xi ,θ)

given current values of θ.

• M-step: Update the values of θ using computed

p(zi | xi ,θ).

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

p(x)

z

p(z)

g(z)

Consider our simple example. We initialize θ with

values that give us g of the form shown in the figure.

21

EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x1

p(z1 | x1, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

22

EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

22

EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x3

p(z3 | x3, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

22

EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi)

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN)

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi)

=
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3

6

4

2

0

2

4

6

Iteration 1

23

EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi)

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN)

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi)

=
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 2

23

EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi)

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN)

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi)

=
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 3

23

EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi)

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN)

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi)

=
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 4

23

Learning latent variable models

with variational approximations

Intractability of the true conditional distributions

• There are a few problems with the direct application of

the EM-algorithm in nonlinear latent variable models.

• One problem is the intractability of the true conditional

distributions q(zi) = p(zi | xi ,θ) that we need to

compute on the E-step.

• The true distributions can be very complex (for example,

a multi-modal distribution in our simple example). 3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

f (z)

Example of multi-modal p(zi | xi , θ)

25

E-step: Variational approximations

• Solution: Instead of using true conditional distributions,

use their approximations q(zi) ≈ p(zi | xi ,θ).

• q(zi) is selected to have a simple form, most often a

Gaussian:

q(zi) = N (µzi , σ
2
zi)

Note: we have two parameters µzi and σ2
zi describing

q(zi) for each training sample.

• Parameters describing the posterior distributions of the

latent variables θq = {µzi , σ
2
zi }

N
i=1 are called variational

parameters.

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

f (z)

• A popular way to find the approximation is by minimizing the Kullback-Leibler divergence between

q(zi) and p(zi | xi ,θ).

26

E-step: Variational approximations

• We can minimize the KL divergence between q(zi) and p(zi | xi ,θ) using the following trick:

• Add to the objective function used in the M-step the entropies of the approximate distributions:

F(θ,θq) =
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi︸ ︷︷ ︸
what we had in the M-step

−
∫

q(zi) log q(zi)dzi︸ ︷︷ ︸
entropy

=
N∑
i=1

∫
q(zi) log

p(xi , zi | θ)

q(zi)
dzi =

N∑
i=1

∫
q(zi) log

p(zi | xi ,θ)p(xi | θ)

q(zi)
dzi

=
N∑
i=1

−DKL(q(zi) ‖ p(zi | xi ,θ)) + log p(xi | θ)

• One can see that maximizing F(θ,θq) wrt variational parameters θq is equivalent to minimizing

the KL divergence between q(zi) and p(zi | xi ,θ).

27

EM algorithm with variational approximations

• We can now maximize a single function F wrt θ and θq jointly without the need to alternate

between the E- and M-steps:

F(θ,θq) =
N∑
i=1

∫
q(zi) log p(xi , zi | θ)dzi −

∫
q(zi) log q(zi)dzi

=
N∑
i=1

−DKL(q(zi) ‖ p(zi | xi ,θ)) + log p(xi | θ)

• Maximizing F(θ,θq) wrt θ is equivalent to the M-step.

• Maximizing F(θ,θq) wrt θq is done in the E-step with variational approxiations.

• We can solve this optimization problem using any optimizer of our choice.

28

Evidence lower bound (ELBO)

• The objective function

F(θ,θq) =
N∑
i=1

−DKL(q(zi) ‖ p(zi | xi ,θ)) + log p(xi | θ)

is the lower bound of the true likelihood that we want to optimize. Since DKL(q ‖ p) ≥ 0:

F (θ,θq) ≤
N∑
i=1

log p(xi | θ) = log p(x1, ..., xN | θ)

• This function is often called evidence lower bound or ELBO.

• The closer our approximation q(zi) to the true posterior p(zi | xi ,θ), the tighter the bound.

29

ELBO for our deep generative model

• ELBO can be re-written in the following form:

F (θ,θq) =
N∑
i=1

∫
q(zi) log p(xi | zi ,θ)dzi −

∫
q(zi) log

q(zi)

p(zi)
dzi (1)

• Recall our deep generative model: p(xi | zi ,θ) = N (xi | g(zi ,θ), σ2I),

• The first term in equation (1) can be written as〈
−D

2
log 2πσ2 − 1

2σ2

D∑
d=1

(xi (d)− gd(zi ,θ))2

〉
q(zi)

where D is the number of dimensions in x, xi (d) is the d-th element of xi and gd

is the d-th element of the output of function g .

• The first term contains the expected mean-squared error between data sample xi
and its reconstruction gd(zi ,θ) from the latent code zi .

z

x

g

30

ELBO for our deep generative model

F (θ,θq) =
N∑
i=1

∫
q(zi) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

minus mean-square reconstruction error

−
∫

q(zi) log
q(zi)

p(zi)
dzi︸ ︷︷ ︸

regularization term

• The second term is minus KL-divergence between q(zi) and the prior p(zi) = N (0, I):

−
∫

q(zi) log
q(zi)

p(zi)
dzi = −DKL(q(zi) ‖ p(zi))

• It is a kind of a regularization term: We want the conditional distributions q(zi) to be close to the

prior p(zi) = N (0, I).

31

Variational autoencoders

First algorithms for learning this type of models

• The first algorithm for learning latent variable model

z ∼ N (0, I) x = g(z,θ) + ε ε ∼ N (0, σ2I)

using variational approximations was proposed in this university (Lappalainen and Honkela, 2001).

• The objective function was ELBO:

F(θ,θq) =
N∑
i=1

∫
q(zi) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

needs approximations

−
∫

q(zi) log
q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

• The posterior approximations were Gaussian q(zi) = N (µzi , σ
2
zi). The number of variational

parameters θq = {µzi , σ
2
zi }

N
i=1 was proportional to the number of training samples.

33

https://www.cs.helsinki.fi/u/ahonkela/papers/ch7.pdf

Adding encoder

• We want to get rid of the large number of variational

parameters θq = {µzi , σ
2
zi }

N
i=1.

• For fixed model parameters θ, the optimal q(z) only

depends on x. The inference procedure does the

following mapping:

x→ q(z)

For Gaussian approximation: x→ µz, σ
2
z .

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

f (z)

• In variational autoencoders (VAE) (Kingma and Welling, 2014), mapping x→ q(z) is done using

a neural network (encoder).

• The encoder performs so called amortized inference: When doing inference for a particular sample

xi , we leverage the knowledge of the inference results for other samples. If two samples xi and xj
are close to each other, the corresponding q(zi), q(zj) should be close as well.

34

https://arxiv.org/abs/1312.6114

Variational autoencoder (VAE): Encoder and decoder

• Our generative model is defined by the decoder.

z ∼ N (0, I) x = g(z,θ) + ε ε ∼ N (0, σ2I)

• Encoder is a neural network that is trained to perform variational inference:

x→ q(z)

• For Gaussian approximation q(z), the neural network needs to produce:

x→ µz, σ
2
z

• In practice, this is done using one neural network with two heads.

• The encoder is similar to the encoder in a bottleneck autoencoder but

produces the mean and variance of the code z.

• The encoder and decoder are two components of the variational autoencoder.

x

µz σ2
z z

x̂

Encoder Decoder

35

Monte Carlo estimates of the objective function

• The first term of the objective function cannot computed analytically

F(θ,θq) =
N∑
i=1

∫
q(zi) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

needs approximations

−
∫

q(zi) log
q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

• Kingma and Welling (2014) proposed to use Monte Carlo estimates:∫
q(zi) logN (xi | g(zi ,θ), σ2I)dzi ≈

1

L

L∑
l=1

logN (xi | g(z(l)
i ,θ), σ2I)

where z(l)
i are drawn from q(zi). Using L = 1 works well in practice. x

µz σz z(l)

x̂

sample

36

https://arxiv.org/abs/1312.6114

Computation of the objective function

F (θ,θq) =
N∑
i=1

logN (xi | g(z(l)
i ,θ), σ2I)︸ ︷︷ ︸

Monte Carlo estimate

−
∫

q(zi) log
q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

• For each training example xi :

• compute means µzi and σzi using the encoder

• compute the second term analytically

• draw L = 1 samples z
(l)
i from q(zi) = N (µzi , σ

2
zi

)

• propagate z
(l)
i through the decoder and compute the first term

• Problem: We can use backpropagation to compute the derivatives

wrt the parameters of the decoder but we need an extra trick to

propagate derivatives through the encoder.
x

µz σz z(l)

x̂

sample

37

Reparameterization trick

• We need a computational block that would

• take as inputs µz and σz
• produce a sample from distribution ε ∼ N (µzi , σzi)

• would be differentiable wrt µz and σz

• We can obtain this with the reparameterization trick:

• Sample ε ∼ N (0, I)

• Compute zi = µzi + σzi εi

• Now we can also backpropagate through the sampling block and then

further through the encoder.

x

µz, σz

x̂

sample

z = µz + σzε

z

38

Reparameterization trick

• We need a computational block that would

• take as inputs µz and σz
• produce a sample from distribution ε ∼ N (µzi , σzi)

• would be differentiable wrt µz and σz

• We can obtain this with the reparameterization trick:

• Sample ε ∼ N (0, I)

• Compute zi = µzi + σzi εi

• Now we can also backpropagate through the sampling block and then

further through the encoder.
x

µz, σz

x̂

sample

z = µz + σzε

z

38

VAE training algorithm

• VAE training algorithm:

• Take a mini-batch {xi} of training samples.

• Use the encoder to compute means µzi and standard deviations σzi
for each sample xi in the mini-batch.

• Draw εi ∼ N (0, I) and compute samples zi = µzi + σzi εi
• Propagate samples zi through the decoder to compute reconstructions

x̂i .

• Compute the loss which is the negative of

F (θ,θq) =
1

n

n∑
i=1

logN (xi | g(z
(l)
i ,θ), σ2I)︸ ︷︷ ︸

Monte Carlo estimate

−
∫

q(zi) log
q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

• Perform backpropagation and update the parameters of the encoder

and the decoder.
x

µz, σz z = µz + σzε

x̂

39

Variational autoencoder: variance MNIST example

• In the home assignment, we train a variational

autoencoder on a synthetic (variance MNIST)

dataset.

• In order to extract meaningful features for this dataset,

we need to use a generator (decoder) that models the

variances of pixel intensities:

z ∼ N (0, I) x ∼ N (µ(z), diag(σ(z)))

µ(z) = gµ(z,θ) σ(z) = exp(gσ(z,θ))
40 20 0 20 40

30

20

10

0

10

20

30

40
0
1
2
3
4
5
6
7
8
9

40

Why should I use a VAE?

• VAE is more complex than a simple bottleneck autoencoder. Do we need these complications?

• As we will see in the home assignment, VAEs are more powerful. In some problems when vanilla

autoencoders fail, VAEs can develop useful representations.

• The problem of the vanilla autoencoder is the mean-squared error loss, which makes too simplistic

assumptions about the data distribution.

• One advantage of VAE is in greater flexibility in defining the generative model.

• Note that denoising autoencoders are more powerful than standard autoencoders even though

they also use the mean-squared error loss.

41

VAEs as generative models

• The main benefit of VAEs is that we can encode data into a lower-dimensional representation.

• But VAEs are generative models and we can draw samples using VAEs.

• So far, the quality of the VAE-generated samples have not been very impressive (the samples as

well as reconstructions usually look blurry).

Reconstructions Generated samples

Images from (Tolstikhin et al., 2017)

42

https://arxiv.org/abs/1711.01558

Nouveau VAE (NVAE; Vahdat and Kautz, 2020)

• Vahdat and Kautz (2020) presented a VAE model that is able to generate high-quality images.

• It is a hierarchical latent variable model, that is there are multiple levels of latent variables.

Reconstructions

Generated samples

43

https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/2007.03898

Home assignment

Assignment 08 ae

• In the home assignment, you will have to implement three types of autoencoders:

1. Vanilla bottleneck autoencoder

2. Denoising autoencoder

3. Variational autoencoder

45

Recommended reading

• Chapter 14 of the Deep Learning book

• Papers cited in the lecture slides

46

