
CS-E4890: Deep Learning

Learning with few labeled examples

Alexander Ilin

Motivation

• Deep learning is data hungry. To learn to classify handwritten digits, we need thousands of

samples, to learn to classify natural images we need millions of images.

• Suppose we have a custom classification task, for example, we need to classify images to custom

classes (not covered by imageNet). What can we do?

• Collect a lot of training examples and label them.

• Time consuming and expensive.

• Sometimes collecting new examples is impossible.

• Transfer learning

• Semi-supervised learning

• Self-supervised learning

• Few-shot learning (meta learning)

1

Transfer learning

Transfer learning: Image classification

• Features that are useful for some tasks can be useful for other tasks in the same domain.

• For image classification tasks, it is common to fine-tune the last layer of a deep neural network

pre-trained on imageNet (there is a bunch of them in PyTorch).

• For example, we can take the AlexNet (Krizhevsky, 2012) pre-trained on ImageNet and fine-tune

the last two layers.

3

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Example results: Transfer learning ImageNet → Caltech-101

• Example results: Classification of images from the

Caltech-101 dataset (Donahue et al., 2013):

• Yang et al. (2009): a method employing a

combination of five traditional hand-engineered

image features followed by a multi-kernel based

classifier.

• DeCAF6: Features from the sixth layer of AlexNet

pre-trained on ImageNet dataset.

Accuracy on Caltech-101

4

https://arxiv.org/pdf/1310.1531.pdf

Semi-supervised learning

Semi-supervised classification

• Semi-supervised classification: few labeled examples, many unlabeled examples.

Source: (Tarvainen and Valpola, 2017)

6

https://github.com/CuriousAI/mean-teacher/blob/master/nips_2017_slides.pdf

When semi-supervised learning is possible?

• Semi-supervised learning: few labeled examples, many

unlabeled examples.

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the

unlabeled data in the same cluster yielding

better classification accuracy.

7

When semi-supervised learning is possible?

• Semi-supervised learning: few labeled examples, many

unlabeled examples.

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the

unlabeled data in the same cluster yielding

better classification accuracy.

7

When semi-supervised learning is possible?

• Semi-supervised learning: few labeled examples, many

unlabeled examples.

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the

unlabeled data in the same cluster yielding

better classification accuracy.

7

When semi-supervised learning is possible?

• Semi-supervised learning: few labeled examples, many

unlabeled examples.

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the

unlabeled data in the same cluster yielding

better classification accuracy.

7

When semi-supervised learning is possible?

• Semi-supervised learning: few labeled examples, many

unlabeled examples.

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

The labels can be propagated to the

unlabeled data in the same cluster yielding

better classification accuracy.

7

Ladder networks (Rasmus et al., 2015)

• The architecture resembles a ladder (or a U-net).

• The bottom-up pass produces label y for a given

input x.

• For labeled examples, we can compute the standard

classification (e.g., cross-entropy) loss using the

network output ŷ and the correct label y.

x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

8

https://arxiv.org/abs/1507.02672

Ladder networks: Denoising

• The inputs x are corrupted by noise during training

(e.g, we never use clean images as inputs).

• The top-down pass tries to reconstruct the clean

(without noise) input x.

• For all examples (both labeled and unlabeled), we

compute the denoising cost at the bottom:

denoising cost = ‖x− x̂‖2

• The minimized cost is the sum of the classification

and denoising costs.
x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

9

Ladder networks: Intuitions

• Intuition: In order to reconstruct the clean image

from a noisy image, one has to understand what

features are commonly present in images, that is we

need to model the data distribution p(x) inside the

network.

• Therefore, denoising is an auxiliary task that helps

model p(x) and hopefully develop features useful for

the primary classification task.

• The label itself cannot contain enough information to

reconstruct the input. We need skip connections to

pass low-level details from the bottom-up pass.

• Note: corruption and denoising happens on multiple

levels.
x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

10

Π-model (Laine and Aila, 2016)

• The problem with the Ladder network: We need to model the whole distribution p(x) which can

contain lots of details irrelevant for the classification task.

• Laine and Aila (2016) proposed a simplification of the Ladder

networks that does not contain the top-down pass.

• There are two copies of the same network performing

computations for x1 and x2, which is the same training example

changed with different transformations.

• The cost for unlabeled data is

consistency cost = ‖z1 − z2‖2 = ‖f (x1)− f (x2)‖2

• In the Π-model, the gradients propagate through both networks, z is the input of

the softmax (logit).

x

z1

ŷ

x

z2

y

consistency

cost

classification
cost

transform 1 transform 2

11

https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1610.02242.pdf

Consistency-based semi-supervised learning methods

• The intuition: we do not know the correct output for unlabeled

data but we know that the output should not change for a

transformed input.

• Since the introduction of the Π-model, the majority of the

semi-supervised methods have been based on optimizing

consistency between different transformations of the same

training examples.

• The idea resembles siamese networks (Bromley et al., 1993).

x

z1

ŷ

x

z2

y

consistency

cost

classification
cost

transform 1 transform 2

12

https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Mean Teacher (Tarvainen and Valpola, 2017)

• Instead of using two copies of the same network, one of the

networks (teacher) is obtained by computing exponential

moving average of the weights of the other (student) network:

θ′t = γθ′t−1 + (1− γ)θt

• The same consistency cost is minimized on both labeled and

unlabeled data:

consistency cost =
∥∥f (x1,θt)− f (x2,θ

′
t)
∥∥2

• The teacher is more accurate than the student. The gradients

propagate only through the student. x

student

ŷ

x

teacher

y

consistency

cost

classification
cost

noise

noise

noise

noise

noise

noise

13

https://arxiv.org/pdf/1703.01780.pdf

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)

Fully supervised Wide ResNet with 50K labels – – – 94.6

Π-Model (Laine and Aila, 2016) Weak Weak – 87.84

VAT (Miyato et al., 2017) Adversarial – – 88.64

Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak – 93.72

UDA (Xie et al., 2019) Strong Weak Sharpening 94.73

MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76

ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86

FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

• Weak augmentations:

• Translation, flip, Gaussian noise.

• MixMatch uses MixUp (Zhang et al., 2018).

• Adversarial: Use adversarial examples for data transformation.

• Strong augmentations: uniformly sample all image processing transformations from the Python Image

Library (PIL).

14

https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685
https://arxiv.org/pdf/1710.09412.pdf

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)

Fully supervised Wide ResNet with 50K labels – – – 94.6

Π-Model (Laine and Aila, 2016) Weak Weak – 87.84

VAT (Miyato et al., 2017) Adversarial – – 88.64

Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak – 93.72

UDA (Xie et al., 2019) Strong Weak Sharpening 94.73

MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76

ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86

FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

• Label sharpening: Use (small) temperature parameter τ to compute the targets:

pteacher
i =

exp(zi/τ)∑
j exp(zj/τ)

• Pseudo-labeling: use “hard” labels (i.e., the arg max of the model’s output) and only retain the teacher’s

labels whose largest class probability fall above a predefined threshold.

15

https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)

Fully supervised Wide ResNet with 50K labels – – – 94.6

Π-Model (Laine and Aila, 2016) Weak Weak – 87.84

VAT (Miyato et al., 2017) Adversarial – – 88.64

Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak – 93.72

UDA (Xie et al., 2019) Strong Weak Sharpening 94.73

MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76

ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86

FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

• Mean Teacher: Use exponential moving average of parameters to get the teacher model

θ′t = γθ′t−1 + (1− γ)θt

• MixMatch: The target is computed as the average prediction obtained for K augmentations.

• ReMixMatch: Distribution alignment encourages the marginal distribution of predictions on unlabeled data

to be close to the marginal distribution of ground-truth labels.

16

https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685

Self-supervised learning

Self-supervised learning

• The assumption that is made in semi-supervised learning: The unlabeled examples belong to the

same classes. This can be difficult to assure in many practical applications.

• Can we lean useful representations in a completely unsupervised manner?

• Self-supervised learning: Invent an auxiliary task that can be learned in an unsupervised manner

and use the developed features for the downstream task.

• In order to succeed, the auxiliary task should be relevant for the downstream task.

18

Examples of self-supervised learning models

x x̂

ŷ

x
denoising

costnoise

noise

noise

noise

Ladder networks

CLS Tok 1 MASK Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

Tok 2

Sentence A Sentence B

CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

True/False

Sentence A Sentence B

19

Discriminative unsupervised feature learning (Dosovitskiy et al., 2014)

• One of the early works on self-supervised training.

• A convolutional neural network is pre-trained using

an artificially created learning task.

• N patches of size 32× 32 are sampled from

different images at varying positions and scale.

• Each patch is transformed multiple times using (a

composition of elementary) transformations.

• The task is to classify a transformed image patch to

one of the N classes that correspond to the original

N patches.

• The features produced by the CNN are used as

inputs of a support vector machine classifier.

sampled patches

transformed patches

elementary transformations used: translation,

scaling, rotation, contrast (raise S and V

components of the HSV color representation),

color (change the H component of the HSV

representation)

20

https://arxiv.org/abs/1406.6909

Contrastive Predictive Coding

(van den Oord et al., 2018)

https://arxiv.org/abs/1807.03748

Motivation

• The goal is to learn representations that encode the underlying shared information between

different parts of the (high-dimensional) signal. At the same time we want to discard low-level

information and noise that is more local.

• When predicting further in the future, the amount of shared information becomes much lower,

and the model needs to infer more global structure. These ’slow features’ that span many time

steps are often more interesting (e.g., phonemes and intonation in speech, objects in images, or

the story line in books.)

22

Contrastive Predictive Coding (CPC): The model

• A non-linear encoder genc maps the input sequence of observations xt to a sequence of latent

representations zt = genc(xt), potentially with a lower temporal resolution.

• Next, an autoregressive model gar summarizes all z ≤ t in the latent space and produces a context

latent representation ct = gar(z ≤ t).

23

CPC: Contrastive loss

• The task: Given the context ct , select the correct future code zt+k = genc(xt+k) after k steps

among N alternatives {zt+k , zτ1 , ..., zτN−1}.

• The alternatives zτ = genc(xτ) are selected as encoder outputs produced for inputs xτ randomly

selected from the dataset (for example, from the same input sequence).

• The loss is the categorical cross-entropy

of selecting the correct encoding:

L = − log
exp(z>t+kWkct)∑
j

exp(z>τj Wkct)

• The logits produced by the classifier are

postulated to have the form z>τ Wkct .

24

CPC: Results for audio data

• The quality of developed representations are tested by

training a classifier using representations ct as features on

the phone classification task:

• linear classifier: 64.6

• MLP classifier: 72.5

• CPC captures both speaker identity and speech contents.

t-SNE visualization of audio (speech) representations for a subset of 10 speakers

(out of 251). Every color represents a different speaker.

Classification accuracy on audio data.

Phone classification: 41 classes

Speaker classification: 251 classes.

random initialization: random genc and

gar

25

CPC for image data

• Contrastive Predictive Coding for images:

• The quality of developed representations are tested by

training a linear classifier using RNN outputs ct as input

features.

ImageNet top-5 unsupervised

classification results.

26

A Simple Framework for

Contrastive Learning (SimCLR)

(Chen et al., 2020a, 2020b)

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029

SimCLR (Chen et al., 2020a)

• SimCLR can be seen as the siamese networks processing two different

augmentations of the same image (as in the Π-model, Mean

Teacher) combined with the CPC contrastive loss.

• Sample a minibatch of N examples.

• Augment each example with two different transformations, which

results in 2N data points.

• Process each example with a deep neural network z = g(f (x)).

• The training task is similar to CPC: For each image in the minibatch,

we need to select the other image that was produced with the other

transformation of the same original image among 2N − 1 alternatives

li,j = − log
exp(sim(zi , zj/τ))

2N∑
k=1

1[k 6=i] exp(sim(zi , zk)/τ)

x

z

x

z′
maximize
agreement

transform transform′

28

https://arxiv.org/abs/2002.05709

SimCLR (Chen et al., 2020a)

li,j = − log
exp(sim(zi , zj/τ))

2N∑
k=1

1[k 6=i] exp(sim(zi , zk)/τ)

• The cosine similarity is used:

sim(u, v) = u>v/ ‖u‖ ‖v‖

• As representation h, we take the output of an intermediate layer

(two layers before the output).

• The intuition: The formulated task of contrastive learning needs

development of the right features but the downstream task is

likely to be different and to require a different post-processing

head. x

h

z

x

h′

z′

representation

maximize
agreement

transform transform′

29

https://arxiv.org/abs/2002.05709

SimCLR augmentations

• Three augmentations are sequentially applied:

original 1) random cropping

followed by resize to the

original size

2) random color

distortions

3) random Gaussian blur

• Random cropping and color distortions give the largest boost in performance.

• It is important to apply both transformations for good performance. Why?

Because with one transformation only it is relatively easy to find matching pairs of images.

30

SimCLR augmentations

• Three augmentations are sequentially applied:

original 1) random cropping

followed by resize to the

original size

2) random color

distortions

3) random Gaussian blur

• Random cropping and color distortions give the largest boost in performance.

• It is important to apply both transformations for good performance. Why?

Because with one transformation only it is relatively easy to find matching pairs of images.

30

Linear classifier trained on top of SimCLR representations

ImageNet accuracies of linear classifiers trained

on representations learned with different self-supervised methods

31

Semi-supervised training with SimCLR

• The whole base network is fine-tuned on the few labeled data without regularization.

ImageNet accuracy of models trained with few labels

32

SimCLRv2 (Chen et al., 2020b)

• SimCLRv2 improves the performance in the semi-supervised

scenario by the following procedure:

1. Pre-train SimCLR in an unsupervised way.

2. Fine-tine the model using the few labeled examples (this is same

as in SimCLRv1).

3. Perform “knowledge distillation” using both labeled and

unlabeled data.

• This last step is essentially equivalent to consistency-based

semi-supervised training.

• The teacher is fixed to the network obtained after step 2.

• Only weak augmentations are used.

• The student can have a smaller architecture. x

z1

ŷ

x

z2

y

student fixed teacher

consistency

cost

classification
cost

weak augm. weak augm.

33

https://arxiv.org/abs/2006.10029

Bootstrap your own latent (BYOL)

(Grill et al., 2020)

https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

• BYOL can be seen as an extension of the Mean Teacher to the

fully unsupervised scenario:

• The teacher network is obtained by computing exponential

moving average of the weights of the student.

• The two networks process two different transformations of the

same example.

• The objective is

consistency cost =
∥∥q(z)− z′

∥∥2

where z = f (x,θt), z′ = f (x′,θ′t)

• Differences:

• Use strong augmentations (same set of augmentations as in

SimCLR).

• Use an extra predictor MLP q(z) in the student network.

x

student

z

q(z)

x

teacher

z′

consistency cost

transform transform′

35

https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

consistency cost =
∥∥q(z)− z′

∥∥2

• The representations can collapse: the network can learn to

produce the same output z for any input x, which would yield a

zero consistency cost.

• In practice, this does not happen for the given architecture. In

fact, the representations collapse if the predictor network q(z) is

removed.

x

student

z

q(z)

x

teacher

z′

consistency cost

transform transform′

36

https://arxiv.org/abs/2006.07733

BYOL: Linear evaluation

ImageNet accuracies of linear classifiers trained

on representations learned with different self-supervised methods

37

BYOL: Semi-supervised training

• The whole base network is fine-tuned on the few labeled data with spatial augmentations, i.e.,

random crops with resize and random flips.

ImageNet accuracy of models trained with few labels

38

Few-shot learning

Few-shot learning

• People can learn new concepts from just a single example:

drone segway

• Yet machine learning algorithms typically require thousands of examples to perform with similar

accuracy (Lake et al., 2015).

• Few-shot learning: How can we train an accurate model using a very small amount of training

data?

40

https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

Few-shot learning

• The problem of few-shot learning attracted a lot

of attention after releasing the Omniglot

challenge (Lake et al., 2015).

• The authors also proposed a (non-deep) model

that represents concepts as simple programs

that best explain observed examples under a

Bayesian criterion (BPL).

• BPL achieves human-level performance on the

one-shot classification task.
Part A of Omniglot challenge: Two trials of one-shot

classification, where a single image of a new character is

presented (top) and the goal is to select another example

of that character amongst other characters from the same

alphabet (in the grid below).

41

https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

Status of the Omniglot challenge (Lake et al., 2019)

• There has been a great progress of

deep learning methods in few-shot

learning tasks but deep learning

seems to be behind BPL and human

level.

• Deep learning methods rely heavily

on data augmentation.

One-shot classification error rate

* results used additional data augmentation beyond class expansion
42

https://arxiv.org/pdf/1902.03477.pdf

Siamese networks for one-shot learning (Koch et al., 2015)

• Consider the task of one-shot classification: building a classifier

from one training example.

• A siamese neural network (Bromley et al., 1993) is trained to

compare a pair of examples to decide whether they belong to the

same class or not (binary classification):

• Twin networks which accept distinct inputs

• The output is computed using a distance (e.g., Euclidean) between

the highest-level feature representations of the twin networks.

• The network is trained on pairs of positive (same class) and

negative (distinct classes) examples.

• Works for one-shot learning, few-shot requires tweaking.

x1 x2

distance

p
classification

cost

43

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Matching networks (Vinyals et al., 2016)

• We wish to map from a (small) support set of

k examples of image-label pairs

S = {(xi , yi)}ki=1 to a classifier cS(x̂).

S → cS(x̂)

• The classifier cS(x̂) defines a probability

distribution ŷ over classes in the support set

for a query example x̂ .

• Matching networks: Parameterize this

mapping S → cS(x̂) as a neural network.

support set

query sample x̂

classifier

cS(x̂)

y = 1

y = 2

y = 3

y = 4

class probabilities ŷ

44

https://arxiv.org/pdf/1606.04080.pdf

Matching networks: The model

• The output of the classifier cS(x̂):

ŷ =
k∑

i=1

a(x̂ , xi)yi

with an attention mechanism a:

a(x̂ , xi) =
exp(c(f (x̂), g(xi)))∑k
j=1 exp(c(f (x̂), g(xj)))

• f and g are parameterized as neural networks.

• Intuition: support samples whose representations g(xi) are close to the representation f (x̂) of the

query sample contribute more to the output.

• We tune the representations to work well in the few-shot learning scenario.

45

Matching networks: Episodic training

• N-way K -shot classification task: Each training example is a classification task with N classes and

K training examples per class.

• One iteration of episodic training:

• Select N classes by randomly sampling from the

training set.

• Select a support set by taking K random samples

for each of the selected classes.

• Select a query set (a few samples from the same

classes as in the support set).

• Do forward computations and compute the

classification loss using the query samples.

• Do backpropagation and update the parameters of

the network.

46

Prototypical networks (Snell et al., 2017)

• Prototypical networks compute an M-dimensional

representation ck , or prototype, of each class through an

embedding function fθ. Each prototype is the mean vector of

the embedded support points belonging to its class:

ck =
1

|Sk |
∑

(xi ,yi)∈Sk

fθ(xi)

• Then they produce a distribution over classes for a query point x based on a softmax over

distances to the prototypes in the embedding space:

p(y = k | x) =
exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

• In one-shot learning scenario, prototypical networks are equivalent to matching networks.

47

https://arxiv.org/pdf/1703.05175.pdf

Prototypical networks: Training

One iteration of episodic training:

• The support set is used to

compute the prototypes.

• The query set is used to compute

the loss.

• Compute the gradients of the

loss and update the parameters θ

of the embedding network.

zi = fθ(xi)

support xi

ck =
1

|Sk |
∑
i|yi=k

zi

zj = fθ(xj)

query xj

pk(zj) =
exp(−d(zj , ck))∑
k′ exp(−d(zj , ck′))

L(p, yj)

θ

Computational graph

48

Model-Agnostic Meta-Learning (MAML; Finn et al., 2017)

• We want to train a classifier y = fθ(x) to solve a new few-shot learning task.

• Learning can be done by performing a few iterations of gradient descent (GD).

• In the case of one iteration of GD:

θ′ ← θ0 − α∇θL((x1, y1), ..., (xk , yk))

• {(xi , yi)}ki=1 are the few training examples (support set)

• L is the loss function (for example, cross-entropy for classification tasks)

• α is the learning rate

• θ0 is the vector of the initial values of the parameters

• The idea of meta-learning: we can learn initialization θ0 and the learning rate α to minimize the

loss (on the query set) after the GD-adaptation.

49

https://arxiv.org/pdf/1703.03400.pdf

Model-Agnostic Meta-Learning: Training

One iteration of episodic training:

• Use the support set to compute the loss

and its gradient ∇θL.

• Compute adapted values θ′ of the

parameters (as part of computational

graph) with one (or a few) iteration of

gradient descent.

• Use the query set to compute the loss

with the adapted parameters θ′.

• Compute the loss on the query set.

• Perform backpropagation and update

parameters θ0 and learning rate α.

ŷ = fθ0 (x)

xi
support

L(ŷi , yi)

support yi

∇θL

θ0

θ′ = θ0 − α∇θL

α

ŷ = fθ′(x)

xj
query

L(ŷj , yj)

query yj

Computational graph

50

Model-Agnostic Meta-Learning: First-order approximation

• MAML requires computation of gradient

through gradient, which can be

computationally expensive.

• The first-order approximation (which stops

gradient propagation through ∇θL) works

almost equally well.

ŷ = fθ0 (x)

xi
support

L(ŷi , yi)

support yi

∇θL

θ0

θ′ = θ0 − α∇θL

α

ŷ = fθ′(x)

xj
query

L(ŷj , yj)

query yj

stop
gradient

Computational graph

51

Reptile (Nichol et al., 2018)

• Simplification of MAML: Instead of backpropagating through the computational graph of MAML,

we update the initial parameter values θ0 towards the adapted parameter values θT with a small

step ε.

for iteration 1,2,3,... do

Randomly sample a task T

Perform k > 1 steps of SGD on task T starting from θ0: θ0 → θT

Update: θ0 ← θ0 + ε(θT − θ0)
return θ0

• Reptile demo

52

https://arxiv.org/pdf/1803.02999.pdf
https://openai.com/blog/reptile/

Home assignment

Assignment 11 fewshot

• You need to implement prototypical networks (Snell et al., 2017).

ck =
1

|Sk |
∑

(xi ,yi)∈Sk

fθ(xi)

p(y = k | x) =
exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

54

https://arxiv.org/pdf/1703.05175.pdf

Recommended reading

• Papers cited in the lecture slides.

55

