Special course on Gaussian processes: Session \#4

Vincent Adam
Aalto University
vincent.adam@aalto.fi

21/01/2021

Roadmap for today

(1) Computational challenges

- Computational complexity of GP regression
- Non-Gaussian likelihoods: GP classification
(2) Approximate inference
- Variational inference: scratching the surface
- Inducing points approximations

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

- Recall: If $\boldsymbol{A} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{b} \in \mathbb{R}^{M}$, then the cost of computing $\boldsymbol{A} \boldsymbol{b}$ is $\mathcal{O}(N M)$
- Recall: If $C \in \mathbb{R}^{N \times N}$, then the cost of computing C^{-1} is $\mathcal{O}\left(N^{3}\right)$

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

- Recall: If $\boldsymbol{A} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{b} \in \mathbb{R}^{M}$, then the cost of computing $\boldsymbol{A} \boldsymbol{b}$ is $\mathcal{O}(N M)$
- Recall: If $\boldsymbol{C} \in \mathbb{R}^{N \times N}$, then the cost of computing \boldsymbol{C}^{-1} is $\mathcal{O}\left(N^{3}\right)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

- Recall: If $\boldsymbol{A} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{b} \in \mathbb{R}^{M}$, then the cost of computing $\boldsymbol{A} \boldsymbol{b}$ is $\mathcal{O}(N M)$
- Recall: If $\boldsymbol{C} \in \mathbb{R}^{N \times N}$, then the cost of computing \boldsymbol{C}^{-1} is $\mathcal{O}\left(N^{3}\right)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\boldsymbol{h}=\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}$ scales as $\mathcal{O}\left(N^{3}\right)$

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

- Recall: If $\boldsymbol{A} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{b} \in \mathbb{R}^{M}$, then the cost of computing $\boldsymbol{A} \boldsymbol{b}$ is $\mathcal{O}(N M)$
- Recall: If $C \in \mathbb{R}^{N \times N}$, then the cost of computing C^{-1} is $\mathcal{O}\left(N^{3}\right)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\boldsymbol{h}=\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}$ scales as $\mathcal{O}\left(N^{3}\right), \mu_{*}=\boldsymbol{k}_{f_{*} f} \boldsymbol{h}$ scales as $\mathcal{O}(N)$

Computational complexity of Gaussian process regression

- The key equations for predictions at new input x^{*}, given $\boldsymbol{x}, \boldsymbol{y}$ (Gaussian noise)

$$
\begin{aligned}
p\left(f_{*} \mid \boldsymbol{y}\right) & =\mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \\
\mu_{*} & =\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y} \\
\sigma_{*}^{2} & =K_{f_{*} f_{*}}-\boldsymbol{k}_{f_{*} f}\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{k}_{f_{*} f}^{T}
\end{aligned}
$$

- Recall: If $\boldsymbol{A} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{b} \in \mathbb{R}^{M}$, then the cost of computing $\boldsymbol{A} \boldsymbol{b}$ is $\mathcal{O}(N M)$
- Recall: If $\boldsymbol{C} \in \mathbb{R}^{N \times N}$, then the cost of computing \boldsymbol{C}^{-1} is $\mathcal{O}\left(N^{3}\right)$
- Questions: What is computational complexity for computing the posterior distribution for 1 test point based on a data set with N observations? What is the dominating operation?
- $\boldsymbol{h}=\left(\boldsymbol{K}_{f f}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}$ scales as $\mathcal{O}\left(N^{3}\right), \mu_{*}=\boldsymbol{k}_{f_{*} f} \boldsymbol{h}$ scales as $\mathcal{O}(N)$
- $N \leq 1000$: Fine, $N \leq 10000$: Slow, but possible, $N>10000$: Prohibitively slow

Regression vs classification

- Response variable \boldsymbol{y} is continuous in regression problems

$$
y_{n} \in \mathbb{R}
$$

- Response variable \boldsymbol{y} is discrete in classification problems

$$
y_{n} \in\left\{c_{1}, c_{2}, \ldots, c_{K}\right\}
$$

- Classification problems
$\boldsymbol{X}=$ images,
$\boldsymbol{X}=$ X-ray scan,
$\boldsymbol{X}=$ images of digits,
$\boldsymbol{X}=$ emails,
$y_{n} \in\{$ cat, dog $\}$
$y_{n} \in\{$ tumor, no tumor $\}$
$y_{n} \in\{0,1,2, \ldots, 9\}$
$y_{n} \in\{$ spam, not spam $\}$

Regression vs classification

- Response variable \boldsymbol{y} is continuous in regression problems

$$
y_{n} \in \mathbb{R}
$$

- Response variable \boldsymbol{y} is discrete in classification problems

$$
y_{n} \in\left\{c_{1}, c_{2}, \ldots, c_{K}\right\}
$$

- Classification problems
$\boldsymbol{X}=$ images,
$\boldsymbol{X}=\mathrm{X}$-ray scan,
$\boldsymbol{X}=$ images of digits,
$\boldsymbol{X}=$ emails,
$y_{n} \in\{c a t, \operatorname{dog}\}$
$y_{n} \in\{$ tumor, no tumor $\}$
$y_{n} \in\{0,1,2, \ldots, 9\}$
$y_{n} \in\{$ spam, not spam $\}$

Why Gaussian processes for classification?

- Complex decision boundaries
(1) Non-linear boundary
(2) Can learn complexity of decision boundary from data
- Probabilistic classification
(1) How would you classify the green point?
(2) We want to model the uncertainty

Why don't we use regression models for classification?

- We focus on binary classification: $y_{n} \in\{0,1\}$ or $y_{n} \in\{-1,1\}$
- We are given a data set $\left\{x_{n}, y_{n}\right\}_{n=1}^{N}$ and we want to model

$$
p\left(y_{n}=+1 \mid x_{n}\right)
$$

- What's wrong with simply using the GP regression model with labels: $y_{n} \in\{0,1\}:$

$$
p\left(y_{n}=+1 \mid \boldsymbol{x}_{n}\right)=f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)
$$

Why don't we use regression models for classification?

- We focus on binary classification: $y_{n} \in\{0,1\}$ or $y_{n} \in\{-1,1\}$
- We are given a data set $\left\{x_{n}, y_{n}\right\}_{n=1}^{N}$ and we want to model

$$
p\left(y_{n}=+1 \mid x_{n}\right)
$$

- What's wrong with simply using the GP regression model with labels: $y_{n} \in\{0,1\}:$

$$
p\left(y_{n}=+1 \mid \boldsymbol{x}_{n}\right)=f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)
$$

Why don't we use regression models for classification?

- We focus on binary classification: $y_{n} \in\{0,1\}$ or $y_{n} \in\{-1,1\}$
- We are given a data set $\left\{x_{n}, y_{n}\right\}_{n=1}^{N}$ and we want to model

$$
p\left(y_{n}=+1 \mid x_{n}\right)
$$

- What's wrong with simply using the GP regression model with labels: $y_{n} \in\{0,1\}:$

$$
p\left(y_{n}=+1 \mid \boldsymbol{x}_{n}\right)=f\left(\boldsymbol{x}_{\boldsymbol{n}}\right)
$$

Gaussian process classification setup (I)

- We'll use a 'squashing function' $\phi: \mathbb{R} \rightarrow(0,1)$ with $y_{n} \in\{-1,1\}$

$$
p\left(y_{n} \mid \boldsymbol{x}_{n}\right)=\phi\left(y_{n} \cdot f\left(\boldsymbol{x}_{n}\right)\right) \in(0,1)
$$

- Multiple possible choices for $\phi(\cdot)$, we'll use the standard normal CDF

$$
\phi(x)=\int_{-\infty}^{x} \mathcal{N}(z \mid 0,1) \mathrm{d} z
$$

Can you figure it out?
(1) What is $\phi(0)$?
(2) What is $\phi(-\infty)$?
(3) What is $\phi(\infty)$?
(9) What is $\phi(x)+\phi(-x)$?
(5) Is $\phi\left(y_{n} f\left(x_{n}\right)\right)$ normalized wrt. y_{n} ?

Gaussian process classification setup (II)

- We map the unknown function $f(\boldsymbol{x})$ through the squashing function

- Example re-visited

Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point \boldsymbol{x}_{*}

$$
p(\boldsymbol{y}, \boldsymbol{f})=\prod_{n=1}^{N} p\left(y_{n} \mid f_{n}\right) p(\boldsymbol{f})=\prod_{n=1}^{N} \phi\left(y_{n} \cdot f_{n}\right) \mathcal{N}(\boldsymbol{f} \mid \mathbf{0}, \boldsymbol{K})
$$

- Step 1: Compute posterior distribution of $p(\boldsymbol{f} \mid \boldsymbol{y})$:

$$
p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}
$$

- Step 2: Compute posterior of f_{*} for new test point \boldsymbol{x}_{*} :

$$
p\left(f_{*} \mid \boldsymbol{y}\right)=\int p\left(f_{*} \mid \boldsymbol{f}\right) p(\boldsymbol{f} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{f}
$$

- Step 3: Compute predictive distribution

$$
p\left(y_{*} \mid \boldsymbol{y}\right)=\int \phi\left(y_{*} \cdot f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*}
$$

Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point \boldsymbol{x}_{*}

$$
p(\boldsymbol{y}, \boldsymbol{f})=\prod_{n=1}^{N} p\left(y_{n} \mid f_{n}\right) p(\boldsymbol{f})=\prod_{n=1}^{N} \phi\left(y_{n} \cdot f_{n}\right) \mathcal{N}(\boldsymbol{f} \mid \mathbf{0}, \boldsymbol{K})
$$

- Step 1: Compute posterior distribution of $p(\boldsymbol{f} \mid \boldsymbol{y})$:

$$
p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}
$$

- Step 2: Compute posterior of f_{*} for new test point \boldsymbol{x}_{*} :

$$
p\left(f_{*} \mid \boldsymbol{y}\right)=\int p\left(f_{*} \mid \boldsymbol{f}\right) p(\boldsymbol{f} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{f}
$$

- Step 3: Compute predictive distribution

$$
p\left(y_{*} \mid \boldsymbol{y}\right)=\int \phi\left(y_{*} \cdot f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*}
$$

- Unfortunately, these distributions are analytically intractable.

Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point \boldsymbol{x}_{*}

$$
p(\boldsymbol{y}, \boldsymbol{f})=\prod_{n=1}^{N} p\left(y_{n} \mid f_{n}\right) p(\boldsymbol{f})=\prod_{n=1}^{N} \phi\left(y_{n} \cdot f_{n}\right) \mathcal{N}(\boldsymbol{f} \mid \mathbf{0}, \boldsymbol{K})
$$

- Step 1: Compute posterior distribution of $p(\boldsymbol{f} \mid \boldsymbol{y})$:

$$
p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})} \approx q(\boldsymbol{f})
$$

- Step 2: Compute posterior of f_{*} for new test point \boldsymbol{x}_{*} :

$$
p\left(f_{*} \mid \boldsymbol{y}\right)=\int p\left(f_{*} \mid \boldsymbol{f}\right) p(\boldsymbol{f} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{f} \approx \int p\left(f_{*} \mid \boldsymbol{f}\right) q(\boldsymbol{f}) \mathrm{d} \boldsymbol{f}
$$

- Step 3: Compute predictive distribution

$$
p\left(y_{*} \mid \boldsymbol{y}\right)=\int \phi\left(y_{*} \cdot f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*}
$$

- Unfortunately, these distributions are analytically intractable.

Computational problems

We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large N ?

Computational problems

We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large N ?

Variational inference

Computational problems

We need to figure out what to do when

- ... likelihood is non-Gaussian?
- ... inference becomes slow due to large N ?

Variational inference

- General framework for approximate Bayesian inference
- Many recent application in the machine learning literature:
(1) GPs for big data
(2) GPs with non-Gaussian likelihoods
(3) Deep Gaussian processes
(9) Convolutional Gaussian processes
(5) Variational autoencoders (VAEs)
(0) ...

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

$$
\mathbb{D}\left[q_{1}, p\right]>\mathbb{D}\left[q_{2}, p\right]
$$

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

$$
\mathbb{D}\left[q_{1}, p\right]>\mathbb{D}\left[q_{2}, p\right]
$$

(3) Search for the distribution in $q \in \mathcal{Q}$ such that $\mathbb{D}[q, p]$ is minimized

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

$$
\mathbb{D}\left[q_{1}, p\right]>\mathbb{D}\left[q_{2}, p\right]
$$

(3) Search for the distribution in $q \in \mathcal{Q}$ such that $\mathbb{D}[q, p]$ is minimized

$$
q^{*}=\arg \min _{q \in \mathcal{Q}} \mathbb{D}[q, p]
$$

(4) Use q^{*} as an approximation of p

Variational inference: the big picture

Recipe for approximating intractable distribution $p \in \mathcal{P}$
(1) Define some "simple" family of distribution \mathcal{Q}.
(2) Define some way to compute a "distance" $\mathbb{D}[q, p]$ between each of the distribution $q \in \mathcal{Q}$ and the
 intractable distribution p

$$
\mathbb{D}\left[q_{1}, p\right]>\mathbb{D}\left[q_{2}, p\right]
$$

(3) Search for the distribution in $q \in \mathcal{Q}$ such that $\mathbb{D}[q, p]$ is minimized

$$
q^{*}=\arg \min _{q \in \mathcal{Q}} \mathbb{D}[q, p]
$$

4) Use q^{*} as an approximation of p

Here we will always choose \mathcal{Q} to be the set of multivariate Gaussian distributions.

Variational inference I

- We will use to the Kullback-Leibler divergence to "measure distances" between distributions

$$
\mathbb{D}[q \| p]=\int q(\boldsymbol{f}) \ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f})} \mathrm{d} \boldsymbol{f}=\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f})}\right]
$$

Variational inference I

- We will use to the Kullback-Leibler divergence to "measure distances" between distributions

$$
\mathbb{D}[q \| p]=\int q(\boldsymbol{f}) \ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f})} \mathrm{d} \boldsymbol{f}=\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f})}\right]
$$

- Most important properties for our purpose:
(1) Always positive: $\mathbb{D}[q \| p] \geq 0$
(2) Identity of indiscernibles: $\mathbb{D}[q \| p]=0 \quad \Longleftrightarrow \quad p=q \quad$ (a.e.)
(3) Not-symmetric: $\mathbb{D}[q \| p] \neq \mathbb{D}[p \| q]$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]=\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right]
$$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})-\ln p(\boldsymbol{f} \mid \boldsymbol{y})]
\end{aligned}
$$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})-\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})]
\end{aligned}
$$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})-\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})]
\end{aligned}
$$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})-\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})]
\end{aligned}
$$

Variational inference II

Our goal is to minimize the KL divergence between some approximation $q \in \mathcal{Q}$ and some posterior distribution $p(\boldsymbol{f} \mid \boldsymbol{y})$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}\left[\ln \frac{q(\boldsymbol{f})}{p(\boldsymbol{f} \mid \boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})-\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})]
\end{aligned}
$$

Last term depends on the exact posterior $p(\boldsymbol{f} \mid \boldsymbol{y})$, which is intractable.

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$
$\mathbb{D}\left[q(\boldsymbol{f})|\mid p(\boldsymbol{f} \mid \boldsymbol{y})]=\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})]\right.$

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}\left[\ln \frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}\right]
\end{aligned}
$$

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}\left[\ln \frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y})
\end{aligned}
$$

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}\left[\ln \frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y}) \\
& =\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y})
\end{aligned}
$$

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}\left[\ln \frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y}) \\
& =\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y})
\end{aligned}
$$

Let's re-arrange the terms

$$
\ln p(\boldsymbol{y})=\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Variational inference III

We can rewrite the posterior: $p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})}$

$$
\begin{aligned}
\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] & =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f} \mid \boldsymbol{y})] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}\left[\ln \frac{p(\boldsymbol{y}, \boldsymbol{f})}{p(\boldsymbol{y})}\right] \\
& =\mathbb{E}_{q}[\ln q(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y}) \\
& =\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]-\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]+\ln p(\boldsymbol{y})
\end{aligned}
$$

Let's re-arrange the terms

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

$\mathcal{L}[q]$ does not depend on the posterior $p(\boldsymbol{f} \mid \boldsymbol{y})$, but only separately on the conditional density $p(\boldsymbol{y} \mid \boldsymbol{f})$ and the prior $p(\boldsymbol{f})$.

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{C}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative
(3) $\mathcal{L}[q]$ only depends on q and the joint density $p(\boldsymbol{y}, \boldsymbol{f})$

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative
(3) $\mathcal{L}[q]$ only depends on q and the joint density $p(\boldsymbol{y}, \boldsymbol{f})$

Some consequences

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative
(3) $\mathcal{L}[q]$ only depends on q and the joint density $p(\boldsymbol{y}, \boldsymbol{f})$

Some consequences
(1) $\mathcal{L}[q]$ is a lower bound of $\ln p(\boldsymbol{y})$. That is: $\ln p(\boldsymbol{y}) \geq \mathcal{L}[q]$

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative
(3) $\mathcal{L}[q]$ only depends on q and the joint density $p(\boldsymbol{y}, \boldsymbol{f})$

Some consequences
(1) $\mathcal{L}[q]$ is a lower bound of $\ln p(\boldsymbol{y})$. That is: $\ln p(\boldsymbol{y}) \geq \mathcal{L}[q]$
(2) Maximizing $\mathcal{L}[q]$ is equivalent to minizing $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]$

Variational inference IV

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

Let's make a few observations
(1) $\ln p(\boldsymbol{y})$ is a constant
(2) $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})] \geq 0$ is non-negative
(3) $\mathcal{L}[q]$ only depends on q and the joint density $p(\boldsymbol{y}, \boldsymbol{f})$

Some consequences
(1) $\mathcal{L}[q]$ is a lower bound of $\ln p(\boldsymbol{y})$. That is: $\ln p(\boldsymbol{y}) \geq \mathcal{L}[q]$
(2) Maximizing $\mathcal{L}[q]$ is equivalent to minizing $\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]$

Key take-away: we can fit the variational approx. q by optimizing \mathcal{L}

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\ln p(\boldsymbol{y})=\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f}
$$

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & =\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f} \\
& =\ln \int q(\boldsymbol{f}) \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} d \boldsymbol{f}
\end{aligned}
$$

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & =\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f} \\
& =\ln \int q(\boldsymbol{f}) \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} d \boldsymbol{f} \\
& =\ln \mathbb{E}_{q} \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})}
\end{aligned}
$$

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & =\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f} \\
& =\ln \int q(\boldsymbol{f}) \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} d \boldsymbol{f} \\
& =\ln \mathbb{E}_{q} \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} \\
(\text { Jensen }) & \geq \mathbb{E}_{q} \ln \left[\frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})}\right]
\end{aligned}
$$

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & =\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f} \\
& =\ln \int q(\boldsymbol{f}) \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} d \boldsymbol{f} \\
& =\ln \mathbb{E}_{q} \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} \\
(\text { Jensen }) & \geq \mathbb{E}_{q} \ln \left[\frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})}\right] \\
& =\mathbb{E}_{q} \ln p(\boldsymbol{y} \mid \boldsymbol{f})+\mathbb{E}_{q} \ln \left[\frac{p(\boldsymbol{f})}{q(\boldsymbol{f})}\right]
\end{aligned}
$$

Variational inference III-bis

We can derive the ELBO via Jensen's inequality:
if ϕ concave, f a function, then $\phi\left[\mathbb{E}_{p(x)} f(x)\right]>\mathbb{E}_{p(x)} \phi[f(x)]$
The In function is concave so,

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & =\ln \int p(\boldsymbol{f}, \boldsymbol{y}) d \boldsymbol{f} \\
& =\ln \int q(\boldsymbol{f}) \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} d \boldsymbol{f} \\
& =\ln \mathbb{E}_{q} \frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})} \\
(\text { Jensen }) & \geq \mathbb{E}_{q} \ln \left[\frac{p(\boldsymbol{f}, \boldsymbol{y})}{q(\boldsymbol{f})}\right] \\
& =\mathbb{E}_{q} \ln p(\boldsymbol{y} \mid \boldsymbol{f})+\mathbb{E}_{q} \ln \left[\frac{p(\boldsymbol{f})}{q(\boldsymbol{f})}\right] \\
& =\mathcal{L}(q)
\end{aligned}
$$

Variational inference V

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

- $\mathcal{L}[q]$ is often called the Evidence Lower Bound (ELBO)

Variational inference V

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

- $\mathcal{L}[q]$ is often called the Evidence Lower Bound (ELBO)
- The first term in $\mathcal{L}[q]$ can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)

Variational inference V

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

- $\mathcal{L}[q]$ is often called the Evidence Lower Bound (ELBO)
- The first term in $\mathcal{L}[q]$ can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- If we want to approximate $p(\boldsymbol{f} \mid \boldsymbol{y})$, then $q(\boldsymbol{f})=\mathcal{N}(\boldsymbol{f} \mid \boldsymbol{m}, \boldsymbol{V})$

Variational inference V

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

- $\mathcal{L}[q]$ is often called the Evidence Lower Bound (ELBO)
- The first term in $\mathcal{L}[q]$ can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- If we want to approximate $p(\boldsymbol{f} \mid \boldsymbol{y})$, then $q(\boldsymbol{f})=\mathcal{N}(\boldsymbol{f} \mid \boldsymbol{m}, \boldsymbol{V})$
- Define $\boldsymbol{\lambda}=\{\boldsymbol{m}, \boldsymbol{V}\}$, then we can write $\mathcal{L}[q]=\mathcal{L}[\lambda]$

Variational inference V

$$
\ln p(\boldsymbol{y})=\underbrace{\mathbb{E}_{q}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f})]}_{\mathcal{L}[q]}+\mathbb{D}[q(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})]
$$

- $\mathcal{L}[q]$ is often called the Evidence Lower Bound (ELBO)
- The first term in $\mathcal{L}[q]$ can be interpreted as a data fit term and the second term can be interpreted as a regularization term (staying close to the prior)
- If we want to approximate $p(\boldsymbol{f} \mid \boldsymbol{y})$, then $q(\boldsymbol{f})=\mathcal{N}(\boldsymbol{f} \mid \boldsymbol{m}, \boldsymbol{V})$
- Define $\boldsymbol{\lambda}=\{\boldsymbol{m}, \boldsymbol{V}\}$, then we can write $\mathcal{L}[q]=\mathcal{L}[\boldsymbol{\lambda}]$
- In practice, we optimize $\mathcal{L}[\lambda]$ using gradient-based methods

1D Toy example I

- Assume we have some model $p(y, f)$ that gives rise to some intractable posterior $p(f \mid y)$
- We want to approximate $p(f \mid y)$ using a variational approximation
- In 1D: \mathcal{Q} is the the set of univariate Gaussian, i.e. $q_{\lambda}(x)=\mathcal{N}(x \mid m, v)$, where we denote $\boldsymbol{\lambda}=\{m, v\}$
- We initialize our approximation as $q(f)=\mathcal{N}(f \mid 0,1)$

1D Toy example I

- Assume we have some model $p(y, f)$ that gives rise to some intractable posterior $p(f \mid y)$
- We want to approximate $p(f \mid y)$ using a variational approximation
- In 1D: \mathcal{Q} is the the set of univariate Gaussian, i.e. $q_{\lambda}(x)=\mathcal{N}(x \mid m, v)$, where we denote $\boldsymbol{\lambda}=\{m, v\}$
- We initialize our approximation as $q(f)=\mathcal{N}(f \mid 0,1)$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

Iteration 11

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

Iteration 12

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

Iteration 13

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

1D Toy example II

- Gradient ascent: $\boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}[\boldsymbol{\lambda}]$
- $\ln p(\boldsymbol{y})=\mathcal{L}[\lambda]+\mathbb{D}\left[q_{\lambda}(\boldsymbol{f}) \| p(\boldsymbol{f} \mid \boldsymbol{y})\right] \geq \mathcal{L}[\lambda]$

Computational challenges

- Let's see how we can use combine the ideas from variational inference with inducing points methods to solve the two computational problems:
(1) The computational complexity of GPs is $\mathcal{O}\left(N^{3}\right)$
(2) How to handle non-Gaussian likelihoods

Solution: Inducing point methods

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset

Solution: Inducing point methods

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$
p(\boldsymbol{y}, \boldsymbol{f})=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f}), \quad \text { where } \quad \boldsymbol{f}=\left[f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right]
$$

Solution: Inducing point methods

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$
p(\boldsymbol{y}, \boldsymbol{f})=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f}), \quad \text { where } \quad \boldsymbol{f}=\left[f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right]
$$

- We will now introduce a set of inducing points $\left\{\boldsymbol{z}_{m}\right\}_{m=1}^{M}$
- They live in the same space as the input points, i.e. $\boldsymbol{x}_{i}, \boldsymbol{z}_{j} \in \mathbb{R}^{D}$

Solution: Inducing point methods

- The main idea is to "represent" the information from the full dataset using a smaller "virtual" dataset
- Recall our GP model:

$$
p(\boldsymbol{y}, \boldsymbol{f})=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f}), \quad \text { where } \quad \boldsymbol{f}=\left[f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right), \ldots, f\left(\mathbf{x}_{N}\right)\right]
$$

- We will now introduce a set of inducing points $\left\{\boldsymbol{z}_{m}\right\}_{m=1}^{M}$
- They live in the same space as the input points, i.e. $\boldsymbol{x}_{i}, \boldsymbol{z}_{j} \in \mathbb{R}^{D}$
- Let u_{m} denote the value of the function f evaluated at each z_{m}, i.e. $u_{m}=f\left(z_{m}\right)$
- \ldots and $\boldsymbol{u}=\left[f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{M}\right)\right]$

Inducing point methods

Inducing point methods

Inducing point methods

Inducing point methods

- Goal: choose the set of inducing points such that it contains the same information as the full dataset

Inducing point methods

- Goal: choose the set of inducing points such that it contains the same information as the full dataset
- Remember: Both $u_{j}=f\left(\boldsymbol{z}_{j}\right)$ and $f_{i}=f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ are random variables

Inducing point methods

- Goal: choose the set of inducing points such that it contains the same information as the full dataset
- Remember: Both $u_{j}=f\left(\boldsymbol{z}_{j}\right)$ and $f_{i}=f\left(\boldsymbol{x}_{i}\right)$ are random variables
- Next step: Formulate joint model $p(\boldsymbol{y}, \boldsymbol{f}, \boldsymbol{u})$

Inducing point methods: the joint model

- The augmented model

$$
p(\boldsymbol{y}, \boldsymbol{f}, \boldsymbol{u})=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f}, \boldsymbol{u})
$$

- Let's decompose the "augmented" model as follows

$$
p(\boldsymbol{y}, \boldsymbol{f}, \boldsymbol{u})=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f} \mid \boldsymbol{u}) p(\boldsymbol{u})
$$

- We can get back to the original model by marginalizing over \boldsymbol{u}

$$
p(\boldsymbol{y}, \boldsymbol{f})=\int p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f}, \boldsymbol{u}) \mathrm{d} \boldsymbol{u}=p(\boldsymbol{y} \mid \boldsymbol{f}) \int p(\boldsymbol{f}, \boldsymbol{u}) \mathrm{d} \boldsymbol{u}=p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})
$$

Setting up the approximation

- The idea is now to derive a variational approximation for the posterior $p(\boldsymbol{f}, \boldsymbol{u} \mid \boldsymbol{y})$

Setting up the approximation

- The idea is now to derive a variational approximation for the posterior $p(\boldsymbol{f}, \boldsymbol{u} \mid \boldsymbol{y})$
- We choose \mathcal{Q} be the set of all distributions of the form $q(\boldsymbol{f}, \boldsymbol{u})=p(\boldsymbol{f} \mid \boldsymbol{u}) q(\boldsymbol{u})$, where $q(\boldsymbol{u})=\mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S})$

Setting up the approximation

- The idea is now to derive a variational approximation for the posterior $p(\boldsymbol{f}, \boldsymbol{u} \mid \boldsymbol{y})$
- We choose \mathcal{Q} be the set of all distributions of the form $q(\boldsymbol{f}, \boldsymbol{u})=p(\boldsymbol{f} \mid \boldsymbol{u}) q(\boldsymbol{u})$, where $q(\boldsymbol{u})=\mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S})$
- Let's derive the ELBO, introducing $q(\boldsymbol{f}, \boldsymbol{u})$

$$
\begin{aligned}
\ln p(\boldsymbol{y}) & \geq \mathbb{E}_{q(\boldsymbol{u}, \boldsymbol{f})} \ln p(\boldsymbol{y} \mid \boldsymbol{f})-\mathbb{E}_{q(\boldsymbol{u}, \boldsymbol{f})} \frac{q(\boldsymbol{f}, \boldsymbol{u})}{p(\boldsymbol{f}, \boldsymbol{u})} \\
& =\mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y} \mid \boldsymbol{f})-\mathbb{E}_{q(\boldsymbol{u}, \boldsymbol{f})} \frac{p(\boldsymbol{f} \mid \boldsymbol{u}) q(\boldsymbol{u})}{p(\boldsymbol{f} \mid \boldsymbol{u}) p(\boldsymbol{u})} \\
& =\mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y} \mid \boldsymbol{f})-\mathbb{E}_{q(\boldsymbol{u})} \frac{q(\boldsymbol{u})}{p(\boldsymbol{u})} \\
& =\mathbb{E}_{q(\boldsymbol{f})} \ln p(\boldsymbol{y} \mid \boldsymbol{f})-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]=\mathcal{L}
\end{aligned}
$$

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

Thus, the "likelihood term"

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods
- But it is fast to approximate 1D integrals using numerical integration for other likelihoods

The inducing points approximation

- Take-away \#1: We can now tractably optimize the lower bound wrt. $\boldsymbol{m}, \boldsymbol{S}$, and even \boldsymbol{z}

$$
\ln p(\boldsymbol{y}) \geq \mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})] \equiv \mathcal{L}
$$

- We will now show that the first decomposes in a very convenient way
- Remember: $p(\boldsymbol{y} \mid \boldsymbol{f})=\prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)$
- Let's have a closer look at the first term

$$
\mathbb{E}_{q(\boldsymbol{f})}[\ln p(\boldsymbol{y} \mid \boldsymbol{f})]=\mathbb{E}_{q(\boldsymbol{f})}\left[\ln \prod_{i=1}^{N} p\left(y_{i} \mid f_{i}\right)\right]=\sum_{i=1}^{N} \mathbb{E}_{q\left(f_{i}\right)}\left[\ln p\left(y_{i} \mid f_{i}\right)\right]
$$

where

$$
q\left(f_{i}\right)=\int p\left(f_{i} \mid \boldsymbol{u}\right) \mathcal{N}(\boldsymbol{u} \mid \boldsymbol{m}, \boldsymbol{S}) \mathrm{d} \boldsymbol{u}=\mathcal{N}\left(f_{i} \mid \boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{m}, \tilde{K}_{i i}+\boldsymbol{k}_{i m} \boldsymbol{K}_{m m}^{-1} \boldsymbol{S} \boldsymbol{K}_{m m}^{-1} \boldsymbol{k}_{m i}\right)
$$

Thus, the "likelihood term"

- decomposes into a sum over 1D integrals
- Can be solved analytically for Gaussian likelihoods and some classification likelihoods
- But it is fast to approximate 1D integrals using numerical integration for other likelihoods
- Take away \#2: We can tractably optimize the bound even with non-Gaussian likelihoods

The resulting bound

- Substituting back into \mathcal{L}

$$
\ln p(\boldsymbol{y}) \geq \mathcal{L}=\sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

- We want to optimize \mathcal{L} wrt. $\boldsymbol{\lambda}=\{\boldsymbol{m}, \boldsymbol{S}, \boldsymbol{z}\}$ using gradient-based methods

$$
\nabla_{\boldsymbol{\lambda}} \mathcal{L}=\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

The resulting bound

- Substituting back into \mathcal{L}

$$
\ln p(\boldsymbol{y}) \geq \mathcal{L}=\sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

- We want to optimize \mathcal{L} wrt. $\boldsymbol{\lambda}=\{\boldsymbol{m}, \boldsymbol{S}, \boldsymbol{z}\}$ using gradient-based methods

$$
\nabla_{\boldsymbol{\lambda}} \mathcal{L}=\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

- We can approximate the gradient as follows (mini-batching)

$$
\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i} \approx \frac{N}{|S|} \sum_{i \in S} \nabla_{\boldsymbol{\lambda}} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}
$$

The resulting bound

- Substituting back into \mathcal{L}

$$
\ln p(\boldsymbol{y}) \geq \mathcal{L}=\sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

- We want to optimize \mathcal{L} wrt. $\boldsymbol{\lambda}=\{\boldsymbol{m}, \boldsymbol{S}, \boldsymbol{z}\}$ using gradient-based methods

$$
\nabla_{\boldsymbol{\lambda}} \mathcal{L}=\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}-\nabla_{\boldsymbol{\lambda}} \mathbb{D}[q(\boldsymbol{u}) \| p(\boldsymbol{u})]
$$

- We can approximate the gradient as follows (mini-batching)

$$
\nabla_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i} \approx \frac{N}{|S|} \sum_{i \in S} \nabla_{\boldsymbol{\lambda}} \int q\left(f_{i}\right) \ln p\left(y_{i} \mid f_{i}\right) \mathrm{d} f_{i}
$$

- Take away \#3: Because it decomposes as a sum over the data points, the bound becomes amendable to stochastic gradient descent (mini-batching) and hence, we can scale the method to really really large datasets!

Example from the paper

Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of the GP after a batch of data, marked as solid points. Previoulsy seen (and discarded) data are marked as empty points, the distribution $q(\mathbf{u})$ is represented by vertical errorbars.

(from Hensman et al: Gaussian processes for big data)

Inducing points method summary

- The inducing point approximation allows us to
- ... scale Gaussian processes to big data
- ... use non-Gaussian likelihoods
- It reduces the computational complexity from $\mathcal{O}\left(N^{3}\right)$ to $\mathcal{O}\left(M^{3}\right)$, where $M \ll N$
- It's implemented in most GP toolboxes, e.g. GPy (numpy) and gpflow (tensorflow)

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Example: Number of inducing points

- We can think of the number of inducing points as a parameter that trades off speed for accuracy

Gaussian process classification: Inference

Three steps to compute the predictive distribution for a new test point \boldsymbol{x}_{*}

$$
p(\boldsymbol{y}, \boldsymbol{f})=\prod_{n=1}^{N} p\left(y_{n} \mid f_{n}\right) p(\boldsymbol{f})=\prod_{n=1}^{N} \phi\left(y_{n} \cdot f_{n}\right) \mathcal{N}(\boldsymbol{f} \mid \mathbf{0}, \boldsymbol{K})
$$

- Step 1: Compute posterior distribution of $p(\boldsymbol{f} \mid \boldsymbol{y})$:

$$
p(\boldsymbol{f} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f})}{p(\boldsymbol{y})} \approx q(\boldsymbol{f})
$$

- Step 2: Compute posterior of f_{*} for new test point \boldsymbol{x}_{*} :

$$
p\left(f_{*} \mid \boldsymbol{y}\right)=\int p\left(f_{*} \mid \boldsymbol{f}\right) p(\boldsymbol{f} \mid \boldsymbol{y}) \mathrm{d} \boldsymbol{f} \approx \int p\left(f_{*} \mid \boldsymbol{f}\right) q(\boldsymbol{f}) \mathrm{d} \boldsymbol{f}
$$

- Step 3: Compute predictive distribution

$$
p\left(y_{*} \mid \boldsymbol{y}\right)=\int \phi\left(y_{*} \cdot f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*}
$$

Predictive distribution

- Using the (approximate) posterior $q\left(f_{*}\right)$, we can compute $p\left(y_{*} \mid \boldsymbol{y}\right)$

$$
\begin{aligned}
p\left(y_{*}=1 \mid \boldsymbol{y}\right) & =\int p\left(y_{*} \mid f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*} \\
& =\int \phi\left(y_{*} \cdot f_{*}\right) p\left(f_{*} \mid \boldsymbol{y}\right) \mathrm{d} f_{*} \\
& \approx \int \phi\left(y_{*} \cdot f_{*}\right) q\left(f_{*}\right) \mathrm{d} f_{*} \\
& =\int \phi\left(y_{*} \cdot f_{*}\right) \mathcal{N}\left(f_{*} \mid \mu_{*}, \sigma_{*}^{2}\right) \mathrm{d} f_{*} \\
& =\phi\left(\frac{\mu_{*}}{\sqrt{1+\sigma_{*}^{2}}}\right)
\end{aligned}
$$

Can you figure it out?

- What can we say about the predictive distributions for y_{*} when μ_{*} is positive? or negative?
- How does the uncertainty of the posterior distribution of f_{*} influence the predictions for y_{*} ? What happens as σ_{*}^{2} approaches ∞ ?

Gaussian process classification example

- Non-linear classification problem
- $N=100$ data points
- Squared exponential kernel
- Hyperparameters are chosen by optimizing \mathcal{L}

Next time

Next Monday Charles Gadd will talk about

- latent variable modelling (GPs for unsupervised learning),
- Multi-Output GPs

Read:

- Michalis Titsias, Neil D. Lawrence (2010), Bayesian Gaussian Process Latent Variable Model, ICML
- Andrew Gordon Wilson, David A. Knowles, Zoubin Ghahramani (2012), Gaussian Process Regression Networks, ICML

Assignments

- Assignment \#1: done
- Assignment \#2: deadline 27th of January
- Assignment \#3:
- handed: 25th of January
- due: 3rd of February

