Lecture 4

- Defined the partial derivative using the limit definition in analogy with the one-variable case
- Computer some first and second partial derivatives. Stated the theorem that that f_xy = f_yx is true whenever the 2nd partial derivatives are continuous (slightly stronger theorems are possible)
- Reviewed the chain rule in one variable, stated it in two variables. Gave the intuition for the proof using the limnit definition of the derivative and some algebra.
- Reviewed the general equation of the plane through the point (x_{-} $\left.0, y _0, z _0\right)$ and with normal $\langle a, b, c\rangle$. It is $a\left(x-x _0\right)+b\left(y-y _0\right)+c(z-$ $\left.z_{-} 0\right)=0$. The example of finding the equation of the plane through 3 given points was given in the first homework assignemnt.
- Found the equation for the tangent plane to the surface $z=f(x, y)$ at (a, b) in the following way. We looked at the curves on the surface parallel to the x-axis and y-axis. We parametrized these curves. For example the curve parallel to the x - $a x i s$ is $\langle t, b, f(t, b)\rangle$. Differentiating gives tangent vectors parallel to the surface. The cross product of these tangent vectors produces a normal vector <-f_x(a,b), -f_y(a,b), 1>. We remarked that we should remember this method as it will be useful also later (for deducing the surface area formula).
- Computed the tangent plane in a simple example.

Where to find this material

- Adams and Essex 10.4, 12.3-12.5
- Corral, 1.5, 2.2 (chain rule not covered) , 2.3
- Guichard, 12.5, 14.3, 14.4, 14.6
- Active Calculus. 9.5, 10.2-10.5

Partial derivatives

Recall the 1 variable derivative defintion.

$$
\frac{d f}{d x}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Definition of the partial derviates of a function $f(x, y)$

Slope in the x-direction

$$
=\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

Slope in the y-direction

$$
=\frac{\partial f}{\partial y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Partial derivatives (2)

How to compute the partial derivates?

The good news is that this is easy.

- To compute $\frac{\partial f}{\partial x}$ we think of y as fixed and differentiate as usual in with respect to x.
- To compute $\frac{\partial f}{\partial y}$ we think of x as fixed and differentiate as usual in with respect to y.

Example: Let $f(x, y)=x^{2}+y^{3}+7 x y$

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x+0+7 y \\
\frac{\partial f}{\partial y}=0+3 y^{2}+7 x \\
f_{x}=\frac{\partial f}{\partial x} \quad\left(\begin{array}{l}
\text { Cannot } \\
\text { use } \\
f^{\prime}
\end{array}\right)
\end{gathered}
$$

Notation

Higher derivatives

Example: Let $f(x, y)=x \cos (y)$

Partial derivatives (3)

Theorem(Symmetry of second derivatives)
If all the 2 nd partial derivatives of a function $f(x, y)$ exist and are continuous then $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$

Note: Analogous results are true for 3rd derivates and higher.

Chain Rule (for differentiating a composition of functions)
Recall the 1 variable case.
Notation; $(f \circ g)(x)=f(g(x))$
ex. $g(x)=x^{2}, f(x)=\sin (x)$

$$
(f \circ g)(x)=f(g(x))=\sin \left(x^{2}\right)
$$

Note. $(g \circ f)(x)=g(f(x))=[\sin (x)]^{2}$ $=\sin ^{2} x$
chain rule $\frac{d f(g(x))}{d x}=\frac{d f(g)}{d g} \cdot \frac{d g}{d x}$

$$
=f^{\prime}(g) \cdot g^{\prime}(x)
$$

$$
\text { ex: } \begin{aligned}
f(g) & =\sin (g), \frac{d f}{d x}=\cos (g) \\
g(x) & =x^{2}, \frac{d g}{d x}=2 x
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d}{d x} \cos \left(x^{2}\right)=\frac{d f(g(x))}{d x} & =\cos (g) \cdot 2 x \\
& =\cos \left(x^{2}\right) \cdot 2 x
\end{aligned}
$$

Chain rule in 2 variables
Compositions: $u(x, y), v(x, y)$

$$
f(u, v)=f(u(x, y), v(x, y))
$$

Letis look at a simpler case
functions $u(t), v(t), f(x, y)$
Aim: What is the derivative of the 1 - variable function

$$
z(t)=f(u(t), v(t))
$$

ex $\quad \begin{aligned} & u(t)=\cos (t) \\ & v(t)=t^{3}\end{aligned}, f(x, y)=x y^{2}$
The $f(u(t), v(t))=u(t)[v(t)]^{2}$
we can diff. directly to get

$$
\begin{aligned}
& \text { Diff directly } \\
& \frac{d f}{d t}=-\sin (t) \cdot t^{6}+\cos (t) \cdot 6 t^{5} \underset{=}{\frac{d f}{d t}}=v(t)^{2}(-\sin (t))+2 u(t) v(t) 3 t^{2} \\
& =t^{6}(-\sin (t))+2 \cos (t) t^{3} 3 t^{2}
\end{aligned}
$$

- A change in t causes a change in u, and this change in u causes a change in f. Chain of events
- Also, a change in t causes a change in v, and this change in v causes a change in f.

$$
\frac{d f}{d t}=\frac{\partial f}{\partial u} \frac{d u}{d t}+\frac{d f}{\partial v} \frac{d v}{d t}
$$

ex $\frac{d t}{\partial u}=v^{2}, \frac{d u}{d t}=-\sin (t)$

$$
\frac{\partial f}{\partial v}=2 u v, \quad \frac{d v}{d t}=3 t^{2}
$$

Chain rule(2)
Intuitive "proof" Setup: Functions, $u(t), v(t)$, and $f(t)=f(u(t), v(t))$

$$
\begin{aligned}
\frac{d f}{d t} & =\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{f(u(t+\Delta t), v(t+\Delta t))-f(u(t), v(t))}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{f(u(t+\Delta t), v(t+\Delta t))-f(u(t), v(t+\Delta t))}{\Delta t}+\frac{f(u(t), v(t+\Delta t))-f(u(t), v(t))}{\Delta t}
\end{aligned}
$$

Let $\Delta u=u(t+\Delta t)-u(t)$

$$
\begin{aligned}
& =\lim _{\Delta t \rightarrow 0} \frac{f(u+\Delta u, v(t+\Delta t))-f(u, v(t+\Delta t))}{(\Delta u} \cdot \frac{\Delta u}{\Delta t}+"_{\substack{\text { same trick } \\
\text { with } \Delta v}} \text { ") } \\
& =\quad \frac{\partial f}{\partial u} \frac{d u}{d t}+\frac{\partial f}{\partial v} \frac{d v}{d t}
\end{aligned}
$$

NOTE: This is not a complete proof. There are two issues

1. Δu could be zero
2. We need some assumptions on the smoothness of u, v and f. In particular to get from the $2 n d$ last line to the last line.

The proof of the 1 -variable chain rule is explained well here. (Not required in this course)
https://web.williams.edu/Mathematics/lg5/ A37W12/Chain.pdf

Planes (quick review)
Given (1) $P\left(x_{0}, y_{0}, z_{0}\right)$ on the plane
(2) $\vec{n}=\langle a, b, c\rangle=$ a normal

Find the equation of
the plane vector

Q lies on the $\Leftrightarrow \overrightarrow{P Q}$ orthogonal to \vec{n} plane

$$
\begin{aligned}
& \Leftrightarrow \quad \overrightarrow{P Q} \cdot \vec{n}=0 \\
& \Leftrightarrow\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \cdot\langle a, b, c\rangle=0 \\
& \Leftrightarrow a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
& \Leftrightarrow a x+b y+c z=d
\end{aligned}
$$

where $d=a x_{0}+b y_{0}+c z_{0}$

In homework $\# 1$
Find the plane through A, B, C

$\overrightarrow{A B}$ and $\overrightarrow{A C}$ are parallel/ to the plane

So $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$ is orthogonal to the plane

Tangent plane to a surface
Aim Find the tangent plane to the surface $z=f(x, y)$ at the point (a, b)

To get the equation of the plane we need

- Point on the plane $\sqrt{ } P(a, b, f(a, b))$
- Normal vector =?

Steps to find a normal vector
(1) Parametrize the curves
(2) Find the tangents
(3) normal $=$ cross product
(1) $\vec{r}_{2}(t)=\langle a, t, f(a, t)\rangle$

$$
\vec{r}_{1}(s)=\langle s, b, f(s, b)\rangle
$$

(2)

$$
\begin{aligned}
& \vec{r}_{2}^{\prime}(t)=\left\langle 0,1, \frac{d}{d t} f(a, t)\right\rangle \\
& \vec{r}_{2}^{\prime}(b)=\left\langle 0,1, \frac{\partial f}{\partial y}(a, b)\right\rangle \frac{\partial f}{\partial y}(a, t) \\
& \vec{r}_{1}^{\prime}(a)=\left\langle 1,0, \frac{\partial f}{\partial x}(a, b)\right\rangle
\end{aligned}
$$

Tangent plane (2)

$$
\begin{aligned}
\vec{n} & =\vec{r}_{1}^{\prime}(a) \times \vec{r}_{2}^{\prime}(b) \\
& =\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & \frac{\partial f}{\partial x}(a, b) \\
0 & j & \frac{\partial f}{\partial y}(a, b)
\end{array}\right| \\
& =\left\langle-\frac{\partial f}{\partial x}(a, b),-\frac{\partial f}{\partial y}(a, b), 1\right\rangle
\end{aligned}
$$

Note: This is a special normal vector. Its length turns out to be important. We will see this later in the course when we study surface area. Also in Diff Int 3.

We had $P=(a, b, f(a, b))$
The equation of the tangent plane is

$$
-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)+1(z-f(a, b))=0
$$

\Downarrow

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

What does this remind you of?
Eq of a line

$$
\begin{aligned}
& y-y_{0}=m\left(x-x_{0}\right) \\
& y=y_{0}+\frac{d f}{d x}\left(x_{0}\right)\left(x-x_{0}\right) \\
& \quad f\left(x_{0}\right)
\end{aligned}
$$

Tangent plane example
Find the tangent plane to the surface $z=6-x^{2}-y^{2}$ at the point $(1,2,1)$

\rightarrow Zulip poll

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Compute

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=-2 x, & \frac{\partial f}{\partial x}(1,2)=-2 \\
\frac{\partial f}{\partial y}=-2 y & \frac{\partial f}{\partial y}(1,2)=-4
\end{array}
$$

So $\vec{n}=\langle 2,4,1\rangle \quad\left(\begin{array}{l}\text { Looks } \\ \text { roughly correct } \\ \text { in the sketch }\end{array}\right)$
The tangent plane equation 15 :

$$
\begin{aligned}
&=f(1,2)=6-1-4=1 \\
& z=(1)+(-2)(x-1)+(-4)(y-2) \\
& \Leftrightarrow 2 x+4 y+z=11
\end{aligned}
$$

when $y=2$

$$
\begin{aligned}
& z=2-x^{2} \\
& \text { slope }=z^{\prime}(1)=-2
\end{aligned}
$$

