# Special course on Gaussian processes: Session #4

Vincent Adam

Aalto University

vincent.adam@aalto.fi

21/01/2021

21/01/2021

1 / 34

# Roadmap for today

- Computational challenges
  - Computational complexity of GP regression
  - Non-Gaussian likelihoods: GP classification

- Approximate inference
  - Variational inference: scratching the surface
  - Inducing points approximations

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

3 / 34

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

- Recall: If  $\mathbf{A} \in \mathbb{R}^{N \times M}$  and  $\mathbf{b} \in \mathbb{R}^{M}$ , then the cost of computing  $\mathbf{A}\mathbf{b}$  is  $\mathcal{O}(NM)$
- lacktriangle Recall: If  $m{C} \in \mathbb{R}^{N \times N}$ , then the cost of computing  $m{C}^{-1}$  is  $\mathcal{O}\left(N^3\right)$

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

- Recall: If  $\mathbf{A} \in \mathbb{R}^{N \times M}$  and  $\mathbf{b} \in \mathbb{R}^{M}$ , then the cost of computing  $\mathbf{A}\mathbf{b}$  is  $\mathcal{O}(NM)$
- Recall: If  $C \in \mathbb{R}^{N \times N}$ , then the cost of computing  $C^{-1}$  is  $\mathcal{O}(N^3)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

- Recall: If  $\mathbf{A} \in \mathbb{R}^{N \times M}$  and  $\mathbf{b} \in \mathbb{R}^{M}$ , then the cost of computing  $\mathbf{A}\mathbf{b}$  is  $\mathcal{O}(NM)$
- Recall: If  $C \in \mathbb{R}^{N \times N}$ , then the cost of computing  $C^{-1}$  is  $\mathcal{O}(N^3)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\mathbf{h} = (\mathbf{K}_{\mathrm{ff}} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$  scales as  $\mathcal{O}(\mathbf{N}^3)$

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

- Recall: If  $\mathbf{A} \in \mathbb{R}^{N \times M}$  and  $\mathbf{b} \in \mathbb{R}^{M}$ , then the cost of computing  $\mathbf{A}\mathbf{b}$  is  $\mathcal{O}(NM)$
- Recall: If  $C \in \mathbb{R}^{N \times N}$ , then the cost of computing  $C^{-1}$  is  $\mathcal{O}(N^3)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\mathbf{h} = (\mathbf{K}_{ff} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$  scales as  $\mathcal{O}(N^3)$ ,  $\mu_* = \mathbf{k}_{f_* f} \mathbf{h}$  scales as  $\mathcal{O}(N)$

→ロト → □ ト → 重 ト → 重 ・ りへで

• The key equations for predictions at new input  $x^*$ , given x, y (Gaussian noise)

$$p(f_*|\mathbf{y}) = \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right)$$

$$\mu_* = \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{y}$$

$$\sigma_*^2 = K_{f_*f_*} - \mathbf{k}_{f_*f}\left(\mathbf{K}_{ff} + \sigma^2\mathbf{I}\right)^{-1}\mathbf{k}_{f_*f}^T$$

- Recall: If  $\mathbf{A} \in \mathbb{R}^{N \times M}$  and  $\mathbf{b} \in \mathbb{R}^{M}$ , then the cost of computing  $\mathbf{Ab}$  is  $\mathcal{O}(NM)$
- Recall: If  $C \in \mathbb{R}^{N \times N}$ , then the cost of computing  $C^{-1}$  is  $\mathcal{O}(N^3)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\mathbf{h} = (\mathbf{K}_{ff} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$  scales as  $\mathcal{O}(N^3)$ ,  $\mu_* = \mathbf{k}_{f_* f} \mathbf{h}$  scales as  $\mathcal{O}(N)$
- $N \le 1000$ : Fine,  $N \le 10000$ : Slow, but possible, N > 10000: Prohibitively slow

(ロ) (部) (注) (注) 注 り(()

3 / 34

#### Regression vs classification

Response variable y is continuous in regression problems

$$y_n \in \mathbb{R}$$

• Response variable **y** is discrete in classification problems

$$y_n \in \{c_1, c_2, \ldots, c_K\}$$



 $\mathbf{X} = \mathsf{images},$ 

 $\mathbf{X} = X$ -ray scan,

 $\mathbf{X} = \text{images of digits},$ 

 $\boldsymbol{X} = \text{emails},$ 

 $y_n \in \{\mathsf{cat}, \mathsf{dog}\}$ 

 $y_n \in \{\mathsf{tumor}, \mathsf{no}\;\mathsf{tumor}\}$ 

 $y_n \in \{0, 1, 2, \dots, 9\}$ 

 $y_n \in \{\text{spam}, \text{not spam}\}$ 





#### Regression vs classification

Response variable **y** is continuous in regression problems

$$y_n \in \mathbb{R}$$

Response variable  $\mathbf{y}$  is discrete in classification problems

$$y_n \in \{c_1, c_2, \ldots, c_K\}$$



 $\boldsymbol{X} = \text{images},$ 

 $\boldsymbol{X} = X$ -ray scan,

X = images of digits,

 $\boldsymbol{X} = \text{emails},$ 

 $y_n \in \{\text{cat}, \text{dog}\}$ 

 $y_n \in \{\text{tumor}, \text{no tumor}\}\$ 

 $y_n \in \{0, 1, 2, \dots, 9\}$ 

 $y_n \in \{\text{spam}, \text{not spam}\}\$ 





# Why Gaussian processes for classification?

- Complex decision boundaries
  - Non-linear boundary
  - Can learn complexity of decision boundary from data

- Probabilistic classification
  - How would you classify the green point?
  - We want to model the uncertainty



## Why don't we use regression models for classification?

- We focus on binary classification:  $y_n \in \{0,1\}$  or  $y_n \in \{-1,1\}$
- We are given a data set  $\{x_n, y_n\}_{n=1}^N$  and we want to model

$$p(y_n = +1|\boldsymbol{x}_n)$$

• What's wrong with simply using the GP regression model with labels:  $y_n \in \{0,1\}$ :

$$p(y_n = +1|\mathbf{x}_n) = f(\mathbf{x}_n)$$



→ロト → □ ト → 重 ト → 重 ・ の Q (\*)

6 / 34

Vincent Adam GP Course: Session #4 21/01/2021

# Why don't we use regression models for classification?

- We focus on binary classification:  $y_n \in \{0,1\}$  or  $y_n \in \{-1,1\}$
- We are given a data set  $\{x_n, y_n\}_{n=1}^N$  and we want to model

$$p(y_n = +1|\boldsymbol{x}_n)$$

• What's wrong with simply using the GP regression model with labels:  $y_n \in \{0,1\}$ :

$$p(y_n = +1|\mathbf{x}_n) = f(\mathbf{x}_n)$$



→ロト → □ ト → 重 ト → 重 ・ りへで

6 / 34

Vincent Adam GP Course: Session #4 21/01/2021

## Why don't we use regression models for classification?

- We focus on binary classification:  $y_n \in \{0,1\}$  or  $y_n \in \{-1,1\}$
- We are given a data set  $\{x_n, y_n\}_{n=1}^N$  and we want to model

$$p(y_n = +1|\boldsymbol{x}_n)$$

• What's wrong with simply using the GP regression model with labels:  $y_n \in \{0,1\}$ :

$$p(y_n = +1|\mathbf{x}_n) = f(\mathbf{x}_n)$$



◆ロト ◆回ト ◆注ト ◆注ト 注 りくぐ

6 / 34

Vincent Adam GP Course: Session #4 21/01/2021

# Gaussian process classification setup (I)

ullet We'll use a 'squashing function'  $\phi:\mathbb{R} o (0,1)$  with  $y_n\in \{-1,1\}$ 

$$p(y_n|\mathbf{x}_n) = \phi(y_n \cdot f(\mathbf{x}_n)) \in (0,1)$$

ullet Multiple possible choices for  $\phi(\cdot)$ , we'll use the standard normal CDF

$$\phi(x) = \int_{-\infty}^{x} \mathcal{N}(z|0,1) \, \mathrm{d}z$$

#### Can you figure it out?

- What is  $\phi(0)$ ?
- ② What is  $\phi(-\infty)$ ?
- **3** What is  $\phi(\infty)$ ?
- What is  $\phi(x) + \phi(-x)$ ?
- **5** Is  $\phi(y_n f(x_n))$  normalized wrt.  $y_n$ ?



# Gaussian process classification setup (II)

• We map the unknown function f(x) through the squashing function



Example re-visited



Vincent Adam GP Course: Session #4

21/01/2021

8 / 34

## Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point  $x_*$ 

$$p(\mathbf{y}, \mathbf{f}) = \prod_{n=1}^{N} p(y_n | f_n) p(\mathbf{f}) = \prod_{n=1}^{N} \phi(y_n \cdot f_n) \mathcal{N}(\mathbf{f} | \mathbf{0}, \mathbf{K})$$

• Step 1: Compute posterior distribution of p(f|y):

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)}$$

• Step 2: Compute posterior of  $f_*$  for new test point  $x_*$ :

$$p(f_* | \mathbf{y}) = \int p(f_* | \mathbf{f}) p(\mathbf{f} | \mathbf{y}) d\mathbf{f}$$

Step 3: Compute predictive distribution

$$p(y_*|\mathbf{y}) = \int \phi(y_* \cdot f_*) p(f_*|\mathbf{y}) df_*$$





## Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point  $x_*$ 

$$p(\mathbf{y}, \mathbf{f}) = \prod_{n=1}^{N} p(y_n | f_n) p(\mathbf{f}) = \prod_{n=1}^{N} \phi(y_n \cdot f_n) \mathcal{N}(\mathbf{f} | \mathbf{0}, \mathbf{K})$$

• Step 1: Compute posterior distribution of p(f|y):

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)}$$

• Step 2: Compute posterior of  $f_*$  for new test point  $x_*$ :

$$p(f_* | \mathbf{y}) = \int p(f_* | \mathbf{f}) p(\mathbf{f} | \mathbf{y}) d\mathbf{f}$$

Step 3: Compute predictive distribution

$$p(y_*|\mathbf{y}) = \int \phi(y_* \cdot f_*) p(f_*|\mathbf{y}) df_*$$

Unfortunately, these distributions are analytically intractable.





Vincent Adam

GP Course: Session #4

## Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point  $x_*$ 

$$p(\mathbf{y}, \mathbf{f}) = \prod_{n=1}^{N} p(y_n | f_n) p(\mathbf{f}) = \prod_{n=1}^{N} \phi(y_n \cdot f_n) \mathcal{N}(\mathbf{f} | \mathbf{0}, \mathbf{K})$$

• Step 1: Compute posterior distribution of p(f|y):

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)} \approx q(f)$$

• Step 2: Compute posterior of  $f_*$  for new test point  $x_*$ :

$$p(f_*|\mathbf{y}) = \int p(f_*|\mathbf{f}) p(\mathbf{f}|\mathbf{y}) d\mathbf{f} \approx \int p(f_*|\mathbf{f}) q(\mathbf{f}) d\mathbf{f}$$

Step 3: Compute predictive distribution

$$p(y_*|\mathbf{y}) = \int \phi(y_* \cdot f_*) p(f_*|\mathbf{y}) df_*$$

Unfortunately, these distributions are analytically intractable.





Vincent Adam

GP Course: Session #4

# Computational problems

We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large *N*?

# Computational problems

We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large *N*?

Variational inference

# Computational problems

#### We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large N?

#### Variational inference

- General framework for approximate Bayesian inference
- Many recent application in the machine learning literature:
  - GPs for big data
  - Q GPs with non-Gaussian likelihoods
  - Oeep Gaussian processes
  - Onvolutional Gaussian processes
  - Variational autoencoders (VAEs)
  - **6** ..

Recipe for approximating intractable distribution  $p \in \mathcal{P}$ 

① Define some "simple" family of distribution Q.



- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p



- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p





- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p





- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p





- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p

$$\mathbb{D}[q_1,p] > \mathbb{D}[q_2,p]$$





Recipe for approximating intractable distribution  $p \in \mathcal{P}$ 

- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p

$$\mathbb{D}[q_1, \rho] > \mathbb{D}[q_2, \rho]$$

 $\textbf{ § Search for the distribution in } q \in \mathcal{Q} \text{ such that } \mathbb{D}[q,p] \text{ is minimized}$ 

$$q^* = \arg\min_{q \in \mathcal{Q}} \mathbb{D}[q,p]$$





Recipe for approximating intractable distribution  $p \in \mathcal{P}$ 

- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p

$$\mathbb{D}[q_1, \rho] > \mathbb{D}[q_2, \rho]$$

lacksquare Search for the distribution in  $q \in \mathcal{Q}$  such that  $\mathbb{D}[q,p]$  is minimized

$$q^* = \arg\min_{q \in \mathcal{Q}} \mathbb{D}[q, p]$$

4 Use  $q^*$  as an approximation of p





Recipe for approximating intractable distribution  $p \in \mathcal{P}$ 

- ① Define some "simple" family of distribution Q.
- ② Define some way to compute a "distance"  $\mathbb{D}[q,p]$  between each of the distribution  $q \in \mathcal{Q}$  and the intractable distribution p

$$\mathbb{D}[q_1, p] > \mathbb{D}[q_2, p]$$

lacksquare Search for the distribution in  $q\in\mathcal{Q}$  such that  $\mathbb{D}[q,p]$  is minimized

$$q^* = \arg\min_{q \in \mathcal{Q}} \mathbb{D}[q, p]$$

4 Use  $q^*$  as an approximation of p





Here we will always choose  ${\mathcal Q}$  to be the set of multivariate Gaussian distributions.

11 / 34

#### Variational inference I

 We will use to the Kullback-Leibler divergence to "measure distances" between distributions

$$\mathbb{D}\left[q||p
ight] = \int q(m{f}) \ln rac{q(m{f})}{p(m{f})} \mathrm{d}m{f} = \mathbb{E}_q\left[\ln rac{q(m{f})}{p(m{f})}
ight]$$

#### Variational inference I

 We will use to the Kullback-Leibler divergence to "measure distances" between distributions

$$\mathbb{D}\left[q||p
ight] = \int q(m{f}) \ln rac{q(m{f})}{p(m{f})} \mathrm{d}m{f} = \mathbb{E}_q\left[\ln rac{q(m{f})}{p(m{f})}
ight]$$

- Most important properties for our purpose:
  - **1** Always positive:  $\mathbb{D}[q||p] \geq 0$
  - ② Identity of indiscernibles:  $\mathbb{D}[q||p] = 0 \iff p = q$  (a.e.)
  - **3** Not-symmetric:  $\mathbb{D}\left[q||p\right] \neq \mathbb{D}\left[p||q\right]$

#### Variational inference II

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

#### Variational inference II

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$\mathbb{D}\left[q(oldsymbol{f})||p(oldsymbol{f}|oldsymbol{y})
ight] = \mathbb{E}_q\left[\lnrac{q(oldsymbol{f})}{p(oldsymbol{f}|oldsymbol{y})}
ight]$$

#### Variational inference II

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$egin{aligned} \mathbb{D}\left[q(m{f})||p(m{f}|m{y})
ight] &= \mathbb{E}_q\left[\lnrac{q(m{f})}{p(m{f}|m{y})}
ight] \ &= \mathbb{E}_q\left[\ln q(m{f}) - \ln p(m{f}|m{y})
ight] \end{aligned}$$

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] = \mathbb{E}_q \left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f}|\boldsymbol{y})}\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f}) - \ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q \left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] = \mathbb{E}_q \left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f}|\boldsymbol{y})}\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f}) - \ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q \left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] = \mathbb{E}_q \left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f}|\boldsymbol{y})}\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f}) - \ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q \left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

Our goal is to minimize the KL divergence between some approximation  $q \in \mathcal{Q}$  and some posterior distribution p(f|y)

$$\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] = \mathbb{E}_q \left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f}|\boldsymbol{y})}\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f}) - \ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

$$= \mathbb{E}_q \left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q \left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

Last term depends on the exact posterior p(f|y), which is intractable.

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y|f)p(f)}{p(y)}$$

$$\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] = \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right]$$

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y|f)p(f)}{p(y)}$$

$$egin{aligned} \mathbb{D}\left[q(oldsymbol{f})||p(oldsymbol{f}|oldsymbol{y})
ight] &= \mathbb{E}_q\left[\ln q(oldsymbol{f})
ight] - \mathbb{E}_q\left[\ln rac{p(oldsymbol{y},oldsymbol{f})}{p(oldsymbol{y})}
ight] \end{aligned}$$

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y|f)p(f)}{p(y)}$$

$$\begin{split} \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln \frac{p(\boldsymbol{y},\boldsymbol{f})}{p(\boldsymbol{y})}\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \end{split}$$

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y|f)p(f)}{p(y)}$$

$$\begin{split} \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln \frac{p(\boldsymbol{y},\boldsymbol{f})}{p(\boldsymbol{y})}\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \\ &= \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \end{split}$$

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y|f)p(f)}{p(y)}$$

$$\begin{split} \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln \frac{p(\boldsymbol{y},\boldsymbol{f})}{p(\boldsymbol{y})}\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \\ &= \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \end{split}$$

Let's re-arrange the terms

$$\ln p(oldsymbol{y}) = \mathbb{E}_q \left[ \ln p(oldsymbol{y} | oldsymbol{f}) 
ight] - \mathbb{D} \left[ q(oldsymbol{f}) || p(oldsymbol{f}) 
ight] + \mathbb{D} \left[ q(oldsymbol{f}) || p(oldsymbol{f} | oldsymbol{y}) 
ight]$$

14 / 34

Vincent Adam GP Course: Session #4 21/01/2021

We can rewrite the posterior: 
$$p(f|y) = \frac{p(y,f)}{p(y)} = \frac{p(y)f)p(f)}{p(y)}$$

$$\begin{split} \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f}|\boldsymbol{y})\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln \frac{p(\boldsymbol{y},\boldsymbol{f})}{p(\boldsymbol{y})}\right] \\ &= \mathbb{E}_q\left[\ln q(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \\ &= \mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f})\right] - \mathbb{E}_q\left[\ln p(\boldsymbol{y}|\boldsymbol{f})\right] + \ln p(\boldsymbol{y}) \end{split}$$

Let's re-arrange the terms

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

 $\mathcal{L}[q]$  does not depend on the posterior  $p(\mathbf{f}|\mathbf{y})$ , but only separately on the conditional density  $p(\mathbf{y}|\mathbf{f})$  and the prior  $p(\mathbf{f})$ .

4ロト 4回ト 4 きト 4 きト き めな

Vincent Adam GP Course: Session #4 21/01/2021 14 / 34

$$\ln p(\boldsymbol{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\boldsymbol{y}|\boldsymbol{f}) \right] - \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}|\boldsymbol{y}) \right]$$

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

Let's make a few observations

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

Let's make a few observations

• In p(y) is a constant

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

Let's make a few observations

- $\bullet$  In p(y) is a constant
- ②  $\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] \geq 0$  is non-negative

Vincent Adam

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

Let's make a few observations

- $\bullet$  In p(y) is a constant
- ②  $\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] \geq 0$  is non-negative
- $lacksquare{1}{3} \mathcal{L}[q]$  only depends on q and the joint density  $p(\mathbf{y}, \mathbf{f})$

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

Let's make a few observations

- $\bullet$  In p(y) is a constant
- ②  $\mathbb{D}\left[q(\boldsymbol{f})||p(\boldsymbol{f}|\boldsymbol{y})\right] \geq 0$  is non-negative
- $oldsymbol{\Im} \mathcal{L}[q]$  only depends on q and the joint density  $p(\pmb{y},\pmb{f})$

Some consequences



$$\ln p(\boldsymbol{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\boldsymbol{y}|\boldsymbol{f}) \right] - \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}|\boldsymbol{y}) \right]$$

Let's make a few observations

- In p(y) is a constant
- ②  $\mathbb{D}\left[q(\mathbf{f})||p(\mathbf{f}|\mathbf{y})\right] \geq 0$  is non-negative
- lacksquare  $\mathcal{L}\left[q
  ight]$  only depends on q and the joint density  $p(\pmb{y},\pmb{f})$

Some consequences

**①**  $\mathcal{L}[q]$  is a *lower bound* of  $\ln p(\mathbf{y})$ . That is:  $\ln p(\mathbf{y}) \geq \mathcal{L}[q]$ 

$$\ln p(\boldsymbol{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\boldsymbol{y}|\boldsymbol{f}) \right] - \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}|\boldsymbol{y}) \right]$$

Let's make a few observations

- $\bullet$  In p(y) is a constant
- ②  $\mathbb{D}\left[q(\mathbf{f})||p(\mathbf{f}|\mathbf{y})\right] \geq 0$  is non-negative
- lacksquare  $\mathcal{L}\left[q
  ight]$  only depends on q and the joint density  $p(\pmb{y},\pmb{f})$

### Some consequences

- **①**  $\mathcal{L}[q]$  is a *lower bound* of  $\ln p(y)$ . That is:  $\ln p(y) \geq \mathcal{L}[q]$
- ② Maximizing  $\mathcal{L}[q]$  is equivalent to minizing  $\mathbb{D}[q(f)||p(f|y)]$

Vincent Adam

$$\ln p(\boldsymbol{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\boldsymbol{y}|\boldsymbol{f}) \right] - \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\boldsymbol{f}) || p(\boldsymbol{f}|\boldsymbol{y}) \right]$$

Let's make a few observations

- In p(y) is a constant
- ②  $\mathbb{D}\left[q(\mathbf{f})||p(\mathbf{f}|\mathbf{y})\right] \geq 0$  is non-negative
- lacksquare  $\mathcal{L}\left[q
  ight]$  only depends on q and the joint density  $p(\pmb{y},\pmb{f})$

Some consequences

- **①**  $\mathcal{L}[q]$  is a *lower bound* of  $\ln p(y)$ . That is:  $\ln p(y) \geq \mathcal{L}[q]$
- **②** Maximizing  $\mathcal{L}[q]$  is equivalent to minizing  $\mathbb{D}[q(f)||p(f|y)]$

Key take-away: we can fit the variational approx.  $\emph{q}$  by optimizing  $\mathcal{L}$ 

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\boldsymbol{y}) = \ln \int p(\boldsymbol{f}, \boldsymbol{y}) d\boldsymbol{f}$$

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\mathbf{y}) = \ln \int p(\mathbf{f}, \mathbf{y}) d\mathbf{f}$$
$$= \ln \int q(\mathbf{f}) \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} d\mathbf{f}$$

21/01/2021

16 / 34

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\mathbf{y}) = \ln \int p(\mathbf{f}, \mathbf{y}) d\mathbf{f}$$

$$= \ln \int q(\mathbf{f}) \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} d\mathbf{f}$$

$$= \ln \mathbb{E}_q \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})}$$

16 / 34

Vincent Adam GP Course: Session #4 21/01/2021

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\mathbf{y}) = \ln \int p(\mathbf{f}, \mathbf{y}) d\mathbf{f}$$

$$= \ln \int q(\mathbf{f}) \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} d\mathbf{f}$$

$$= \ln \mathbb{E}_q \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})}$$

$$(Jensen) \ge \mathbb{E}_q \ln \left[ \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} \right]$$

16 / 34

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\mathbf{y}) = \ln \int p(\mathbf{f}, \mathbf{y}) d\mathbf{f}$$

$$= \ln \int q(\mathbf{f}) \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} d\mathbf{f}$$

$$= \ln \mathbb{E}_q \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})}$$

$$(Jensen) \ge \mathbb{E}_q \ln \left[ \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} \right]$$

$$= \mathbb{E}_q \ln p(\mathbf{y}|\mathbf{f}) + \mathbb{E}_q \ln \left[ \frac{p(\mathbf{f})}{q(\mathbf{f})} \right]$$

We can derive the ELBO via Jensen's inequality: if  $\phi$  concave, f a function, then  $\phi[\mathbb{E}_{p(x)}f(x)] > \mathbb{E}_{p(x)}\phi[f(x)]$ 

The In function is concave so,

$$\ln p(\mathbf{y}) = \ln \int p(\mathbf{f}, \mathbf{y}) d\mathbf{f}$$

$$= \ln \int q(\mathbf{f}) \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} d\mathbf{f}$$

$$= \ln \mathbb{E}_q \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})}$$
(Jensen)  $\geq \mathbb{E}_q \ln \left[ \frac{p(\mathbf{f}, \mathbf{y})}{q(\mathbf{f})} \right]$ 

$$= \mathbb{E}_q \ln p(\mathbf{y}|\mathbf{f}) + \mathbb{E}_q \ln \left[ \frac{p(\mathbf{f})}{q(\mathbf{f})} \right]$$

$$= \mathcal{L}(q)$$

16 / 34

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

•  $\mathcal{L}[q]$  is often called the *Evidence Lower Bound* (ELBO)

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

- $\mathcal{L}[q]$  is often called the *Evidence Lower Bound* (ELBO)
- The first term in  $\mathcal{L}[q]$  can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

- $\mathcal{L}[q]$  is often called the *Evidence Lower Bound* (ELBO)
- The first term in  $\mathcal{L}[q]$  can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- ullet If we want to approximate  $p(m{f}|m{y})$ , then  $q(m{f}) = \mathcal{N}\left(m{f}|m{m},m{V}
  ight)$

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

- $\mathcal{L}[q]$  is often called the *Evidence Lower Bound* (ELBO)
- The first term in  $\mathcal{L}[q]$  can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- ullet If we want to approximate  $p(oldsymbol{f}|oldsymbol{y})$ , then  $q(oldsymbol{f})=\mathcal{N}\left(oldsymbol{f}|oldsymbol{m},oldsymbol{V}
  ight)$
- ullet Define  $oldsymbol{\lambda} = \{ oldsymbol{m}, oldsymbol{V} \}$ , then we can write  $\mathcal{L}\left[ q 
  ight] = \mathcal{L}\left[ oldsymbol{\lambda} 
  ight]$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ 釣 Q (\*)

17 / 34

$$\ln p(\mathbf{y}) = \underbrace{\mathbb{E}_q \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}) \right]}_{\mathcal{L}[q]} + \mathbb{D} \left[ q(\mathbf{f}) || p(\mathbf{f}|\mathbf{y}) \right]$$

- $\mathcal{L}[q]$  is often called the *Evidence Lower Bound* (ELBO)
- The first term in  $\mathcal{L}[q]$  can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- ullet If we want to approximate  $p(oldsymbol{f}|oldsymbol{y})$ , then  $q(oldsymbol{f})=\mathcal{N}\left(oldsymbol{f}|oldsymbol{m},oldsymbol{V}
  ight)$
- ullet Define  $oldsymbol{\lambda} = \{ oldsymbol{m}, oldsymbol{V} \}$ , then we can write  $\mathcal{L}\left[ q 
  ight] = \mathcal{L}\left[ oldsymbol{\lambda} 
  ight]$
- ullet In practice, we optimize  $\mathcal{L}\left[\lambda
  ight]$  using gradient-based methods



17 / 34

- Assume we have some model p(y, f) that gives rise to some intractable posterior p(f|y)
- We want to approximate p(f|y) using a variational approximation
- In 1D:  $\mathcal Q$  is the the set of univariate Gaussian, i.e.  $q_\lambda(x)=\mathcal N(x|m,v)$ , where we denote  $\pmb\lambda=\{m,v\}$
- We initialize our approximation as  $q(f) = \mathcal{N}(f|0,1)$



- Assume we have some model p(y, f) that gives rise to some intractable posterior p(f|y)
- We want to approximate p(f|y) using a variational approximation
- In 1D:  $\mathcal Q$  is the the set of univariate Gaussian, i.e.  $q_\lambda(x)=\mathcal N(x|m,v)$ , where we denote  $\pmb\lambda=\{m,v\}$
- We initialize our approximation as  $q(f) = \mathcal{N}(f|0,1)$



- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



Vincent Adam GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(\mathbf{y}) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(\mathbf{f})||p(\mathbf{f}|\mathbf{y})] \ge \mathcal{L}[\lambda]$





- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



4□ > 4□ > 4□ > 4□ > 4□ > 4□

19 / 34

Vincent Adam GP Course: Session #4 21/01/2021

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



Vincent Adam GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ めへで

19 / 34

Vincent Adam GP Course: Session #4 21/01/2021

Vincent Adam

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



19 / 34

Vincent Adam GP Course: Session #4 21/01/2021

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(\mathbf{y}) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(\mathbf{f})||p(\mathbf{f}|\mathbf{y})] \ge \mathcal{L}[\lambda]$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ めへで

19 / 34

Vincent Adam GP Course: Session #4 21/01/2021

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(\mathbf{y}) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(\mathbf{f})||p(\mathbf{f}|\mathbf{y})] \ge \mathcal{L}[\lambda]$



4□ > 4□ > 4□ > 4□ > 4□ > 4□

Vincent Adam GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



Vincent Adam GP Course: Session #4 21/01/2021 19 / 34

- Gradient ascent:  $\lambda_{i+1} = \lambda_i + \eta \nabla_{\lambda} \mathcal{L}[\lambda]$
- $\ln p(y) = \mathcal{L}[\lambda] + \mathbb{D}[q_{\lambda}(f)||p(f|y)] \ge \mathcal{L}[\lambda]$



GP Course: Session #4 21/01/2021 19 / 34

## Computational challenges

 Let's see how we can use combine the ideas from variational inference with inducing points methods to solve the two computational problems:

- **1** The computational complexity of GPs is  $\mathcal{O}(N^3)$
- 4 How to handle non-Gaussian likelihoods

• The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$p(\mathbf{y}, \mathbf{f}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}), \text{ where } \mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)]$$

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$p(\mathbf{y}, \mathbf{f}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}), \text{ where } \mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)]$$

- We will now introduce a set of inducing points  $\{z_m\}_{m=1}^M$
- ullet They live in the same space as the input points, i.e.  $oldsymbol{x}_i,oldsymbol{z}_j\in\mathbb{R}^D$

21 / 34

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$p(\mathbf{y}, \mathbf{f}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}), \text{ where } \mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_N)]$$

- ullet We will now introduce a set of inducing points  $\left\{ \mathbf{z}_{m}
  ight\} _{m=1}^{M}$
- ullet They live in the same space as the input points, i.e.  $oldsymbol{x}_i,oldsymbol{z}_j\in\mathbb{R}^D$
- Let  $u_m$  denote the value of the function f evaluated at each  $z_m$ , i.e.  $u_m = f(z_m)$
- ... and  $u = [f(z_1), f(z_2), ..., f(z_M)]$





22 / 34





 Goal: choose the set of inducing points such that it contains the same information as the full dataset



- Goal: choose the set of inducing points such that it contains the same information as the full dataset
- Remember: Both  $u_j = f(\mathbf{z}_j)$  and  $f_i = f(\mathbf{x}_i)$  are random variables

22 / 34



- Goal: choose the set of inducing points such that it contains the same information as the full dataset
- Remember: Both  $u_i = f(z_i)$  and  $f_i = f(x_i)$  are random variables
- Next step: Formulate joint model p(y, f, u)



### Inducing point methods: the joint model

• The augmented model

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}, \mathbf{u})$$

• Let's decompose the "augmented" model as follows

$$p(\mathbf{y}, \mathbf{f}, \mathbf{u}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{u})p(\mathbf{u})$$

ullet We can get back to the original model by marginalizing over  $oldsymbol{u}$ 

$$p(\boldsymbol{y},\boldsymbol{f}) = \int p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f},\boldsymbol{u})d\boldsymbol{u} = p(\boldsymbol{y}|\boldsymbol{f})\int p(\boldsymbol{f},\boldsymbol{u})d\boldsymbol{u} = p(\boldsymbol{y}|\boldsymbol{f})p(\boldsymbol{f})$$

23 / 34

Vincent Adam GP Course: Session #4 21/01/2021

### Setting up the approximation

lacktriangle The idea is now to derive a variational approximation for the posterior p(f, u|y)

### Setting up the approximation

- ullet The idea is now to derive a variational approximation for the posterior  $p(m{f},m{u}|m{y})$
- We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where  $q(u) = \mathcal{N}(u|m, S)$

### Setting up the approximation

- The idea is now to derive a variational approximation for the posterior p(f, u|y)
- We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where  $q(u) = \mathcal{N}(u|m, S)$
- Let's derive the ELBO, introducing q(f, u)

$$\begin{split} \ln p(\boldsymbol{y}) &\geq \mathbb{E}_{q(\boldsymbol{u},\boldsymbol{f})} \ln p(\boldsymbol{y}|\boldsymbol{f}) - \mathbb{E}_{q(\boldsymbol{u},\boldsymbol{f})} \frac{q(\boldsymbol{f},\boldsymbol{u})}{p(\boldsymbol{f},\boldsymbol{u})} \\ &= \mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y}|\boldsymbol{f}) - \mathbb{E}_{q(\boldsymbol{u},\boldsymbol{f})} \frac{p(\boldsymbol{f}|\boldsymbol{u})q(\boldsymbol{u})}{p(\boldsymbol{f}|\boldsymbol{u})p(\boldsymbol{u})} \\ &= \mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y}|\boldsymbol{f}) - \mathbb{E}_{q(\boldsymbol{u})} \frac{q(\boldsymbol{u})}{p(\boldsymbol{u})} \\ &= \mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y}|\boldsymbol{f}) - \mathbb{D}[q(\boldsymbol{u})||p(\boldsymbol{u})] = \mathcal{L} \end{split}$$

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(oldsymbol{y}) \geq \mathbb{E}_{q(oldsymbol{f})} \left[ \ln p(oldsymbol{y} | oldsymbol{f}) 
ight] - \mathbb{D}[q(oldsymbol{u}) || p(oldsymbol{u})] \equiv \mathcal{L}$$

ullet Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(oldsymbol{y}) \geq \mathbb{E}_{q(oldsymbol{f})} \left[ \ln p(oldsymbol{y} | oldsymbol{f}) 
ight] - \mathbb{D}[q(oldsymbol{u}) || p(oldsymbol{u})] \equiv \mathcal{L}$$

We will now show that the first decomposes in a very convenient way

 $\bullet$  Take-away #1: We can now tractably optimize the lower bound wrt.  $\textbf{\textit{m}},~\textbf{\textit{S}},$  and even  $\textbf{\textit{z}}$ 

$$\ln p(m{y}) \geq \mathbb{E}_{q(m{f})} \left[ \ln p(m{y}|m{f}) 
ight] - \mathbb{D}[q(m{u})||p(m{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m},\boldsymbol{S}) \, \mathrm{d}\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(oldsymbol{y}) \geq \mathbb{E}_{q(oldsymbol{f})} \left[ \ln p(oldsymbol{y} | oldsymbol{f}) 
ight] - \mathbb{D}[q(oldsymbol{u}) || p(oldsymbol{u}) 
ight] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m}, \boldsymbol{S}) d\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

Thus, the "likelihood term"

Vincent Adam GP Course: Session #4

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m},\boldsymbol{S}) \, \mathrm{d}\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

Thus, the "likelihood term"

decomposes into a sum over 1D integrals

Vincent Adam GP C

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m},\boldsymbol{S}) \, \mathrm{d}\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods

Vincent Adam GP Course: Session #4

Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m},\boldsymbol{S}) \, \mathrm{d}\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods
- But it is fast to approximate 1D integrals using numerical integration for other likelihoods

### The inducing points approximation

• Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

$$\ln p(\mathbf{y}) \geq \mathbb{E}_{q(\mathbf{f})} \left[ \ln p(\mathbf{y}|\mathbf{f}) \right] - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})] \equiv \mathcal{L}$$

- We will now show that the first decomposes in a very convenient way
- Remember:  $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{N} p(y_i|f_i)$
- Let's have a closer look at the first term

$$\mathbb{E}_{q(\mathbf{f})}\left[\ln p(\mathbf{y}|\mathbf{f})\right] = \mathbb{E}_{q(\mathbf{f})}\left[\ln \prod_{i=1}^{N} p(y_i|f_i)\right] = \sum_{i=1}^{N} \mathbb{E}_{q(f_i)}\left[\ln p(y_i|f_i)\right]$$

where

$$q(f_i) = \int p(f_i|\boldsymbol{u}) \mathcal{N}(\boldsymbol{u}|\boldsymbol{m},\boldsymbol{S}) \, \mathrm{d}\boldsymbol{u} = \mathcal{N}\left(f_i|\boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{m}, \tilde{K}_{ii} + \boldsymbol{k}_{im}\boldsymbol{K}_{mm}^{-1}\boldsymbol{S}\boldsymbol{K}_{mm}^{-1}\boldsymbol{k}_{mi}\right)$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods
- But it is fast to approximate 1D integrals using numerical integration for other likelihoods
- Take away #2: We can tractably optimize the bound even with non-Gaussian likelihoods

### The resulting bound

Substituting back into L

$$\ln p(\mathbf{y}) \ge \mathcal{L} = \sum_{i=1}^{N} \int q(f_i) \ln p(y_i|f_i) \mathrm{d}f_i - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})]$$

We want to optimize  $\mathcal{L}$  wrt.  $\lambda = \{m, S, z\}$  using gradient-based methods

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q(f_i) \ln p(y_i | f_i) \mathrm{d}f_i - \nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) || p(\boldsymbol{u})]$$

#### The resulting bound

ullet Substituting back into  $\mathcal L$ 

$$\ln p(\mathbf{y}) \ge \mathcal{L} = \sum_{i=1}^{N} \int q(f_i) \ln p(y_i|f_i) \mathrm{d}f_i - \mathbb{D}[q(\mathbf{u})||p(\mathbf{u})]$$

ullet We want to optimize  ${\cal L}$  wrt.  $oldsymbol{\lambda} = \{ {m m}, {m S}, {m z} \}$  using gradient-based methods

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q(f_i) \ln p(y_i | f_i) \mathrm{d}f_i - \nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) || p(\boldsymbol{u})]$$

• We can approximate the gradient as follows (mini-batching)

$$\nabla_{\lambda} \sum_{i=1}^{N} \int q(f_i) \ln p(y_i|f_i) df_i \approx \frac{N}{|S|} \sum_{i \in S} \nabla_{\lambda} \int q(f_i) \ln p(y_i|f_i) df_i$$

### The resulting bound

lacktriangle Substituting back into  $\mathcal L$ 

$$\ln p(\boldsymbol{y}) \geq \mathcal{L} = \sum_{i=1}^{N} \int q(f_i) \ln p(y_i|f_i) \mathrm{d}f_i - \mathbb{D}[q(\boldsymbol{u})||p(\boldsymbol{u})]$$

ullet We want to optimize  $\mathcal L$  wrt.  $oldsymbol{\lambda} = \{ oldsymbol{m}, oldsymbol{S}, oldsymbol{z} \}$  using gradient-based methods

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q(f_i) \ln p(y_i | f_i) \mathrm{d}f_i - \nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) || p(\boldsymbol{u})]$$

• We can approximate the gradient as follows (mini-batching)

$$\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q(f_i) \ln p(y_i|f_i) df_i \approx \frac{N}{|S|} \sum_{i \in S} \nabla_{\boldsymbol{\lambda}} \int q(f_i) \ln p(y_i|f_i) df_i$$

• Take away #3: Because it decomposes as a sum over the data points, the bound becomes amendable to stochastic gradient descent (mini-batching) and hence, we can scale the method to really really large datasets!

#### Example from the paper



Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of the GP after a batch of data, marked as solid points. Previously seen (and discarded) data are marked as empty points, the distribution  $q(\mathbf{u})$  is represented by vertical errorbars.

(from Hensman et al: Gaussian processes for big data)

#### Inducing points method summary

- The inducing point approximation allows us to
  - ... scale Gaussian processes to big data
  - ... use non-Gaussian likelihoods
- It reduces the computational complexity from  $\mathcal{O}(N^3)$  to  $\mathcal{O}(M^3)$ , where  $M \ll N$
- It's implemented in most GP toolboxes, e.g. GPy (numpy) and gpflow (tensorflow)





 We can think of the number of inducing points as a parameter that trades off speed for accuracy

29 / 34













#### Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point  $x_*$ 

$$p(\mathbf{y}, \mathbf{f}) = \prod_{n=1}^{N} p(y_n | f_n) p(\mathbf{f}) = \prod_{n=1}^{N} \phi(y_n \cdot f_n) \mathcal{N}(\mathbf{f} | \mathbf{0}, \mathbf{K})$$

• Step 1: Compute posterior distribution of p(f|y):

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)} \approx q(f)$$

Step 2: Compute posterior of f\* for new test point x\*:

$$p(f_* \big| \boldsymbol{y}) = \int p(f_* \big| \boldsymbol{f}) p(\boldsymbol{f} \big| \boldsymbol{y}) d\boldsymbol{f} \approx \int p(f_* \big| \boldsymbol{f}) q(\boldsymbol{f}) d\boldsymbol{f}$$

Step 3: Compute predictive distribution

$$p(y_*|\mathbf{y}) = \int \phi(y_* \cdot f_*) p(f_*|\mathbf{y}) df_*$$





#### Predictive distribution

• Using the (approximate) posterior  $q(f_*)$ , we can compute  $p(y_*|\mathbf{y})$ 

$$\begin{split} \rho(y_* = 1 | \mathbf{y}) &= \int p(y_* | f_*) p(f_* | \mathbf{y}) \mathrm{d}f_* \\ &= \int \phi \left( y_* \cdot f_* \right) p(f_* | \mathbf{y}) \mathrm{d}f_* \\ &\approx \int \phi \left( y_* \cdot f_* \right) q\left( f_* \right) \mathrm{d}f_* \\ &= \int \phi \left( y_* \cdot f_* \right) \mathcal{N}\left( f_* | \mu_*, \sigma_*^2 \right) \mathrm{d}f_* \\ &= \phi \left( \frac{\mu_*}{\sqrt{1 + \sigma_*^2}} \right) \end{split}$$

#### Can you figure it out?

- What can we say about the predictive distributions for  $y_*$  when  $\mu_*$  is positive? or negative?
- How does the uncertainty of the posterior distribution of  $f_*$  influence the predictions for  $y_*$ ? What happens as  $\sigma_*^2$  approaches  $\infty$ ?

40 14 14 14 14 1 1 100

# Gaussian process classification example

- Non-linear classification problem
- N = 100 data points
- Squared exponential kernel
- ullet Hyperparameters are chosen by optimizing  ${\cal L}$



32 / 34

#### Next time

#### Next Monday Charles Gadd will talk about

- latent variable modelling (GPs for unsupervised learning),
- Multi-Output GPs

#### Read:

- Michalis Titsias, Neil D. Lawrence (2010), Bayesian Gaussian Process Latent Variable Model, ICML
- Andrew Gordon Wilson, David A. Knowles, Zoubin Ghahramani (2012), Gaussian Process Regression Networks, ICML

### Assignments

• Assignment #1: done

• Assignment #2: deadline 27th of January

• Assignment #3:

• handed: 25th of January

• due: 3rd of February