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Generative model of VAE

• Recall the generative model model of the VAE:

• Hidden variables z are normally distributed: z ∼ N (0, I)

• Data vectors x are nonlinear transformations of the latent variables with

possible noise ε:
x = g(z,θ) + ε

• VAE is an explicit density model because we define an explicit parametric for

of p(x), for example:

p(x) =
∏
i

∫
p(zi )p(xi | zi ,θ)dzi =

∏
i

∫
N (zi | 0, I)N (xi | g(zi ,θ), σ2I)dzi

• In this lecture, we consider generative adversarial networks (GAN) which is an

implicit density model. We can draw samples from the model but we do not

explicitly define p(x).
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Generative adversarial networks (GAN)

• GANs were originally proposed by Goodfellow et al. (2014).

• GAN consists of a generator which generates samples and a discriminator which tells whether the

generated samples are good or bad.
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• The generator can be any parametric differentiable model (a deep neural network) that generates

random samples.

• The discriminator is a classifier (a deep neural network) that classifies the generated samples into

two classes.
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Simplest GAN generator

• A popular choice for the GAN generation process:

• sample from an isotropic Gaussian distribution

z ∼ N (0, I )

• transform z into the data space by a deep neural network

x = g(z,θ)

• Other popular strategies:

• Apply additive or multiplicative noise to hidden layers.

• Concatenate noise to hidden layers.
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GAN discriminator

• The generator is guided by the teacher network that assesses

the quality of the generated samples.

• Teacher: a classifier that separates samples into classes

“good” and “bad”.

• How to train the teacher d(x,θd)?

• Class “good”: samples from the training set.

• Class “bad”: samples generated by the generator.

• The teacher is more traditionally called discriminator.
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Training the GAN discriminator

• The discriminator d(x) learns to separate generated samples from training data:

(bad=generated=fake) 0 < d(x) < 1 (good=real)

• The discriminator can be trained by maximizing the following log-likelihood function:

Ex∼pdata log d(x) + Ex∼pg log(1− d(x))→ max
d

or equivalently:

Ex∼pdata log d(x) + Ez∼pz (z) log(1− d(g(z)))→ max
d

• In practice, if we have N real examples xi and N generated examples g(zi ), we minimize the

standard binary cross-entropy loss:

L = − 1

N

N∑
i=1

log d(xi )−
1

N

N∑
i=1

log(1− d(g(zi )))
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Training the GAN generator

• The generator g(z) is trained to produce samples that are classified as real by the discriminator:

(bad=generated=fake) 0 < d(x) < 1 (good=real)

• The generator can be trained by maximizing the following function:

Ex∼pg log d(x) = Ez∼pz (z) log d(g(z))→ max
g

• In practice, if we have N generated examples g(zi ), we can minimize the following loss:

L = − 1

N

N∑
i=1

log d(g(zi ))
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A non-saturating objective for the generator

• In principle, there are two ways to train the

generator:

• To minimize the probability of being fake:

Ez∼pz (z) log(1− d(g(z)))→ min
g

• To maximize the probability of being real:

Ez∼pz (z) log(d(g(z)))→ max
g

Both formulations result in the same fixed point.
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• The latter formulation provides much stronger gradients. In the beginning of training, the

discriminator can reject samples produced by the generator with high confidence (d ≈ 0). In this

regime, the generator receives almost no gradient information, which slows down the convergence.
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GAN training procedure

1. Update the discriminator:

• Sample N examples xi from the training set.

• Generate N samples g(zi ) using the generator.

• Compute the binary cross-entropy loss

Ld = −
1

N

N∑
i=1

log d(xi )−
1

N

N∑
i=1

log(1− d(g(zi )))

• Update θd by stochastic gradient descent: θd ← θd −∇θd
Ld

2. Update the generator:

• Generate N samples g(zi ) using the generator.

• Compute the loss function

Lg = −
1

N

N∑
i=1

log d(g(zi ))

• Update θg by stochastic gradient descent: θg ← θg −∇θgLg (gradients flow through the

discriminator).
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Illustration of GAN training

d(x) is a partially accurate

classifier.

d(x) is trained to discriminate

samples from data.

After an update to g , gradient

of d has guided g(z) to flow to

regions that are more likely to

be classified as data.

After several steps of training, g

and d reach a point at which

both cannot improve because

pg = pdata. The discriminator is

unable to differentiate between

the two distributions

d(x) = 0.5.

Images from (Goodfellow et al., 2014)
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Minimax game

• A popular view at GANs: It is a two-player minimax game in which the generator tries to fool the

discriminator and the discriminator tries to catch the fakes.

• The game can be described with one objective:

v(g , d) = Ex∼pdata log d(x) + Ez∼pz (z) log(1− d(g(z)))

g∗ = min
g

max
d

v(g , d)

• The discriminator is trained to maximize v(g , d). The generator tries to minimize v(g , d).

• The equilibrium (also known as Nash equilibrium) is a saddle point of v .

• Nash equilibrium: No player has anything to gain by changing only their own strategy.
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GAN theoretical results (Goodfellow et al., 2014)

• For fixed generator g , the optimal discriminator is given by

d∗g (x) =
pdata(x)

pdata(x) + pg (x)

• If we use the optimal discriminator d∗g (x) to tune the generator, minimization of the GAN loss Lg

is equivalent to minimization of the Jensen-Shannon divergence between the model’s distribution

pg and the data distribution pdata:

JSD
(
pdata

∥∥ pg
)

= KL

(
pdata

∥∥∥∥ pdata + pg
2

)
+ KL

(
pg

∥∥∥∥ pdata + pg
2

)
The global minimum of Lg is achieved if and only if pg = pdata.
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Difficulties in training GANs

• Training of GANs is often unstable: the convergence may be slow or difficult to achieve.

• A typical problem is so-called mode collapse: the generator produces the same output point (or

slight variations of the same output, e.g., different views of the same dog) that the discriminator

believes is most likely to be real rather than fake.

• There has been a lot of progress in GAN research and the results obtained with modern GANs

look very impressive.
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Deep Convolutional GAN (DCGAN)

(Radford et al., 2015)

https://arxiv.org/abs/1511.06434


Deep Convolutional GAN (DCGAN) (Radford et al., 2015)

• A simple GAN architecture that can be trained in a relatively stable manner:

• Replace any pooling layers with strided convolutions (discriminator).

• Use transposed convolutions in the generator.

• Remove fully connected hidden layers.

• Use batchnorm in both the generator and the discriminator.

• Use ReLU activation in generator for all layers except for the output, which uses Tanh.

• Use LeakyReLU activation in the discriminator for all layers.
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Tricks to improve stability of GAN training



Wasserstein GAN

(Arjovsky et al., 2017)

(Gulrajani et al., 2017)

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028


Earth-Mover distance

• Instead of the Jensen-Shannon divergence

JSD(pdata, pg ) = KL
(
pdata

∥∥ pm
)

+ KL
(
pg
∥∥ pm

)
,

pm = (pdata + pg )/2

WGAN proposes to compare pdata and pg using the Earth-Mover

distance or Wasserstein-1:

W (pdata, pg ) = inf
γ∈

∏
(pdata,pg )

E(x,y)∼γ [‖x − y‖]

where
∏

(pdata, pg ) denotes the set of all joint distributions γ(x , y)

whose marginals are pdata and pg .
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Earth-Mover distance vs JSD

• Suppose we want to compute the distance between

distributions q(x) and pθ(x). x2 is uniformly distributed

and x1 is constant in both distributions.

x1

x2

0

1

-1

q(x)

θ

pθ(x)

• Earth-Mover distance is a smooth function of θ.

• JSD is constant everywhere except θ = 0.

• The Earth-Mover distance provides a better training

signal.

1W

JSD

θ = 0 1-1
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Estimation of the Earth-Mover distance

W (pdata, pg ) = inf
γ∈

∏
(pdata,pg )

E(x,y)∼γ [‖x − y‖]

• The Earth-Mover distance is intractable. However, the following holds:

W (pdata, pθ) = sup
‖f ‖L≤1

Ex∼pdata [f (x)]− Ex∼pg [f (x)]

where the supremum is over all the 1-Lipschitz functions f , that is functions that satisfy:

|f (x2)− f (x1)| ≤ |x2 − x1|

• In order to compute the distance, we need to find function f that maximizes the difference of E[f (x)]

under the two distributions.

• If we cannot find f that gives a non-zero difference, the two distributions are identical.

• If we do not restrict f in any way, the difference can be made infinitely large.

• The constraint ‖f ‖L ≤ 1 limits the set of possible functions making the distance well defined.
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Estimation of the Earth-Mover distance with a neural network

• If we use K -Lipschitz functions:

|f (x2)− f (x1)| ≤ K |x2 − x1| ,

we compute the distance up to a constant multiplier K :

K ·W (pdata, pg ) = sup
‖f ‖L≤K

Ex∼pdata [f (x)]− Ex∼pg [f (x)]

• We can model functions f with a neural network fw with parameters w and limit the weight space

W to be compact (to guarantee that functions are K -Lipschitz).

• For example, we can limit the weight values wi ∈ [−0.01, 0.01].

• Thus, we can estimate the distance between two distributions by solving the following

optimization problem:

max
w∈W

Ex∼pdata [fw (x)]− Ex∼pg [fw (x)]
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Wasserstein GAN (Arjovsky et al., 2017)

1. Update the discriminator:

• Sample N examples xi from the training set.

• Generate N samples gθ(zi ) using the generator.

• Compute loss
Ld =

1

N

N∑
i=1

fw (gθ(zi ))−
1

N

N∑
i=1

fw (xi )

• Update w by stochastic gradient descent: w ← w −∇wLd
• Clip the weights wi ← clip(wi ,−c, c).

2. Update the generator:

• Generate N samples using the generator.

• Compute loss:
Lg = −

1

N

N∑
i=1

fw (gθ(z(i)))

• Update θg by stochastic gradient descent: θg ← θg −∇θgLg (gradients flow through the

discriminator).
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Improved Training of Wasserstein GANs (Gulrajani et al., 2017)

• Clipping in WGAN leads to optimization difficulties: without careful tuning of the clipping

threshold c, the gradients can vanish or explode.

• Weight clipping biases the discriminator towards much simpler functions.

• Gulrajani et al. (2017) proposed an alternative to clipping. The loss function minimized by the

discriminator contains a gradient penalty term:

Ld,gp = Ld + λEx̂∼px̂ (‖∇x̂ fw (x̂)‖2 − 1)2︸ ︷︷ ︸
gradient penalty

• The norm of the gradient should be at most 1 for 1-Lipschitz functions.

• The authors show that the optimal critic should contain straight lines with gradient norm 1

connecting coupled points from pdata and pg .

• x̂ are sampled uniformly along straight lines between pairs of points sampled from pdata and pg .
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Generated samples
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Spectral Normalization

(Miyato et al., 2018)

https://arxiv.org/abs/1802.05957


Motivation

• The motivation is similar to the one of Wasserstein GAN.

• For the conventional form of the GAN objective function

v(g , d) = Ex∼pdata log d(x) + Ez∼pz (z) log(1− d(g(z)))

the optimal discriminator is given by

d∗g (x) =
pdata(x)

pdata + pg (x)

d∗g (x) = sigmoid(f ∗(x)), with f ∗(x) = log pdata(x)− log pg (x)

• The derivatives of the optimal discriminator can be unbounded and even incomputable:

∇x f
∗(x) =

1

pdata(x)
∇xpdata(x)− 1

pg (x)
∇xpg (x)

• Proposed solution: Introduce some regularity condition to the derivatives of f (x).
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Regularization of discriminator

• Inspired by WGAN, the authors propose to search for the discriminator from the set of

K -Lipschitz continuous functions:

dg ← arg max
‖f ‖Lip≤K

v(g , d)

where ‖f ‖Lip means the smallest value M such that ‖f (x)− f (x ′)‖ / ‖x − x ′‖ ≤ M for any x , x ′.

• Intuition: We do not want the discriminator to change too fast. Using the teacher-student

analogy, we want our teacher to give constructive feedback instead of saying ’this is very wrong’.

• Note: We do not need to change the objective (like in WGAN), we can still use the conventional

GAN objective v(w,θ)!
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Spectral normalization of a linear layer

• First consider a linear discriminator f (x) = Wx . In this case, the Lipschitz norm ‖f ‖Lip is given by

the spectral norm σ(W) of W which is the largest singular value of W.

• Spectral normalization: We want W to satisfy the constraint σ(W) = 1, which we achieve by:

f (x) =
W

σ(W)
x

• To implement this, we need an efficient (and differentiable) way to compute the spectral norm

σ(W) of a matrix. Miyato et al. (2018) propose to use the power iteration method:

v← W>u

‖W>u‖ , u← Wv

‖Wv‖ , σ(W) = u>Wv

where u and v are vectors that are updated in each forward pass (before training u and v are

initialized randomly).
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Spectral normalization in a deep network

• For a deep neural network, the authors propose to apply spectral normalization to each linear

layer. One needs to update vectors ul and vl for each linear layer l .

• The authors show that this guarantees that ‖f ‖Lip ≤ 1 for popular choices of nonlinearities, such

as ReLU.

• For convolutional layers, weights W ∈ Rdout×din×h×w are treated as a 2-D matrices of dimension

dout × (dinhw).
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Generated samples

WGAN-GP

SN

For different architectures (A–F), SN provides more stable results.
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Zero-centered gradient penalties

(Mescheder et al., 2018)

https://arxiv.org/abs/1801.04406


A toy problem for studying the convergence of GANs

• Mescheder et al. (2018) studied the convergence in this opti-

mization problem using a simple example:

• The true data distribution is a Dirac-distribution

concentrated at 0.

• The generator distribution is pθ = δθ.

• The discriminator is linear dφ(x) = φx .

• We can write different variants of the GAN objective function as

v(θ, φ) = Epdata(x)[f (−dφ(x))] + Ep(z)[f (dφ(gθ(z)))]

θ∗ = min
θ

max
φ

v(θ, φ)

where f (t) = − log(1 + exp(−t)) yields the conventional GAN objective:

v(g , d) = Ex∼pdata log d(x) + Ez∼pz (z) log(1− d(g(z)))

31

https://arxiv.org/abs/1801.04406


Convergence of original GAN

• Parameters θ, φ can be optimized by simultaneous or alternating gradient descent.

• The optimization trajectories can be visualized on the 2d plane.

Unregularized GAN training does not always

converge to the Nash-equilibrium.

GAN with a non-saturating objective for the

generator converges, albeit with an extremely slow

convergence rate.
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Convergence of Wasserstein GAN

• WGAN and WGAN-GP with a finite number of discriminator updates per generator update do not

always converge to the equilibrium point.

WGAN (nd = 5) WGAN-GP (nd = 5)
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Zero-centered gradient penalties

• Penalizing the gradients of the discriminator has a positive effect on convergence: The

discriminator is penalized for deviating from the Nash-equilibrium.

• The authors proposed zero-centered gradient penalty:

Penalize gradients on real data:

R1 =
γ

2
Ex∼pr (‖∇d(x)‖2)

Penalize the gradients on generated samples:

R2 =
γ

2
Ex∼pg (‖∇d(x)‖2)
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Progressive growing (ProGAN)

(Karras et al., 2018)

https://arxiv.org/abs/1710.10196


Progressive growing of GANs (Karras et al., 2018)

• The idea: start by building a generative

model for low-resolution images, then

progressively increase the resolution by

adding layers to the networks.

• Generation of smaller low-resolution images

is more stable because the problem is much

simpler compared to the end goal.

• The training time is reduced because many

iterations are done at lower resolutions.
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Progressive growing

• When doubling the resolution, the new layers are faded in smoothly: During the transition (b) the

layers that operate on the higher resolution are treated like a residual block, whose weight α

increases linearly from 0 to 1.

• When training the discriminator, real

images are downscaled to match the

current resolution of the network.

• During a resolution transition, the authors

interpolate between two resolutions of the

real images, similarly to how the generator

output combines two resolutions. 2x: doubling the resolution using nearest neighbor filtering

0.5x: halving the image resolution using average pooling

toRGB: project feature vectors to RGB colors with 1 × 1 convolutions

fromRGB does the reverse using 1 × 1 convolutions
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ProGAN: Generated samples
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Self-Attention GAN (SAGAN)

(Zhang et al., 2018)

https://arxiv.org/abs/1805.08318


Self-Attention GAN (SAGAN) (Zhang et al., 2018)

• SAGAN: Using a self-attention module (inspired by the transformers) in the generator.

• The results suggest that a self-attention module is beneficial for improving the quality of the

generated images.
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Images generated with a large-scale SAGAN (Brock et al., 2018)
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Style-Based Generators (StyleGAN)

(Karras et al., 2018)

https://arxiv.org/abs/1812.04948


StyleGAN

• Motivated by the style-transfer literature (Huang and Belongie, 2017), the authors re-design the

generator architecture.

• The generator starts from a learned constant input.

• The “style” of the image at each convolution layer is

adjusted using adaptive instance normalization:

AdaIN(xi , y) = ys,i
xi − µ(xi )

σ(xi )
+ yb,i

where xi is one feature map, µ(xi ) and σ(xi ) are its mean

and standard deviation.

• The style vectors (ys , yb) are produced from latent code z by

an MLP.

• Additional noise is injected directly into the network.
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StyleGAN improves the quality of generated images

• Automatic evaluation of the quality of generated images is not

a trivial task. One popular metric is called Fréchet Inception

distance (FID) (Heusel et al., 2017). It is a Fréchet distance

between two Gaussian distributions N (mr ,Cr ) and N (mg ,Cg ):

FID = ‖mr −mg‖2
2 + Tr(Cr + Cg − 2(CrCg )1/2)

• Statistics mr and Cr are computed in the following way:

• Propagate real images through an Inception-v3 classifier

pre-trained on natural images.

• Compute mean mr and covariance matrix Cr of the outputs of

one of the layers.

• mg and Cg are computed similarly on generated images.

FID scores

Style-based generator yields better FID

scores.
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StyleGAN2 (Karras et al., 2019)

• Replaced adaptive instance normalization with

weight demodulation.

• New architectures of the generator and discriminator.

• Removed progressive growing.

New architectures of the generator and the discriminator in

StyleGAN2.
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Image-to-Image Translation with Conditional GANs

(Isola et al., 2017)

https://arxiv.org/abs/1611.07004


Image-to-image translation task

• In many applications, we need to

generate a sample conditioned on

some other data.

• Example: image-to-image

translation (Isola et al., 2017).

• We need to generate image y

conditioned on a given image x.
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Conditional generation with GANs

x

g

z y

d
real

fake

• The objective of a conditional GAN can be expressed as

v(g , d) = Ex,y[log d(x, y)] + Ex,z[log(1− d(x, g(x, z))]

• The discriminator’s job remains unchanged.

• The generator is tasked to not only fool the discriminator but also to be near the ground truth

output:

L(g) = v(g , d) + λEx,y,z ‖y − g(x, z)‖1

L1 distance is used rather than L2 as L1 encourages less blurring.
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Conditional generation with GANs

• The generator has a U-net architecture.

• The source of noise is the dropout in the

intermediate layers (still little stochasticity

in the output).

• The generated images look more realistic

compared to the model trained only with

the L1 loss.

L(g) = v(g , d) + λEx,y,z ‖y − g(x, z)‖1

The structure of the generator
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Examples of generated images
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Home assignment



Assignment 09 gan

• You need to implement and train on MNIST:

• DCGAN

• WGAN with gradient penalty (WGAN-GP)
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Recommended reading

• Papers cited in the lecture slides.
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