CS-E4002 – Special Course in Computer Science:

Seminar on Computational Creativity

Lecture 2: Introduction & Modelling Creativity

Anna Kantosalo, Christian Guckelsberger & Tapio Takala

Agenda

- Revisiting the definition of computational creativity
- CC history and examples
- Csikszentmihalyi's Systems
 View of Creativity
- Liu's dual-Generate and Test model for creativity

- Wiggin's Creative Systems
 Framework
- Practical assignment
- Optional: Ventura's account of "How to Build a CC system"

Schedule

Defining Computational Creativity

What is creativity?

Revisiting last week's themes

- Traditional perspectives to creativity
 - Rhodes 1961: 4Ps (perspectives on creativity)
 - Newell, Simon, Shaw, 1958: The Process of Creative Thinking
 - Different types of creativity (Boden, 1990):
 - P-Creativity and H-Creativity
 - · Combinational, Exploratory, and Transformational

Defining Computational Creativity

CC is characterized by:

- Use of computational methods or artificial intelligence
- Goals:
 - Study and support of creative behaviors
 - Simulation of creative behavior
 - Engineering of creative systems

Why is computational creativity studied?

- To continue the study of creativity:
 - Simulation of creative behavior with computational means
- To extend artistic practice:
 - Development of new creative systems, methods and tools
- To advance artificial intelligence:
 - Creativity as a step towards general Artificial Intelligence

Why is computational creativity studied?

- Two perspectives (Veale, Cardoso and Pérez y Pérez, 2019):
 - Scientific: Use computational modelling and empirical studies to gain insights into the phenomenon of (human) creativity and the ultimate capabilities of creative people and machines
 - Engineering: Build working systems that embody these theoretical insights, usually to please and benefit people'
- Ideally, both are brought together in a 'symbiotic relationship (...)
 wherein the artifacts that are produced also serve as empirical tests
 of the adequacy of scientific theories of creativity' (p. 1).

History and Examples

Early examples of computational creativity

- Musikalisches Würfelspiel
 - An early example of algorithmic composition
 - Various artists, most famously Mozart (or his publisher)
 published a table of possible chord processions, which
 combined, would produce music in a distinctive style, such as
 Mozart's waltzes
 - To generate music anyone could cast a die to determine which processions to combine

Musikalisches Würfelspiel

"To compose without the least knowledge of Music so much German Walzer Schleifer as one pleases, by throwing a certain Number with two Dice"

TABLE de CHIFFRES.

A	B	c	Ω d	E	F.	G	H
96	55	1+1	+1	105	155	n	30
32	0.	128	63	1+6	46	194	81
69	95	158	13	133	55	110	24
+0	17	113	8.5	161	2	159	100
1+8	74	163	45	80	97	36	107
104	157	27	167	154	68.	118	91
152	60	171	33	9.9	133	21	127
11.9	54	114	50	140	86	169	94
98	142	42	156	75	129	62	125
) ૩	87	163	61	195	47	147	99
54	130	10	103	28	37	106	5

A historical perspective: music

- Illiac Suite, 1957 by Hiller & Issacson
 - Attributed as the first computer generated piece of music
 - A piece for a string quarted
 - A recording from a performance of the Illiac Suite from the Electro Museum in Moscow:

https://www.youtube.com/watch?v=fojKZ1ymZlo

- In Finland: "Kesän muistatko sen" (Markku Nurminen, U Turku, 1967)
 - Popular tango tunes analyzed and randomly regenerated
 - https://yle.fi/aihe/artikkeli/2008/02/13/tietokoneet-savelsivat-tangoa-ja-soittelivat-polkkaa
- Similar work again: "Yö on rakkauden maa" (1999)
- A computational average of Eurovision tunes 1961–1998. https://romanowski.fi/Rakkauden_maa/

Early examples of computational creativity

- OULIPO (Ouvroir de littérature potentielle, workshop of potential literature)
 - A gathering of writers and mathematicians founded in the 1960s by Raymond Queneau and François Le Lionnais
 - Focus on algorithmic composition of poetry
 - Notable works
 - Cent Mille Milliards de Poemes a poem in the style of the Musikalisches Würfelspiel
 - Constraint poetry, e.g. S+7 (Substituting every noun in an existing poem with another noun, found 7 nouns later in a dictionary)

Early examples of computational creativity

- Cybernetic Serendipity (Jasia Reichardt, 1968)
 - 1st exhibition of cybernetic art in the Institute of Contemporary Arts, London, England; then travelling the US: Corcoran Annex, Washington, D.C., Exploratorium, San Francisco.
 - Installations and computer-generated artefacts, e.g.
 - Computerized Haiku (Margaret Masterman and Robin McKinnon-Wood)
 - High-Entropy Essays (Prof. E. Mendoza)
 - Music Computer (Peter Zinovieff)

Early examples of computational creativity

https://archive.ica.art/whats-on/cybernetic-serendipity-documentation

Establishing a systematic field of study

- Potential creativity of computers is already discussed by Ada Lovelace (Boden, 2017), and Al pioneers, such as Turing and Shannon (Colton & Wiggins, 2012)
- Creativity and randomness are the final element in the original Darthmouth workshop proposal (McCarthy et al. 2006, workshop held in 1956)
- Study of creativity from an Al perspective starts from mid 1990s (see. Cardoso, Veale & Wiggins, 2009)
 - Various workshops on computational creativity held in 1990s and 2000s
- First International Conference on Computational Creativity in 2010

What does computational creativity study?

Domains in CC research include (Loughrain & O'Neill, 2017):

- Logic
- Story
- Language
- Analogy
- Sound

- Design
- Maths
- Image
- Music
- Literature

- Concepts
- Humour
- Code
- Games
- ...

Examples

Computational humour:

What do you call a shout with a window?

- A computer scream.

The STANDUP system – Manurung et al. 2008

Examples

Stories:

eagle knight went to the forest for a walk, suddenly the enemy appeared between the bushes and attacked the knight, the enemy ran away leaving the knight wounded, the princess decided to go to the forest for a walk, suddenly she found the wounded knight, she knew that it was her duty to help her people: the knight's life was at risk and she had to save him, the princess looked for some curative plants to heal the knight

MEXICA – Pérez y Pérez & Sharples, 2010

Examples: Images

AARON

http://geneticsandculture.com/genetics_culture/pages_genetics_culture/gc_w05/cohen_h.htm

Examples: style transfer in music / images

http://www.flow-machines.com/history/projects/odetojoy/

Deep Art https://deepart.io

Deep Art experiment

Modelling Computational Creativity

Why model (computational) creativity?

- To evaluate what is creative and to understand creativity as a phenomenon
- To facilitate creativity or to improve creative capacity
- To build creative systems

Three models for creativity

- Csikszentmihalyi's Systems View of Creativity (Csikszentmihalyi, 1988)
 - Defines creativity as a socio-cultural system
- Liu's Dual Generate and Test model (Liu, 2000)
 - Connects Csikszentmihalyi's view to classic generate-and-test ideas from AI and Cognitive Science
- Wiggins' Creative Systems Framework (Wiggins, 2006a, 2006b)
 - Describes creativity using the traditional AI paradigm of search

Three models for creativity

- Csikszentmihalyi's (1988) Systems View of Creativity
 - Defines creativity as a socio-cultural system
- Liu's (2000) Dual Generate and Test model
 - Connects Csikszentmihalyi's ideas to classic generate-and-test ideas from AI and Cognitive Science
- Wiggins' (2006, a, b) Creative Systems Framework
 - Describes creativity using the traditional AI paradigm of search
- → We use these models to understand how CC systems are built

Csikszentmihalyi's Systems View of Creativity (Csikszentmihalyi, 1988)

Motivations:

- Where is creativity?
- Creativity cannot be studied by isolating individuals from their social and historical context

Creativity results from the interaction of three systems:

Creativity results from the interaction of three systems:

Liu's Dual-Generate and Test Model (Liu, 2000)

The Generate-And-Test Model

The generate-and-test model is popular in both AI and cognitive science

The Generate-And-Test Model

The generate-and-test model is popular in both AI and cognitive science

The Dual Generate-And-Test Model

Wiggins' Creative Systems Framework

(Wiggins, 2006, a, b)

Background:

- A computational creativity focused general model for creativity
- Formulates Boden's theories about exploratory and transformational creativity in mathematical form
- Models creativity as a search in a "conceptual space"

U – The universe of all possible concepts

C – Valid concepts

E – High quality concepts

 T^n – Concepts reachable in n generative iterations

Full formalism in Wiggins 2006a,b

Exploratory creativity happens in the intersection of these three sets:

U, E, and T^n

Exploratory creativity happens in the intersection of these three sets:

U, E, and T^n In transformational creativity we try to expand this intersection

With the model we can describe some interesting situations:

Uninspiration:

Hopeless: $E = \emptyset$

Conceptual: $E \cup C = \emptyset$

Generative:

$$E \cup T^n = \emptyset$$

With the model we can describe some interesting situations:

Aberration:

Systm can't generate valid concepts

In productive aberration

Let's practice!

For the given domain sample, describe a creative agent by describing

- a) The conceptual space
- b) The rules for valid concepts
- c) The rules for evaluating concepts
- d) The rules for traversing the conceptual space

https://miro.com/app/board/o9J_IY55L1g=/

Building Computational Creativity Systems

Following Dan Ventura's suggestions (Ventura, 2017)

Important characteristics for a CC System

- Novelty the quality of being new, original or unusual
- Value the importance, worth, usefulness or aesthetic appeal of something
- Intentionality the fact of being deliberative or purposive
 - See e.g. Runco and Jaeger's (2012) "Standard Definition of Creativity" for **Novelty** and **Value** components.

Important characteristics for a CC System

- Novelty the quality of being new, original or unusual
- Value the importance, worth, or usefulness of something
- Intentionality the fact of being deliberative or purposive

Parts of a CC system

Parts of a CC System

Domain

All CC systems work in a domain

Representation

 Each system will have a domain appropriate external, phenotypic representation and an internal, genotypic representation, or artefact and concept representations

Knowledge Base

Designers need to build knowledge bases and choose how information is represented in them

Parts of a CC System

Aesthetic

Designers must choose abstract qualities of methods fit for the domain

Conceptualization

 Is a model facilitating the understanding and creation of artefacts in the domain

Generation

The conceptualization must allow the system to generate artefact genotypes

Parts of a CC System

Genotypic Evaluator

The system requires a way to evaluate the genotypes

Translation

 The system must be able to translate its internal, genotypic representations to phenotypic artefacts

Phenotypic Evaluator

 The artefacts must be evaluated again once the most successful genotypic presentations have been translated

How to use the models?

- Consider what are the most useful models for describing your essay topic
- Analyse the example systems using the models
- All models may not fit your work, or your work may not fit all parts of a specific model – it is also interesting which parts do not fit!

References

Boden, 2017 (non-peer reviewed) What is Creativity? In the Automated Designer http://www.bartdaems.com/the-automated-designer/margaret-a-boden-the-lovelace-questions

Boden, M. A. (1998). Creativity and artificial intelligence. *Artificial Intelligence*, *103*(1-2), 347-356.

Boden, M.A.,(1990) The Creative Mind, Abacus, London

Cardoso, Veale, & Wiggins, 2009: Cardoso, A., Veale, T., and Wiggins, G. A. Converging on the divergent: The history (and future) of the international joint workshops in computational creativity. Al Magazine 30, 3 (2009), 15–22.

Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In *The nature of creativity, Sternberg, R. (eds.), Cambridge University Press*

Colton, S., & Wiggins, G. A. (2012, August). Computational creativity: The final frontier?. In *Ecai* (Vol. 12, pp. 21-26).

Liu, Y. T. (2000). Creativity or novelty?: Cognitive-computational versus social-cultural. *Design Studies*, 21(3), 261-276.

Manurung, R., Ritchie, G., Pain, H., Waller, A., O'Mara, D. & Black, R. (2008) "The construction of a pun generator for language skills development." *Applied Artificial Intelligence* 22.9 : 841-869.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. *Al magazine*, 27(4), 12-12.

References

PÉrez Ý PÉrez, R. & Sharples, M. (2001) MEXICA: A computer model of a cognitive account of creative writing, Journal of Experimental & Theoretical Artificial Intelligence, 13:2, 119-139, DOI: 10.1080/09528130010029820

Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7), 305-310.

Veale, T., Cardoso, F. A. & Pérez y Pérez, R. (2019). Systematizing Creativity: A Computational View. In T. Veale & F. A. Cardoso (Eds.), Computational Creativity (pp. 1–19). Springer.

Ventura, D. (2017). How to Build a CC System. In the Proceedings of the Eight International Conference on Computational Creativity (pp. 253-260).

Wallas (1926). The art of thought

Wiggins, G. A. (2006a). Searching for computational creativity. New Generation Computing, 24(3), 209-222.

Wiggins, G. A. (2006b). A preliminary framework for description, analysis and comparison of creative systems. *Knowledge-Based Systems*, 19(7), 449-458.

