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Roadmap for today

@ Computational challenges
@ Computational complexity of GP regression
@ Non-Gaussian likelihoods: GP classification

© Approximate inference
@ Variational inference: scratching the surface
@ Inducing points approximations
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)

p(fely) = N (fc|pe, %)
px = ke, (Ke + 021)71)/
0'3 = Kf*f* — kf*f (Kff +0’2l)_1 kg;f-
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)
p(Fily) = N (£|jix,02)
-1
e = ke s (K +021) "y
-1
02 =Kr.r, —ke.r (K +021) " ki,

@ Recall: If A€ RVXM and b € RM, then the cost of computing Ab is O (NM)

@ Recall: If C € RV*N | then the cost of computing C~1 is O (N3)
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)

pfely) = N (£ |us, 02)
px = ke, (Ke + 021)71)/
O'z = Kr.fr, — kf*f (Kff +(J’2l)_1 kfz:f

@ Recall: If A€ RVXM and b € RM, then the cost of computing Ab is O (NM)
@ Recall: If C € RV*N | then the cost of computing C~1 is O (N3)

@ Questions: What is computational complexity for computing the posterior distribution for
1 test point based on a data set with N observations? What is the dominating operation?
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)
p(Fily) = N (£|jix,02)

px = ke, (Ke + 021)71)/
O'z = Kr.fr, — kf*f (Kff +(J’2l)_1 kfz:f

Recall: If A € RVXM and b € RM, then the cost of computing Ab is O (NM)

Recall: If C € RVXN, then the cost of computing C™1 is O (N3)

@ Questions: What is computational complexity for computing the posterior distribution for
1 test point based on a data set with N observations? What is the dominating operation?

@ h=(Kg+ U2I)71y scales as O (N3)
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)
p(Fily) = N (£|jix,02)

px = ke, (Ke + 021)71)/
O'z = Kr.fr, — kf*f (Kff +(J’2l)_1 kfz:f

Recall: If A € RVXM and b € RM, then the cost of computing Ab is O (NM)
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@ Questions: What is computational complexity for computing the posterior distribution for
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Computational complexity of Gaussian process regression

@ The key equations for predictions at new input x*, given x,y (Gaussian noise)
p(Fily) = N (£|jix,02)

px = ke, (Ke + 021)71)/
O'z = Kr.fr, — kf*f (Kff +(J’2l)_1 kfz:f

Recall: If A € RVXM and b € RM, then the cost of computing Ab is O (NM)

Recall: If C € RVXN, then the cost of computing C™1 is O (N3)

@ Questions: What is computational complexity for computing the posterior distribution for
1 test point based on a data set with N observations? What is the dominating operation?

@ h= (Kff' + U2I)71y scales as O (N3), s = ke, rh scales as O (N)

@ N < 1000: Fine, N < 10000: Slow, but possible, N > 10000: Prohibitively slow
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Regression vs classification

@ Response variable y is continuous in regression

problems

yn€R

@ Response variable y is discrete in classification

problems

Yn € {Cl,Cg,...

@ Classification problems

X = images,
X = X-ray scan,
X = images of digits,

X = emails,

aCK}

yn € {cat, dog}
¥n € {tumor, no tumor}

yn€40,1,2,...,9}
¥n € {spam, not spam}
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Regression vs classification

@ Response variable y is continuous in regression
problems

yn€R

@ Response variable y is discrete in classification
problems

yn €{c1, ..., ck}
@ Classification problems

X = images, ¥n € {cat,dog}
X = X-ray scan,
X = images of digits, ya €{0,1,2,...,9}

X = emails,
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¥n € {tumor, no tumor}
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Why Gaussian processes for classification?

Input x

o Complex decision boundaries

© Non-linear boundary

© Can learn complexity of decision boundary

from data

Input X

@ Probabilistic classification

© How would you classify the green point?

Input X2

@ We want to model the uncertainty

Input X

21/01/2021 5/ 34
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Why don't we use regression models for classification?

@ We focus on binary classification: y, € {0,1} or y, € {—1,1}
@ We are given a data set {x,,,y,,}nN:1 and we want to model
P(¥n = +1|xa)

@ What's wrong with simply using the GP regression model with labels:
yn €{0,1}:

p(yn = +1|x5) = f(xn)

1.0 L) e @
0.5
0.0 oo ®
0 1 2 3
Input x
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Why don't we use regression models for classification?

@ We focus on binary classification: y, € {0,1} or y, € {—1,1}
@ We are given a data set {x,,,y,,}nN:1 and we want to model
P(¥n = +1|xa)

@ What's wrong with simply using the GP regression model with labels:
yn €{0,1}:

p(yn = +1|x5) = f(xn)

1.0 L) e @
0.5
0.0 oo ®
0 1 2 3
Input x
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Why don't we use regression models for classification?

@ We focus on binary classification: y, € {0,1} or y, € {—1,1}

@ We are given a data set {x,,,y,,}nN:1 and we want to model
P(yn = +1[x5)

@ What's wrong with simply using the GP regression model with labels:
yn €{0,1}:

p(yn = +1|x5) = f(xn)
—— GPfit

0.5

0.0

0 1 2 3
Input x
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Gaussian process classification setup (1)

@ We'll use a 'squashing function’ ¢ : R — (0,1) with y, € {-1,1}
p(yn|X,,) =¢(yn-f(xa)) €(0,1)

@ Multiple possible choices for ¢(-), we'll use the standard normal CDF

:/X N (z]0,1)dz

Can you figure it out? 06
o5 — NZz0,1) == ¢(x)

O What is ¢(0)? o

@ What is ¢(—0)? 03

) 0.2

© What is ¢(00)? o

Q@ What is ¢(x) + ¢(—x)? 00

Q Is ¢ (ynf (x,)) normalized wrt. y,?
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Gaussian process classification setup (I1)

@ We map the unknown function f(x) through the squashing function

f(x) o(f)

1.00 1.00
2

0.75 0.75

0 0.50 0.50

2 0.25 0.25

4 0.00 0.00

-5.0 -25 0.0 25 5.0 -5.0 -25 0.0 25 5.0 -5.0 -25 0.0 25
Input x f Input x

@ Example re-visited
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y,F) =T pnlfa)p(F) =TT & (v - f2) N (£]0, K)

10
@ Step 1: Compute posterior distribution of p(f|y): s
p(y‘f)p(f) 0re oo &
p(fly) = ——=+—
P(Y) L
@ Step 2: Compute posterior of fi. for new test point xu: 0
p(Ely) = [ p(EIN P (fly) of
1.00
@ Step 3: Compute predictive distribution 0.75

0.50

ply«ly) = /¢(Y* : f*)P(f*|Y)df* 0.25\‘_‘/
0.00 -
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y,F) =T pnlfa)p(F) =TT & (v - f2) N (£]0, K)

10
@ Step 1: Compute posterior distribution of p(f|y): s
p(y‘f)p(f) 0~-e o0 & s = *
p(fly) = ——
P(Y) L
. — p(f:ly)
@ Step 2: Compute posterior of fi. for new test point xu: 0 1 )
Input x
p(Ely) = [ p(EIN P (fly) of
1.00 L) o
@ Step 3: Compute predictive distribution 0.75
0.50
ply) = [ 60 £)p(E|y)ar. 02
4 ply+=1]y)
0.00 -
@ Unfortunately, these distributions are analytically 0 1 2
intractable. Input x
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y,F) =T pnlfa)p(F) =TT & (v - f2) N (£]0, K)

10
@ Step 1: Compute posterior distribution of p(f|y): s
p(y‘f)p(f) 0~-e o0 & s = *
p(fly) = PXDPE) o gr)
P(Y) L
. — p(f:ly)
@ Step 2: Compute posterior of fi. for new test point xu: 0 1 )
Input x
p(Ely) = [ p(EINp (Fly) df ~ [ p(£INa(F)af
1.00 ) -
@ Step 3: Compute predictive distribution 0.75
0.50
ply) = [ 60 £)p(E|y)ar. 02
Xx —— ply-=1Jy)
0.00 -
@ Unfortunately, these distributions are analytically 0 1 2
intractable. Input x
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Computational problems

We need to figure out what to do when

@ ... likelihood is non-Gaussian?

@ ... inference becomes slow due to large N7?
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Computational problems

We need to figure out what to do when

@ ... likelihood is non-Gaussian?

@ ... inference becomes slow due to large N7?

Variational inference
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Computational problems

We need to figure out what to do when

@ ... likelihood is non-Gaussian?

@ ... inference becomes slow due to large N7?

Variational inference

@ General framework for approximate Bayesian inference

@ Many recent application in the machine learning literature:
@ GPs for big data
@ GPs with non-Gaussian likelihoods
© Deep Gaussian processes
© Convolutional Gaussian processes
© Variational autoencoders (VAEs)
Q ..
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

— Intractable posterior p
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

— Intractable posterior p
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

— Intractable posterior p
— &
T G2
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D[q2, p]
— Intractable posterior p
— 0
T Q2

03

02

01

00
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D(q2, p]
© Search for the distribution in g € Q such that D[q, p] is
minimized

* = arg min D|q,
q g min Dig, p]

GP Course: Session #4
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[q1, p] > D[g2, p]

© Search for the distribution in g € Q such that D[q, p] is
minimized

* = arg min D|q,
q g min Dig, p]

@ Use g* as an approximation of p
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Variational inference: the big picture

Recipe for approximating intractable distribution p € P

@ Define some "simple” family of distribution Q.

@ Define some way to compute a "distance” D[q, p]
between each of the distribution g € Q and the
intractable distribution p

D[g1, p] > D[q2, p]
— Intractable posterior p
— 0
T Q2

03

© Search for the distribution in g € Q such that D[q, p] is  ©2
minimized
04

* = arg min D|q,
q g min Dig, p]

@ Use g* as an approximation of p

Here we will always choose Q to be the set of multivariate Gaussian distributions.
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Variational inference |

o We will use to the Kullback-Leibler divergence to " measure
distances” between distributions

D[q||p] = /q(f)ln Zggdf = E, [m ZE?H

12 / 34
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Variational inference |

o We will use to the Kullback-Leibler divergence to " measure
distances” between distributions

D[q||p] = /q(f)ln Zggdf = E, [m Zgﬂ

@ Most important properties for our purpose:

@ Always positive: D[g||p] > 0
@ Identity of indiscernibles: D[g||p] =0 <= p=gqg (ae)

© Not-symmetric: D[q||p] # D [p||q]

6P Course: Session #4 BV
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['" pc(li(‘ilr})')]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['" pc(li(‘ilr})')]

= E, [Ing(f) — In p(fly)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['" pc(li(‘ilr})')]

= Eq[Inq(f) —Inp(fly)]
=Eq[Inq(f)] — Eq [In p(f|y)]
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Our goal is to minimize the KL divergence between some approximation
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['" pc(li(‘ilr})')]

= Eq[Inq(f) —Inp(fly)]
=Eq[Inq(f)] — Eq [In p(f|y)]
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Variational inference |l

Our goal is to minimize the KL divergence between some approximation
g € Q and some posterior distribution p(fly)

D [q(F)l|p(Fly)] = Eq ['" pc(li("lr})')]

= Eq[Inq(f) —Inp(fly)]
=Eq[Inq(f)] — Eq [In p(f|y)]

Last term depends on the exact posterior p(f|y), which is intractable.
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Variational inference llI

_ ply.f) _ p(ylf)p(f)

We can rewrite the posterior: p(f|y) G = ply)

D{q(F)llp(Fly)] = Eq [In q(F)] — Eq [In p(fly)]
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Variational inference llI

_ ply.f) _ p(ylf)p(f)

We can rewrite the posterior: p(f|y) G = ply)

D{q(F)llp(Fly)] = Eq [In q(F)] — Eq [In p(fly)]

= Eq[Inq(f)] — Eq ['” pg(,;'l)r)]
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Variational inference llI

_ py.f) _ p(ylf)p(f)
- oply) T ply)

We can rewrite the posterior: p(f|y)

D{q(F)llp(Fly)] = Eq [In q(F)] — Eq [In p(fly)]

= Eq[Inq(f)] — Eq ['” pg(,;'l)r)]

= Eq [Inq(F)] — Eq [in p(F)] — Eq [in p(y|F)] + In ply)
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Variational inference llI

We can rewrite the posterior: p(f|y) = é{yg) p(y’L’(?I’)’(f)
D{q(F)llp(Fly)] = Eq [In q(F)] — Eq [In p(fly)]
~ B lIng(F)] - Eq |1n 27
) ] -

=Eq[Inq(f)] — Eq[In p(F)] — Eq [In p(y|F)] + In p(y)
=D [q(F)|[p(F)] — Eq[In p(y[F)] + Inp(y)
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Variational inference llI

We can rewrite the posterior: p(fly) = 200 — plf)e(f)

p(y) p(y)
D [g(F)Ip(Fly)] = Eq [Ing(F)] - Eq [Inp(fly)]
~ B lIng(F)] - Eq |1n 27

) -

=Eq[Inq(f)] — Eq[In p(F)] — Eq [In p(y|F)] + In p(y)
=D [q(F)|[p(F)] — Eq[In p(y[F)] + Inp(y)

Let's re-arrange the terms

In p(y) = Eq [In p(y[F)] = D q(F)||p(F)] + D [q(F)l|p(Fly)]

Vincent Adam GP Course: Session #4 21/01/2021 14 / 34



Variational inference llI

We can rewrite the posterior: p(fly) = ,E{yg) p(yy(:)/’)’(f)
(y
-

D{q(f)l|p(Fly)] = Eq[Inq(f)] — Eq [lnp(fly)]
] = Eq[Inp(f)] — Eq[Inp(y|f)] + Inp(y)

)
— B Ing(F)] - Eq |1n 2
)
= D{a()p(F)] — Eq In p(y1)] + In p(y)

=Eq[Ing(f
Let's re-arrange the terms

Inp(y) = Eq [In p(y[F)] — D [q(F)[|p(F)] +D [a(F)|[p(ly)]
L[q]

L [q] does not depend on the posterior p(f|y), but only separately on the
conditional density p(y|f) and the prior p(f).
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

Q Inp(y) is a constant
@ Dq(f)||p(fly)] > 0 is non-negative
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
@ L|[q] only depends on g and the joint density p(y, f)
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
@ L|[q] only depends on g and the joint density p(y, f)

Some consequences
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
© L[q] only depends on g and the joint density p(y, f)

Some consequences

Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
© L[q] only depends on g and the joint density p(y, f)

Some consequences
Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]
@ Maximizing L [q] is equivalent to minizing D [q(F)||p(f|y)]
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Variational inference IV

Inp(y) = Eq[Inp(y|f)] — D [q(F)l|p(F)] +D [q(F)|[p(fly)]
L[q]

Let’'s make a few observations

@ Inp(y) is a constant
@ D q(f)||p(f|y)] > 0 is non-negative
© L[q] only depends on g and the joint density p(y, f)

Some consequences
Q L|[q] is a lower bound of Inp(y). Thatis: Inp(y) > L][q]
@ Maximizing L [q] is equivalent to minizing D [q(F)||p(f|y)]

Key take-away: we can fit the variational approx. g by optimizing £
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Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,

Inp(y) = ln/p(f,y)df
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Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,
inp(y) =In [ p(F.y)df

i p(f,y)
= [anP e
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Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,
inp(y) =In [ p(F.y)df

i p(f,y)
= [anP e

- p(f.y)
BTy
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Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,
inp(y) =In [ p(F.y)df
p(f,y)
= In/ f df
p(f,y)
=hhE
7 q(f)

(Jensen) > Eq In [Pg'z fs)/)]

6P Course: Session #4 Y E



Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,
Inp(y) = ln/p(f,y)df
i p(f.y)
= [anP e
_ p(f.y)
BTy
f
(Jensen) > Eq In ['Dg(f;)]

=EqInp(y|f) +EqIn [Zgg]
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Variational inference Ill-bis

We can derive the ELBO via Jensen’s inequality:

if ¢ concave, f a function, then ¢[E,f(x)] > Ep(d[f (x)]

The In function is concave so,
inp(y) =In [ p(F.y)df

i p(f,y)
= [anP e

- p(f.y)
BTy

(Jensen) > Eq In [Pg'z fs)/)]

_ p(f)
=EqInp(y|f) +EqIn [q(f)]
= L(q)
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Variational inference V

Inp(y) = Eq [Inp(y[F)] — D [q(F)[|p(F)] +D [q(F)[|p(F|y)]
L[q]

e L|[q] is often called the Evidence Lower Bound (ELBO)
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Variational inference V

Inp(y) = Eq [Inp(y[F)] — D [q(F)[|p(F)] +D [q(F)[|p(F|y)]
L[q]

e L|[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in L£[q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term (staying close
to the prior)
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Inp(y) = Eq [Inp(y[F)] — D [q(F)[|p(F)] +D [q(F)[|p(F|y)]
L[q]

e L|[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in L£[q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term (staying close
to the prior)

e If we want to approximate p(f|y), then g(f) =N (fim, V)
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Inp(y) = Eq [Inp(y[F)] — D [q(F)[|p(F)] +D [q(F)[|p(F|y)]
L[q]

e L|[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in L£[q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term (staying close
to the prior)

e If we want to approximate p(f|y), then g(f) =N (fim, V)

o Define A = {m, V}, then we can write L [q] = L[]
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Variational inference V

Inp(y) = Eq [Inp(y[F)] — D [q(F)[|p(F)] +D [q(F)[|p(F|y)]
L[q]

e L|[q] is often called the Evidence Lower Bound (ELBO)

@ The first term in L£[q] can be interpreted as a data fit term and the
second term can be interpreted as a regularization term (staying close
to the prior)

e If we want to approximate p(f|y), then g(f) =N (fim, V)

o Define A = {m, V}, then we can write L [q] = L[]

@ In practice, we optimize £ [A] using gradient-based methods
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1D Toy example |

0.40
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0.30
025
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0.00

Assume we have some model p(y, f) that gives rise to some intractable posterior p(f|y)
We want to approximate p(f|y) using a variational approximation

In 1D: Q is the the set of univariate Gaussian, i.e. gx(x) = N(x|m, v), where we denote

A={m,v}

We initialize our approximation as q(f) = A (f|0,1)

—— Exact posterior
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1D Toy example |

0.40
035
0.30
025
0.20
015
0.10
0.05
0.00

Assume we have some model p(y, f) that gives rise to some intractable posterior p(f|y)
We want to approximate p(f|y) using a variational approximation

In 1D: Q is the the set of univariate Gaussian, i.e. gx(x) = N(x|m, v), where we denote

A={m,v}

We initialize our approximation as q(f) = A (f|0,1)

—— Exact posterior
—==-- Initial approx
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]

o Inply) = LN +Dlar(FlIp(Fly)] = LA

Iteration 0 3 7 Dlq||p] vs parameters

040 — Exact posterior -=--- KL divergence 6 6.0

035 —— Approximation 2 -== Inply) 54
— 5

030 c[q] a8
1 4

025 = 4.2

O S T E 3 !

0.20 c 36
--------------------------- T 2

0.15 -1 2 30
1

010 24

-2 0 18
0.05 y

- 12

0.00 -
-2 06
-5 0 5 10 15 0 5 10 15 -2 -1 0 1 2
f Iterations Log variance (Inv)
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]

o Inply) = LN +Dlar(FlIp(Fly)] = LA

Dlq||p] vs parameters

Iteration 1
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]
o Inp(y) = £\ +Dlax(F)llp(Fly)] = £[A]

Dlq||p] vs parameters

Iteration 2
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]

o Inply) = LN +Dlar(FlIp(Fly)] = LA

Iteration 3
040 :‘. —— Exact posterior
0.35 :'-l —— Approximation
1 [ L
030 J'r i Initial approx
I
025 iy
|
0.20 i
1
015 !
1
0.10 !
]
005 |
i
1}
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Vincent Adam

3
\ --=- KL divergence
Ay
2y -== Inply)
— zlgl
1 .
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[ =
(]
___________________________ 9
-1 =
-2 /
-3
0 5 10 15
lterations
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o Gradient ascent: Ajiy1 = Aj +nVAL[A]
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]

o Inply) = LN +Dlar(FlIp(Fly)] = LA

Iteration 13 3 7 Dlq||p] vs parameters
040 !\ —— Exact posterior s ---- KL divergence 6 6.0
0.35 :'-l —— Approximation 2 \\‘ === Inp(y) 54
HIN == mha b — 5
030 ! i Initial approx . clg] 48
[ 1 s 4
025 S EEE e = 42
T o I — E 3 '
0.20 P = 36
AR T I S B 8 2
0.15 ! | -1 = 30
1
1
010 ] 24
; -2 0 18
0.05 ! 1
- 12
000 —<=  Neeood <
-2 06
-5 0 5 10 15 0 5 10 15 -2 -1 0 1 2
f Iterations Log variance (Inv)

6P Course: Session #4 Y ER



1D Toy example Il
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1D Toy example Il

o Gradient ascent: Ajiy1 = Aj +nVAL[A]
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Computational challenges

@ Let's see how we can use combine the ideas from variational inference
with inducing points methods to solve the two computational
problems:

© The computational complexity of GPs is O(N3)

@ How to handle non-Gaussian likelihoods
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset

@ Recall our GP model:

p(y,f) = p(y|f)p(f), where £ =[f(x1),f(x2),...,F(xpn)]
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset

@ Recall our GP model:

(ya ) ( ‘f)p( )7 where  f = [f(xl)af(x2)7"‘7f(xN)]

e We will now introduce a set of inducing points {z,,,},l\r/,’:1

@ They live in the same space as the input points, i.e. x;,z; € RP
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Solution: Inducing point methods

@ The main idea is to "represent” the information from the full dataset
using a smaller "virtual” dataset

Recall our GP model:

p(y,f) = p(y|f)p(f), where £ =[f(x1),f(x2),...,F(xpn)]

We will now introduce a set of inducing points {zm}™M_,
@ They live in the same space as the input points, i.e. x;,z; € RP

@ Let u,, denote the value of the function f evaluated at each z,, i.e.
Um = f(zm)

o ... and u = [f(z1),f(22),...,f(zm)]
GP Course: Session #4 21/01/2021 21/ 34



Inducing point methods

e Data

Input x
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Inducing point methods

e Data /

Input x Xi
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Inducing point methods

e Data /
. . .

Inducing points >

ug = flz,)
uz = fizs)
fi=flx))
-
U2 = A2y} e i
ur = flzy)

X
o

Zs

22 Input x
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Inducing point methods

e Data

® Inducing points o
Uy = flz,) SENEEE E———— = O ~—
o= iz, ~ < /:
Fi= X)) o = 1 j

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset
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Inducing point methods

* Data
®  Inducing points

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset

@ Remember: Both u; = f(z;) and f; = f(x;) are random variables
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Inducing point methods

* Data
®  Inducing points

@ Goal: choose the set of inducing points such that it contains the
same information as the full dataset

@ Remember: Both u; = f(z;) and f; = f(x;) are random variables

o Next step: Formulate joint model p(y, f, u)
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Inducing point methods: the joint model

@ The augmented model

p(.V? f, U) :p(y‘f)p(f, u)

@ Let's decompose the "augmented” model as follows

ply, f,u) = p(y|f)p(flu)p(u)
@ We can get back to the original model by marginalizing over u

p(y>f)=/p(y|f)p(f, U)du:p(y!f)/la(fa u)du = p(y|f)p(f)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
a(u) = N (u[m, S)
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Setting up the approximation

@ The idea is now to derive a variational approximation for the posterior p(f, uly)

@ We choose Q be the set of all distributions of the form q(f, u) = p(f|u)q(u), where
a(u) = N (u[m, S)

@ Let's derive the ELBO, introducing q(f, u)

(f u)

lnp(y) > IEq(u,f) In p(y|f) - IEq(

»u)
=Eq(r) Inp(y|f) — M)‘JE")

Faw o (Fuyp(u)

= Eq(r) In p(y[f) — Equ) %

= Eq(r) In p(y|f) — D[g(u)||p(u)] = £
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqr) [In p(y|F)] — Dlg(u)||p(v)] = L
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqr) [In p(y|F)] — Dlg(u)||p(v)] = L

@ We will now show that the first decomposes in a very convenient way
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqr) [In p(y|F)] — Dlg(u)||p(v)] = L

@ We will now show that the first decomposes in a very convenient way

® Remember: p(y|f) = [T, p(xilf)
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

N
Eqcry Inp(y[F)] = Eq(r ['n 11 P(}’i|fi):| =Y Eq) Inp(yilf)]
i=1

i=1
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z

Inp(y) > Eqr) [In p(y|F)] — Dlg(u)||p(v)] = L
@ We will now show that the first decomposes in a very convenient way
@ Remember: p(y|f) = [TV, p(xlf)
@ Let’s have a closer look at the first term

N

N
Eqcry Inp(y[F)] = Eq(r ['n 11 P(}’i|fi):| =Y Eq) Inp(yilf)]
i=1

i=1

where

a(f) = [ p(El A (ulm, S)du = N (BlkimKihem, Ky -+ it SK )
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

N
Eqcry Inp(y[F)] = Eq(r ['n 11 P(}’i|fi):| =Y Eq) Inp(yilf)]
i=1

i=1

where
a(f) = [ p(El A (ulm, S)du = N (BlkimKihem, Ky -+ it SK )

Thus, the "likelihood term”
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

N
Eqcry Inp(y[F)] = Eq(r ['n 11 P(}’i|fi):| =Y Eq) Inp(yilf)]
i=1

i=1

where
a(f) = [ p(El A (ulm, S)du = N (BlkimKihem, Ky -+ it SK )
Thus, the "likelihood term”

@ decomposes into a sum over 1D integrals
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

N
Eqcry Inp(y[F)] = Eq(r ['n 11 P(}’i|fi):| =Y Eq) Inp(yilf)]
i=1

i=1

where
a(f) = [ p(El A (ulm, S)du = N (BlkimKihem, Ky -+ it SK )
Thus, the "likelihood term”

@ decomposes into a sum over 1D integrals

@ Can be solved analytically for Gaussian likelihoods and some classification likelihoods
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

Eqr) [In p(¥[F)] = Eq(r ['nHP(Yilﬁ)] Z]E y [In p(yilf)]

i=1
where
q(f) = /p(f,-|u)/\/'(u|m, S)du=N (f,-|k,-mK,;,},m, Ki + k,-mK,;,},SK,;,},km,-)
Thus, the "likelihood term”
@ decomposes into a sum over 1D integrals
@ Can be solved analytically for Gaussian likelihoods and some classification likelihoods

@ But it is fast to approximate 1D integrals using numerical integration for other likelihoods
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The inducing points approximation

@ Take-away #1: We can now tractably optimize the lower bound wrt. m, S, and even z
Inp(y) = Eqr) [In p(y|F)] — Dlg(u)l|p(u)] = £

@ We will now show that the first decomposes in a very convenient way

@ Remember: p(y|f) = [TV, p(xlf)

@ Let’s have a closer look at the first term

N

Eqr) [In p(¥[F)] = Eq(r |:InHP(yi|f})} Z]E y [In p(yilf)]

i=1
where
q(f) = /p(f,-|u)/\/'(u|m, S)du=N (f,-|k,-mK,;,},m, Kii + k,-mK,;,},SK,;,},km,-)
Thus, the "likelihood term”
decomposes into a sum over 1D integrals
Can be solved analytically for Gaussian likelihoods and some classification likelihoods

But it is fast to approximate 1D integrals using numerical integration for other likelihoods

Take away #2: We can tractably optimize the bound even with non-Gaussian likelihoods
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The resulting bound

@ Substituting back into £

Inply) > £ = 2/ )10 p(y; f))df; — Dlg(u)]|p(u)]

@ We want to optimize £ wrt. XA = {m, S, z} using gradient-based methods

N
VAL =V [ alf)inp(ylf)df - VaDla(w)l|p(w)]
i=1
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The resulting bound

@ Substituting back into £

Inply) > £ = 2/ )10 p(y; f))df; — Dlg(u)]|p(u)]

@ We want to optimize £ wrt. XA = {m, S, z} using gradient-based methods

N
VAL =V [ alf)inp(ylf)df - VaDla(w)l|p(w)]
i=1

@ We can approximate the gradient as follows (mini-batching)

vAZ/ Y p(rl£)d ~ 5= 5~ Va [ al6) n )

i€S
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The resulting bound
@ Substituting back into £

Inply) > £ = 2/ )10 p(y; f))df; — Dlg(u)]|p(u)]

@ We want to optimize £ wrt. XA = {m, S, z} using gradient-based methods

N
VAL =V [ alf)inp(ylf)df - VaDla(w)l|p(w)]
i=1

@ We can approximate the gradient as follows (mini-batching)

vAZ/ Y p(rl£)d ~ 5= 5~ Va [ al6) n )

i€S

@ Take away #3: Because it decomposes as a sum over the data points, the bound
becomes amendable to stochastic gradient descent (mini-batching) and hence, we can
scale the method to really really large datasets!
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Example from the paper

batch 1 batch 2 batch 3 batch 4 batch 5

batch 6 batch 7 batch 8 batch 9 batch 10

-1.0 %o

0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 10 12

Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of
the GP after a batch of data, marked as solid points. Previoulsy seen (and discarded) data are marked as empty
points, the distribution g(u) is represented by vertical errorbars.

(from Hensman et al: Gaussian processes for big data)
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Inducing points method summary

@ The inducing point approximation allows us to

o ... scale Gaussian processes to big data
e ... use non-Gaussian likelihoods

o It reduces the computational complexity from O(N3) to O(M?3),
where M < N

@ It's implemented in most GP toolboxes, e.g. GPy (numpy) and gpflow
(tensorflow)
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 2

o ° Daa T
—— GP w.inducing points
& Inducing points

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of inducing points M = 4

Number of data points N = 200
, * Data 3¢

—— GP w.inducing points
& Inducing points

10.0

25 00 25 50 75

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy

6P Course: Session #4

21/01/2021 29 / 34



Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 6

o ¢ Daa 28
—— GP w.inducing points .
& Inducing points .

10.0

@ We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 8

e * Data o
—— GP w.inducing points
& Inducing points

10.0

We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of data points N = 200 Number of inducing points M = 10

e *+ Daa 5t
—— GP w.inducing points
& Inducing points

10.0

We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Example: Number of inducing points

Number of inducing points M = 20

Number of data points N = 200

* Data
—— GP w.inducing points
& Inducing points

10.0

We can think of the number of inducing points as a parameter that
trades off speed for accuracy
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Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point x.

N N
p(y,F) =T pnlfa)p(F) =TT & (v - f2) N (£]0, K)

10
5
@ Step 1: Compute posterior distribution of p(f|y): SR .
0~ o0 &
p(fly) = Mz q(f) —5/
p(y) v, pifly)
0 1 2
@ Step 2: Compute posterior of fi. for new test point xu: Input x
p(Ely) = [ p(EINp (Fly) df~ [ p(rIfa(Par " . S
075
@ Step 3: Compute predictive distribution 0.50
0.25
ply«ly) = /(b(y* - £) p(fe]y)dfe 000 [ X ply-=1y)
0 1 2

Input x
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Predictive distribution
@ Using the (approximate) posterior q(f), we can compute p(y«|y)

Pl = 11y) = [ POl )p(E|y)af.
:/¢>(y* - £) p(fe|y)df.
w/qﬁ(y*'f*)Q(f*)df*

=/¢(y* )N (Fe] s, 02) dEs

Can you figure it out?

@ What can we say about the predictive distributions for y, when p. is positive? or
negative?

@ How does the uncertainty of the posterior distribution of f; influence the predictions for
y«? What happens as 02 approaches co?
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Gaussian process classification example

Non-linear classification
problem

N = 100 data points

Squared exponential kernel

@ Hyperparameters are
chosen by optimizing £

Input X3

Input X3

Data

»?f{: 1

8o & 0
o0 ©
e ° g ;* °
S
P -1
I -2
-2 0 2
Input x;

3 Standard deviation of . |y

Input x;

GP Course: Session #4

Input X3

Input X3

Mean of f. |y

Input X,
Predictive dist of y . |y

08
06
04
i
-2 0 2
Input x;
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Next time

Next Monday Charles Gadd will talk about

@ latent variable modelling (GPs for unsupervised learning),

@ Multi-Output GPs

Read:

@ Michalis Titsias, Neil D. Lawrence (2010), Bayesian Gaussian Process
Latent Variable Model, ICML

@ Andrew Gordon Wilson, David A. Knowles, Zoubin Ghahramani
(2012), Gaussian Process Regression Networks, |ICML
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Assignments

@ Assignment #1: done

@ Assignment #2: deadline 27th of January

@ Assignment #3:

e handed: 25th of January
e due: 3rd of February
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