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Motivation

e Deep learning is data hungry. To learn to classify handwritten digits, we need thousands of
samples, to learn to classify natural images we need millions of images.

e Suppose we have a custom classification task, for example, we need to classify images to custom
classes (not covered by imageNet). What can we do?
e Collect a lot of training examples and label them.

o Time consuming and expensive.
e Sometimes collecting new examples is impossible.

Transfer learning

Semi-supervised learning
Self-supervised learning

Few-shot learning (meta learning)
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Transfer learning: Image classification

e Features that are useful for some tasks can be useful for other tasks in the same domain.

e For image classification tasks, it is common to fine-tune the last layer of a deep neural network
pre-trained on imageNet (there is a bunch of them in PyTorch).

e For example, we can take the AlexNet (Krizhevsky, 2012) pre-trained on ImageNet and fine-tune
the last two layers.

24
& dense dense
7 3 3 3 dape
g 55 s 3 4 5
R S i
1 5 27 3 13 3 13 3 13
384 384 256 1000
224 256 Max Max 4096 4096
9% Max pooling pooling
Stride pooling

3 of4


https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Example results: Transfer learning ImageNet — Caltech-101

e Example results: Classification of images from the
Caltech-101 dataset (Donahue et al., 2013):

e Yang et al. (2009): a method employing a
combination of five traditional hand-engineered
image features followed by a multi-kernel based
classifier.

e DeCAF6: Features from the sixth layer of AlexNet
pre-trained on ImageNet dataset.
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https://arxiv.org/pdf/1310.1531.pdf
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Semi-supervised classification

e Semi-supervised classification: few labeled examples, many unlabeled examples.

Source: (Tarvainen and Valpola, 2017)



https://github.com/CuriousAI/mean-teacher/blob/master/nips_2017_slides.pdf

When semi-supervised learning is possible?

e Semi-supervised learning: few labeled examples, many
unlabeled examples.

e Semi-supervised learning is possible when the knowledge
on p(x) that one gains through the unlabeled data carries
information that is useful in the inference of p(y | x).

e In the hypothetical example on the right, modeling the
distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the
unlabeled data in the same cluster yielding
better classification accuracy.
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Ladder networks (Rasmus et al., 2015)

denoising
e The architecture resembles a ladder (or a U-net). . ...°??E..D
e The bottom-up pass produces label y for a given
input x.

denoisingé
cost
e For labeled examples, we can compute the standard
deggﬁngé
. denoising
noise N cost

-------- bé

classification (e.g., cross-entropy) loss using the
network output y and the correct label y.


https://arxiv.org/abs/1507.02672

Ladder networks: Denoising

C|assiﬁc€tion
cos|

e The inputs x are corrupted by noise during training (

(e.g, we never use clean images as inputs).
e The top-down pass tries to reconstruct the clean ok
(without noise) input x.
e For all examples (both labeled and unlabeled), we noise é
compute the denoising cost at the bottom:
denoising cost = ||x — || noise é]

e The minimized cost is the sum of the classification
and denoising costs. e




Ladder networks: Intuitions

e Intuition: In order to reconstruct the clean image
from a noisy image, one has to understand what
features are commonly present in images, that is we
need to model the data distribution p(x) inside the

noise

network.

e Therefore, denoising is an auxiliary task that helps
model p(x) and hopefully develop features useful for noise
the primary classification task.

e The label itself cannot contain enough information to

. denoising
noise cost
reconstruct the input. We need skip connectionsto ~ ~ | J | J77 ’é]
pass low-level details from the bottom-up pass.

noise

e Note: corruption and denoising happens on multiple

P

levels.
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M-model (Laine and Aila, 2016)

e The problem with the Ladder network: We need to model the whole distribution p(x) which can
contain lots of details irrelevant for the classification task.

classification
cost

e Laine and Aila (2016) proposed a simplification of the Ladder
networks that does not contain the top-down pass.

e There are two copies of the same network performing
computations for x; and x2, which is the same training example
changed with different transformations.

e The cost for unlabeled data is

consistency cost = ||z1 — zo||* = ||f(x1) — f(x2)||

e In the M-model, the gradients propagate through both networks, z is the input of
the softmax (logit).

transform 1 transform 2
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https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1610.02242.pdf

Consistency-based semi-supervised learning methods

classification
cost

e The intuition: we do not know the correct output for unlabeled
data but we know that the output should not change for a
transformed input.

e Since the introduction of the M-model, the majority of the
semi-supervised methods have been based on optimizing
consistency between different transformations of the same

training examples.

e The idea resembles siamese networks (Bromley et al., 1993).

transform 1 transform 2
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https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Mean Teacher (Tarvainen and Valpola, 2017)

classification

A cost
. . ( ..........
e Instead of using two copies of the same network, one of the y
networks (teacher) is obtained by computing exponential consistency
moving average of the weights of the other (student) network: et

0 =701+ (1 - )0
e The same consistency cost is minimized on both labeled and >

unlabeled data:
consistency cost = Hf(xl, 0;) — f(x, 0;)“2
o The teacher is more accurate than the student. The gradients _ )
propagate only through the student.

student teacher
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https://arxiv.org/pdf/1703.01780.pdf

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)
Fully supervised Wide ResNet with 50K labels - - - 94.6
M-Model (Laine and Aila, 2016) Weak Weak - 87.84
VAT (Miyato et al., 2017) Adversarial - - 88.64
Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak - 93.72
UDA (Xie et al., 2019) Strong Weak Sharpening 94.73
MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76
ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86
FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

e Weak augmentations:

e Translation, flip, Gaussian noise.
e MixMatch uses MixUp (Zhang et al., 2018).

e Adversarial: Use adversarial examples for data transformation.

e Strong augmentations: uniformly sample all image processing transformations from the Python Image
Library (PIL).

14


https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685
https://arxiv.org/pdf/1710.09412.pdf

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)
Fully supervised Wide ResNet with 50K labels - - - 94.6
M-Model (Laine and Aila, 2016) Weak Weak - 87.84
VAT (Miyato et al., 2017) Adversarial - - 88.64
Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak - 93.72
UDA (Xie et al., 2019) Strong Weak Sharpening 94.73
MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76
ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86
FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

e Label sharpening: Use (small) temperature parameter 7 to compute the targets:

teacher __

pj

exp(z;/T)

> exp(zj/7)

e Pseudo-labeling: use “hard” labels (i.e., the arg max of the model’s output) and only retain the teacher’s
labels whose largest class probability fall above a predefined threshold.
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Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)
Fully supervised Wide ResNet with 50K labels - - - 94.6
M-Model (Laine and Aila, 2016) Weak Weak - 87.84
VAT (Miyato et al., 2017) Adversarial - - 88.64
Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak - 93.72
UDA (Xie et al., 2019) Strong Weak Sharpening 94.73
MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76
ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86
FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

e Mean Teacher: Use exponential moving average of parameters to get the teacher model
0; =70, 1+ (1—7)8:
e MixMatch: The target is computed as the average prediction obtained for K augmentations.

e ReMixMatch: Distribution alignment encourages the marginal distribution of predictions on unlabeled data
to be close to the marginal distribution of ground-truth labels.
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Self-supervised learning

e The assumption that is made in semi-supervised learning: The unlabeled examples belong to the
same classes. This can be difficult to assure in many practical applications.

e Can we lean useful representations in a completely unsupervised manner?

e Self-supervised learning: Invent an auxiliary task that can be learned in an unsupervised manner
and use the developed features for the downstream task.

e In order to succeed, the auxiliary task should be relevant for the downstream task.
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Examples of self-supervised learning models

Tok 2

N N O A |

BERT (transformer encoder)

noise
Sentence A Sentence B

True/False

111 111t
. BERT (transformer encoder)

) denoising
noise N cost
R
cLs Tok 2| Tok 3| - SEP

Ladder networks Sentence A Sentence B
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e One of the early works on self-supervised training.

e A convolutional neural network is pre-trained using
an artificially created learning task.

e NN patches of size 32 x 32 are sampled from
different images at varying positions and scale.

e Each patch is transformed multiple times using (a
composition of elementary) transformations.

e The task is to classify a transformed image patch to
one of the N classes that correspond to the original
N patches.

e The features produced by the CNN are used as
inputs of a support vector machine classifier.

v_;g"/@, /t

o SN
| ]

elementary transformations used: translation,
scaling, rotation, contrast (raise S and V
components of the HSV color representation),
color (change the H component of the HSV
representation)
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https://arxiv.org/abs/1406.6909

Contrastive Predictive Coding

(van den Oord et al., 2018)


https://arxiv.org/abs/1807.03748

e The goal is to learn representations that encode the underlying shared information between
different parts of the (high-dimensional) signal. At the same time we want to discard low-level
information and noise that is more local.

e When predicting further in the future, the amount of shared information becomes much lower,
and the model needs to infer more global structure. These 'slow features’ that span many time
steps are often more interesting (e.g., phonemes and intonation in speech, objects in images, or
the story line in books.)

WI“V‘\w‘i‘r’)”f’)uwl\\wr}'g"fq“fﬂ“lW—*ﬁ“\'{f\\l‘m“ﬁ - —W.WWWW‘%W *.".WWM’IW\*va—"W
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Contrastive Predictive Coding (CPC): The model

e A non-linear encoder genc maps the input sequence of observations x; to a sequence of latent
representations z; = genc(x¢), potentially with a lower temporal resolution.

e Next, an autoregressive model g, summarizes all z < t in the latent space and produces a context
latent representation ¢; = gar(z < t).

Predictions

Zt+1 Zt+2 Zz+3 Zt+4
Yenc YJenc Yenc Yenc

Ti—1 Tt Tet1 Tt42 Tt+3 Ti+d |

FW )l \\“ \w‘v“ﬂr‘w%\\ﬁw‘"m %\Y‘NIIMW‘\Wﬂw "W'W"“‘“W'w
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CPC: Contrastive loss

e The task: Given the context c;, select the correct future code ziyx = genc(Xe+k) after k steps
among N alternatives {zek, Zr,, ..., Zry 4 }-

e The alternatives z, = genc(X-) are selected as encoder outputs produced for inputs x, randomly
selected from the dataset (for example, from the same input sequence).

e The loss is the categorical cross-entropy
of selecting the correct encoding:

exp(zii Wier)

L=-log=—_—"F
JZ exp(sz Wict)
e The logits produced by the classifier are | * ‘3 | #e-2 | @1 ot ) |Zt+1 | @2 | Bers | Fead
I [ | —-— e ——
postulated to have the form zTT Wic;. W M\‘/N\ It Wik lj “‘Ww‘ ‘W‘WW

24



CPC: Results for audio data

e The quality of developed representations are tested by

training a classifier using representations c; as features on Method | ACC
the phone classification task: Phone classification

Random initialization 27.6

e linear classifier: 64.6 MFCC features 39.7

e MLP classifier: 72.5 CPC 64.6

Supervised 74.6

e CPC captures both speaker identity and speech contents. Speaker classification

Random initialization 1.87

MFCC features 17.6
) & CPC 97.4
P RN, Supervised 98.5
L i
?’%?v R Ve ¥ Classification accuracy on audio data.
Tx

Phone classification: 41 classes
Speaker classification: 251 classes.
random initialization: random genc and
gar

t-SNE visualization of audio (speech) representations for a subset of 10 speakers
(out of 251). Every color represents a different speaker.
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CPC for image data

e Contrastive Predictive Coding for images:

Gar - output
Genc - output l
T I é.t Method | Top-5 ACC
R U

) ) _ 17 Motion Segmentation (MS) 48.3
64 px e Exemplar (Ex) 53.1
it S - Relative Position (RP) 59.2
[« 1 .7 Predictions Colorization (Col) 625

O Combination of
50% overlap [ MS + Ex + RP + Col 69.3
256 px| : CPC 73.6

v input image |

ImageNet top-5 unsupervised

. . classification results.
e The quality of developed representations are tested by

training a linear classifier using RNN outputs ¢; as input
features.
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A Simple Framework for
Contrastive Learning (SimCLR)
(Chen et al., 2020a, 2020b)


https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029

SimCLR (Chen et al., 2020a)

e SimCLR can be seen as the siamese networks processing two different
augmentations of the same image (as in the M-model, Mean
Teacher) combined with the CPC contrastive loss.

maximize

Sample a minibatch of N examples.

Augment each example with two different transformations, which
results in 2N data points.

Process each example with a deep neural network z = g(f(x)).

The training task is similar to CPC: For each image in the minibatch,
we need to select the other image that was produced with the other
transformation of the same original image among 2N — 1 alternatives

exp(sim(z;,z;/7))
2N

> Lpzi exp(sim(zi, zk)/7) é ,
k=1 transform x transform

/,'71‘ = — Iog
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https://arxiv.org/abs/2002.05709

SimCLR (Chen et al., 2020a)

maximize

agreement ,
........... z

exp(sim(z;,z;j/7
b —log —_er0lsm(z::2;/7)

kgl ki) exp(sim(z;, zk) /) é

e The cosine similarity is used:

........... /
sim(u,v) = u" v/ |Jul| [v]

e As representation h, we take the output of an intermediate layer

(two layers before the output). .
e The intuition: The formulated task of contrastive learning needs é é

development of the right features but the downstream task is

likely to be different and to require a different post-processing
head transform transform’
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https://arxiv.org/abs/2002.05709

SimCLR augmentations

e Three augmentations are sequentially applied:

original 1) random cropping 2) random color 3) random Gaussian blur
followed by resize to the distortions
original size

e Random cropping and color distortions give the largest boost in performance.

e |t is important to apply both transformations for good performance. Why?

30



SimCLR augmentations

e Three augmentations are sequentially applied:

original 1) random cropping 2) random color 3) random Gaussian blur
followed by resize to the distortions
original size

e Random cropping and color distortions give the largest boost in performance.

e It is important to apply both transformations for good performance. Why?
Because with one transformation only it is relatively easy to find matching pairs of images.
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Linear classifier trained on top of SImCLR representations

Method Architecture  Param (M) Top1 Top5
Methods using ResNet-50:

Local Agg. ResNet-50 24 60.2 -
MoCo ResNet-50 24 60.6 -
PIRL ResNet-50 24 63.6 -
CPCv2 ResNet-50 24 63.8 853
SimCLR (ours) ResNet-50 24 69.3 89.0
Methods using other architectures:

Rotation RevNet-50 (4x) 86 554 -
BigBiGAN RevNet-50 (4x) 86 613 819
AMDIM Custom-ResNet 626 68.1 -
CMC ResNet-50 (2x) 188 684 882
MoCo ResNet-50 (4x) 375 68.6 -
CPCv2 ResNet-161 (x) 305 715  90.1
SimCLR (ours) ResNet-50 (2x) 94 742 920

SimCLR (ours) ResNet-50 (4x) 375 76.5 932

ImageNet accuracies of linear classifiers trained
on representations learned with different self-supervised methods
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Semi-supervised training with SimCLR

e The whole base network is fine-tuned on the few labeled data without regularization.

Label fraction

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 484 804
Methods using other label-prop ion:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using rep ion learning only:

InstDisc ResNet-50 392 714
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 572 838
CPCv2 ResNet-161(x) 779 912
SimCLR (ours) ResNet-50 755 87.8
SimCLR (ours) ResNet-50 (2x) 830 912
SimCLR (ours) ResNet-50 (4x) 85.8  92.6

ImageNet accuracy of models trained with few labels
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SimCLRv2 (Chen et al., 2020b)

cost

e SimCLRv2 improves the performance in the semi-supervised | J77777777 >
scenario by the following procedure: _t
onsistency
1. Pre-train SimCLR in an unsupervised way. z1 -] 2

2. Fine-tine the model using the few labeled examples (this is same
as in SimCLRv1).

3. Perform “knowledge distillation” using both labeled and
unlabeled data.

e This last step is essentially equivalent to consistency-based
semi-supervised training.

O-0-0)

e The teacher is fixed to the network obtained after step 2.
e Only weak augmentations are used. weak augm.
e The student can have a smaller architecture. —>

weak augm.: :

student fixed teacher
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https://arxiv.org/abs/2006.10029

Bootstrap your own latent (BYOL)
(Grill et al., 2020)


https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

e BYOL can be seen as an extension of the Mean Teacher to the

Y. . consistency cost

A
/

fully unsupervised scenario:

e The teacher network is obtained by computing exponential
moving average of the weights of the student.
e The two networks process two different transformations of the

same example.
e The objective is
consistency cost = ||q(z) — z’H2

where z = f(x,0;), Z = f(x, 0})

o Differences:

transform’

e Use strong augmentations (same set of augmentations as in transform
SimCLR).
e Use an extra predictor MLP g(z) in the student network. student teacher
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https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

q(2)
T'... consistency cost
712 ’..1
consistency cost = ||q(z) — /||
e The representations can collapse: the network can learn to
produce the same output z for any input x, which would yield a
zero consistency cost.
e In practice, this does not happen for the given architecture. In
fact, the representations collapse if the predictor network g(z) is
removed.
transform transform’
X
student teacher
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https://arxiv.org/abs/2006.07733

BYOL: Linear evaluation

Method Top-1  Top-5 Method Architecture Param. Top-1 Top-5
Local Agg. 60.2 - SimCLR [8] ResNet-50 (2x) 94M 74.2 92.0
PIRL [35] 63.6 - CMC [11] ResNet-50 (2x) 94M 70.6 89.7
CPC v2[32] 63.8 85.3 BYOL (ours)  ResNet-50 (2x) 94M 77.4 93.6
CMC [11] 66.2 87.0 CPC v2[32] ResNet-161 3056M 71.5 90.1
SimCLR [8] 69.3 89.0 MoCo [9] ResNet-50 (4x) 375M 68.6 -
MoCo v2 [37] 71.1 - SimCLR [8] ResNet-50 (4x) 375M 76.5 93.2
InfoMin Aug.[12] 73.0 91.1 BYOL (ours) ~ ResNet-50 (4x) 375M 78.6 94.2
BYOL (ours) 74.3 91.6 BYOL (ours)  ResNet-200 (2x) 250M 79.6 94.8
(a) ResNet-50 encoder. (b) Other ResNet encoder architectures.

ImageNet accuracies of linear classifiers trained
on representations learned with different self-supervised methods
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BYOL: Semi-supervised training

e The whole base network is fine-tuned on the few labeled data with spatial augmentations, i.e.,

random crops with resize and random flips.

Method Top-1 Top-5 Method Architecture Param. Top-1 Top-5
1% 10% 1% 10% 1% 10% 1% 10%
Supervised [77] 25.4 56.4 484 80.4 CPC v2[32] ResNet-161 305M - - 779 91.2
- SimCLR [8] ResNet-50 (2x) 94M 585 T71.7 83.0 91.2
InstDisc - - 392 174 BYOL (ours) ResNet-50 (2x)  94M 622 73.5 841 91.7
PIRL [35] - - 572 838 SimCLR [8] ResNet-50 (4x) 375M 63.0 74.4 858 92.6
SimCLR [8] 48.3 65.6 755 87.8 BYOL (ours) ResNet-50 (4x) 375M  69.1 75.7 87.9 92.5
BYOL (ours) 53.2 688 78.4 89.0 BYOL (ours) ResNet-200 (2x) 250M 71.2 77.7 89.5 93.7

(a) ResNet-50 encoder.

ImageNet accuracy of models trained with few labels

(b) Other ResNet encoder architectures.
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Few-shot learning



Few-shot learning

e People can learn new concepts from just a single example:

drone segway

e Yet machine learning algorithms typically require thousands of examples to perform with similar
accuracy (Lake et al., 2015).

e Few-shot learning: How can we train an accurate model using a very small amount of training
data?
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https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

Few-shot learning

A One-shot classification
e The problem of few-shot learning attracted a lot -{1 ’B\)
of attention after releasing the Omniglot
Where is another? Where is another?
challenge (Lake et al., 2015). m [ o
=3 e o
e The authors also proposed a (non-deep) model rr] 5= & (A
that represents concepts as simple programs ke g 5 i Shialis d'p
that best explain observed examples under a Al n ¥ T 93w
Bayesian criterion (BPL). wla |[F| N | S ob|e)|D e

e BPL achieves human-level performance on the

Part A of Omniglot challenge: Two trials of one-shot
one-shot classification task.

classification, where a single image of a new character is

presented (top) and the goal is to select another example

of that character amongst other characters from the same
alphabet (in the grid below).
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Status of the Omniglot challenge (Lake et al., 2019)

One-shot classification error rate

Original Augmented
Within Within Within Between
alphabet alphabet alphabet alphabet

(minimal)
background set
e There has been a great progress of 7 alphabets 30 5 30 0
deep learning methods in few-shot # classes 964 146 3,856 4,800
learning tasks but deep learning 2015 results
. Humans <4.5%

seems to be behind BPL and human REL 3.3% 4.2%
level. Simple ConvNet  13.5% 23.2%

Siamese Net 8.0%*

e Deep learning methods rely heavily
2016-2018 results

on data augmentation. [Prototypical Net __13.7% __ 80.1% __ 6.0% ___ 4.0% |

Matching Net 6.2%
MAML 4.2%
Graph Net 2.6%
ARC 1.5%*  2.5%*
RCN 7.3%

VHE 18.7% 4.8%

* results used additional data augmentation beyond class expansion
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https://arxiv.org/pdf/1902.03477.pdf

Siamese networks for one-shot learning (Koch et al., 2015)

e Consider the task of one-shot classification: building a classifier

from one training example. -
distance

o A siamese neural network (Bromley et al., 1993) is trained to
compare a pair of examples to decide whether they belong to the
same class or not (binary classification):

e Twin networks which accept distinct inputs

e The output is computed using a distance (e.g., Euclidean) between
the highest-level feature representations of the twin networks.

e The network is trained on pairs of positive (same class) and
negative (distinct classes) examples.

e Works for one-shot learning, few-shot requires tweaking.
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https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Matching networks (Vinyals et al., 2016)

e We wish to map from a (small) support set of
k examples of image-label pairs

S = {(xi, yi)Ye; to a classifier cs(X).
S — Cs()?)

e The classifier cs(X) defines a probability
distribution y over classes in the support set
for a query example X.

e Matching networks: Parameterize this
mapping S — c¢s(X) as a neural network.

support set

class probabilities y

I

b .
y=2 classifier
_— n
cs(X)
y=3
U 1
y=4

.51

query sample X
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https://arxiv.org/pdf/1606.04080.pdf

Matching networks: The model

e The output of the classifier cs(X):

y= Z a(x, x;)yi

i=1

with an attention mechanism a:
exp(c(f(%), g(xi)))
S exp(c(F(%), g(x)))

e f and g are parameterized as neural networks.

a(>“<, X,‘) =

e Intuition: support samples whose representations g(x;) are close to the representation (%) of the
query sample contribute more to the output.

e We tune the representations to work well in the few-shot learning scenario.
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Matching networks: Episodic training

e N-way K-shot classification task: Each training example is a classification task with N classes and
K training examples per class.

e One iteration of episodic training:

e Select N classes by randomly sampling from the
training set.

e Select a support set by taking K random samples
for each of the selected classes.

e Select a query set (a few samples from the same
classes as in the support set).

e Do forward computations and compute the
classification loss using the query samples.

e Do backpropagation and update the parameters of
the network.
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Prototypical networks (Snell et al., 2017)

e Prototypical networks compute an M-dimensional

representation ci, or prototype, of each class through an
embedding function fg. Each prototype is the mean vector of
the embedded support points belonging to its class:

1
Ck—@ Z fo(xi)

(i »yi) €Sk

e Then they produce a distribution over classes for a query point x based on a softmax over
distances to the prototypes in the embedding space:

_ __exp(—d(fe(x),ck))
ply =k|x)= > exp(—d(fo(x), ckr))

e In one-shot learning scenario, prototypical networks are equivalent to matching networks.
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https://arxiv.org/pdf/1703.05175.pdf

Prototypical networks: Training

L(p,y))
One iteration of episodic training: T
e The support set is used to 1 exp(—d(z:. c
h Ck = m Z z; pk(zj) _ p( ( J» k))
compute the prototypes. ki S exp(—d(z;, cir))
e The query set is used to compute T T
the loss.

zi = fa(x;) 0 z; = fo(x))

e Compute the gradients of the
loss and update the parameters 6
of the embedding network.

support x; query X;

Computational graph
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Model-Agnostic Meta-Learning (MAML; Finn et al., 2017)

e We want to train a classifier y = fg(x) to solve a new few-shot learning task.
e Learning can be done by performing a few iterations of gradient descent (GD).

e In the case of one iteration of GD:
0" 60 — aVel((x1,¥1), s (Xk, yx))

{(xi,yi)}¥_, are the few training examples (support set)

L is the loss function (for example, cross-entropy for classification tasks)
« is the learning rate

B¢ is the vector of the initial values of the parameters

e The idea of meta-learning: we can learn initialization 8y and the learning rate o to minimize the
loss (on the query set) after the GD-adaptation.
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https://arxiv.org/pdf/1703.03400.pdf

Model-Agnostic Meta-Learning: Training

One iteration of episodic training:

support y; query yj

e Use the support set to compute the loss l l
and its gradient VglL.

e Compute adapted values 8’ of the L(yi,yi) | Vol L(9).y5)
parameters (as part of computational T T
graph) with one (or a few) iteration of
gradient descent. § = fo,(x) 0 =0y — aVel =¥ = for (x)

e Use the query set to compute the loss
with the adapted parameters 6’. T T T

e Compute the loss on the query set. Xi Qg ——— « X;

support query

Perform backpropagation and update
parameters @y and learning rate a. Computational graph
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Model-Agnostic Meta-Learning: First-order approximation

support y; query yj
e MAML requires computation of gradient L(yi,yi) | Vol Stdqp . L(9).y5)
through gradient, which can be T gracien T

computationally expensive.
o The first-order approximation (which stops § = fo,(x) 0' =0y — aVel [ —>¥ = for(x)

gradient propagation through VL) works

almost equally well. T T T

support query

Computational graph
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Reptile (Nichol et al., 2018)

e Simplification of MAML: Instead of backpropagating through the computational graph of MAML,
we update the initial parameter values @y towards the adapted parameter values 81 with a small

step €.
for iteration 1,2,3,... do

Randomly sample a task T
Perform k > 1 steps of SGD on task T starting from 6y: 6y — 071

Update: Og < 09 + 6(0T — 00)
return Qg

e Reptile demo
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https://arxiv.org/pdf/1803.02999.pdf
https://openai.com/blog/reptile/

Home assignment



Assignment 11 _fewshot

e You need to implement prototypical networks (Snell et al., 2017).

1
Ckx = @ Z fe(X,‘)

(xi>i) € Sk
B B exp(—d(fe(X);ck))
ply =k|x) = > exp(—d(fo(x), cxr))
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https://arxiv.org/pdf/1703.05175.pdf

Recommended reading

e Papers cited in the lecture slides.
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