Lecture 5

Linear approximation and differentials, differentiability, the directional Where to find this material
derivative
e Adams and Essex 4.9 (review), 12.6
¢ Reviewed linear approximation and differentials in one variable. 12.7
¢ Analogously defined the linear (tangent plane) approximation in 2 variables e Corral, 2.4 (linear approximation is not
and the associated idea of the differential (which is just the approximate discussed)
change of the function using the tangent plane approximation). The formulas e Guichard, 6.4 (review) 14.5 (linear
all look like the one variable case with just the addition of an extra term. approximation is not discussed)
¢ Discussed "differentiablity". We saw the the definition of the derivative in one e Active Calculus. 10.4, 10.6

variable can be re-writen as(Af - df)/Ax — 0 as Ax — 0. By analogy we

gave the two variable definition(Af ' df)/\/zmA_y2 — 0asAx —» 0and
Ay — 0. Stated (without rigorous justification) the fact that differntiablity
implies continuity. Also stated without justification the fact that continous
partial derivatives implied differentiability.

¢ Pointed out that conceptual the "differentiablity" condition says that the
linear (tangent plane) approximation "works" in the sense that the relative
error goes to zero as the initial point is approached.

¢ As we discussed when we first introduced partial derivatives, we would like to
know what the slope of a surface (or rate of change of a function) is in any
given direction. Let f be the function and u be the unit vector specifying the
direction. Then D_u f is the notation for the directional derivative.

¢ Gave the limit definition of D_u f and showed how D_u f can be computed
using the partial derivatives as long as f is differentiable.

¢ The intuition for this formula is that the partial derivatives determine the
tangent plane, and the directional derivative is just the slope of the plane in
given direction.

e Briefly introduced the gradient vector.

¢ Briefly mentoined that there are many applications for which finding the
direction of the maximum rate of the change is useful, and that we will be
able to solve this using the gradient vector. (details next class)
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Linear approximation (1)

A quick review of the 1-variable case

‘F{yo*b)()
AT

y=p&\

Two variable ca

se - f(x,y)

o, dr = AT
10(7(0\ o+ dy = Ay iz, y)
(image from Active Calculus, page 134)
Object A= Linear approximation Object ~= Linear approximation

Graph = curve

Tangent line

€

Graph = surface

Tangent plane

Function f(x)

L) = Fxo) + F/(x0)(x — x0)

Function f(x, y)

Change in f(x)

differential = df

= Af

Error=E = Af —df

Note: dx and df are a numbers, not to be confused with the

notation a7
dx

and [-

-« dx which are limits.
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differential = df

Change in f(x, y)
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Error = E = Af —df




Linearization (2) V( 1’]) 1fq /
r = Ty , Nhsl, Aar<0-3
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Estimate, using linear approximation, the amount of metal Ql_/ _ DZITV‘II\ Qy (, 5): 10 T
in a empty can or / dy !
. — A
o> TIuside Aimenssong: V=1 v - 7r ) 321/ (1,$) =1
S— I N n
ShY
& AV / — 1%
g Thicners of +he. NobJ, AV = %(‘/5 ) AN L7A AR
top/bottom=0-| SIS =03
— = T +O0'3 + TTr0A&
< $RXIT
Selutron The exact ongier 15 aV=Vv(13, $2)
| ), ~v(1,&)
= nr =317

\/o,UWle 0{‘ 1N C\‘j ,ln(/{ef

f

_ﬂ'lz afrmK/Ma-ébH 1§ VJoT V-e./*lj 9 ood{ beoau.fe

& xact vo lome of we‘u \, D
0UT4 g WS PE2 e AV and AL\ aR f{/od‘lzelj large,

/ g d""‘“‘ﬂe +H Ar=0-073, sh=0p.00 +her
& taw)ﬂ)mwm Yo dv= 033 (,MMQAI;\.}([j)
AV~ oy Ak AV =03UT g (ER

Lecture 5 Page 3



Differentiability

Version 1: A function of one variable f(x)is differentiable

! (a+A9}?—f @) exists.

at a point x = a if and only if lim
Ax—0

To generalize this to two or more variables we need to
rewrite this is a conceptually different way.

Whea the obove fiinit exists we ofeviote
i+ s value bJ o). Then

hee  Flasax) =~ £6) < P'la)
Ax 20
AP
& he  flazax) = £a) - £l ox _
A% D¢ ~ 0
AR 5 & :V(J/Mfu'vf
/ AKX ewdr
© _A+‘~01+“=o ]
dx >aq N S e/mr
QX pev
/ Jmldwc&
L A%
a Arbx a ;lmnf

Version 2: A function of one variable f(x)is differentiable at
a point x = a if and only if there exists a number m such

that lim L@rA0=f(@) —max o
Ax—0 h
Note: olf = max = PlaYax

2 variable case

Definition
A function f(x, y) is diffentiable at (a, b) if and only if
there exists numbers m and n such that

f(a + Ax, b + Ay) — f(a,b) — (mAx +nAy) _ 0
JAx2 + Ay?

m
(Ax,Ay)—(0,0)

Or equivalently

Af - o

.

(AY,AJ)-U (0,0~) o‘ls‘l'avlce ProlM (Q,b ) + (a+m<l LH.AH) T
= ‘HN) M
(M,Ba) — 0 || < Ax/)&) H
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Differentiability (2)

Here is a useful theorem that can be applied to most
Conceptual summary of the familiar functions.

* In 1 variable we say a function f(x) is differentiable

at a if and only if there is a line passing through Theorem: _ o _ _

(a,f(a)) which approximates the function “‘well"". If the partial derivatives of a function f(x, y) exist and

In this case we call the line the tangent line are continuous at a point (a, b), then f(x,y) is
differentiable at (a, b)

* In 2 variables we say a function f(x, y) is
differentiable at (a, b) if and only if there is a plane
passing through (a, b, f(a, b)) which approximates
the function “well™". In this case we call the plane
the tangent plane.

In particular if a function is not differentiable at a point
then it does not have a tangent line/plane at that point.

HW 43
1-Valiable
exaw‘ol{
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Directional derivative

Recall:
S/DPE :/O/oe = ap (”(o yo)
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Question: What is the slope in a given direction
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Directional derivative (2) How to compute
Using algebra, and skipping technicalities, we can rewrite the directional derivative in

familiar terms. a3 -
[w(ae/e R=<ab>, hell=1]
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Directional derivative (2)
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the next lecture
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Gradient vector example
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A happy bug accidentally lands on a hot grill plate with

surface temperature given by T(x, y) — 5000e~(**+3¥?)

The bug has landed at the point (1,1).
Question: In which direction should the bug start
walking in order to cool its feet most rapidly.
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