Lecture 4

e Defined the partial derivative using the limit definition in analogy Where o find this material

with the one-variable case

e Computer some first and second partial derivatives. Stated the
theorem that that f xy =f_yx is true whenever the 2nd partial
derivatives are continuous (slightly stronger theorems are
possible)

¢ Reviewed the chain rule in one variable, stated it in two variables.
Gave the intuition for the proof using the limnit definition of the
derivative and some algebra.

e Reviewed the general equation of the plane through the point (x_
0,y_0, z_0) and with normal <a,b,c>. It is a(x-x_0) + b(y-y_0) + c(z-
z_0) = 0. The example of finding the equation of the plane through
3 given points was given in the first homework assignemnt.

e Found the equation for the tangent plane to the surface z = f(x,y)
at (a,b) in the following way. We looked at the curves on the
surface parallel to the x-axis and y-axis. We parametrized these
curves. For example the curve parallel to the x-axis is <t, b, f(t,b)>.
Differentiating gives tangent vectors parallel to the surface. The
cross product of these tangent vectors produces a normal vector
<-f x(a,b), -f_y(a,b), 1>. We remarked that we should remember
this method as it will be useful also later (for deducing the surface
area formula).

e Computed the tangent plane in a simple example.

Adams and Essex 10.4, 12.3-12.5

Corral, 1.5, 2.2 (chain rule not covered), 2.3

Guichard, 12.5, 14.3, 14.4, 14.6

Active Calculus. 9.5, 10.2 - 10.5
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Partial derivatives

Recall the 1 variable derivative defintion.
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Partial derivatives (2)

How to compute the partial derivates?

The good news is that this is easy.

e To compute %f; we think of y as fixed and differentiate

as usual in with respect to x.

e To compute %f—/ we think of x as fixed and differentiate

as usual in with respect to y.
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Partial derivatives (3)

Theorem(Symmetry of second derivatives)

If all the 2nd partial derivativ'es of a function f(x, y) exist

0% f B 0% f
dxdy dyodx

and are continuous then

Note: Analogous results are true for 3rd derivates and higher.

Chain Rule (for differentiating a compositon of functions)

Recall +he 1 variahle case.
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Chain rule in 2 variables
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/ [ | -"’f\/ j
N \,/

e A change in t causes a change in u, and this change

in u causes a changeiin f. CL‘JOU'V\ OIOE’I/eVI‘/?

e Also, a change in t causes a change in v, and this
change in v causes a change in f.
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Chain rule(2) |
Intyitive proof
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The proof of the 1-variable chain rule is

explained well here. (Not required in this
NOTE: This is not a complete proof. There are two issues course)
1. Au could be zero

2. We need some assumptions on the smoothness of u, vand f. In https://web.williams.edu/Mathematics/Ig5/
particular to get from the 2nd last line to the last line. A37W12/Chain.pdf
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https://web.williams.edu/Mathematics/lg5/A37W12/Chain.pdf
https://web.williams.edu/Mathematics/lg5/A37W12/Chain.pdf

Planes (quick review)
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Tangent plane to a surface
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Tangent plane (2)
We hat FP-= (C!'é,*p(q,é))
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Note: This is a special normal vector. Its length
turns out to be important. We will see this later in
the course when we study surface area. Also in Diff

Int 3.
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Tangent plane example
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