
ELEC-E3540 Digital Microelectronics II (5cr)
IV-V period

Introduction

Marko Kosunen

Department of Micro and Nanosciences
Aalto University, School of Electrical Engineering

marko.kosunen@aalto.fi

March 2, 2021

ELEC-E3540 Introduction
March 2, 2021

2/54

Outline

On Digital design

Course arrangements

Content of mandatory exercises

Design assingment: Microcontroller implementaion

Conlusion and next steps

Appendix: Very short and comprehensive VHDL guideline

ELEC-E3540 Introduction
March 2, 2021

3/54

On Digital design

ELEC-E3540 Introduction
March 2, 2021

4/54

Design implementation methods

I Logic gates are designed using transistors on device (transistor)
level.

I Simple logic functions can be designed with truth tables or
Karnaugh maps on gate level, although it is beneficial to
synthesize the blocs with automated design tools.

I More complex functions/algorithm implementations or entire
systems are modeled with Hardware Description Languages which
are used together with a set of automated design tools.

I The actual implementation is performed by the tools, so ability to
control the tools efficiently is mandatory.

I Current effort is to move to the higher abstraction level while
designing (behavioral synthesis from VHDL or System C).

ELEC-E3540 Introduction
March 2, 2021

5/54

Digital hardware design

I Designing digital circuits is mapping logical functions to transistor
level equivalents, implemented on a chosen platform, ASIC or
FPGA.

ELEC-E3540 Introduction
March 2, 2021

6/54

Digital hardware design

I Designing digital circuits is mapping logical functions to transistor
level equivalents, implemented on a chosen platform, ASIC or
FPGA.

ELEC-E3540 Introduction
March 2, 2021

7/54

Digital hardware design

I Designing digital circuits is mapping logical functions to transistor
level equivalents, implemented on a chosen platform, ASIC or
FPGA.

ELEC-E3540 Introduction
March 2, 2021

8/54

Digital hardware design

I Designing digital circuits is mapping logical functions to transistor
level equivalents, implemented on a chosen platform, ASIC or
FPGA.

ELEC-E3540 Introduction
March 2, 2021

9/54

Digital hardware design

I Designing digital circuits is mapping logical functions to transistor
level equivalents, implemented on a chosen platform, ASIC or
FPGA.

ELEC-E3540 Introduction
March 2, 2021

10/54

Layout-the design database for manufacturing

ELEC-E3540 Introduction
March 2, 2021

11/54

Synthesis Flow
This has been done for you already :)

ELEC-E3540 Introduction
March 2, 2021

12/54

Course arrangements

ELEC-E3540 Introduction
March 2, 2021

13/54

Your teachers

I D.Sc. Marko Kosunen marko.kosunen@aalto.fi “lecturer”,
TUAS-2190

I M.Sc. student Andrei Spelman, andrei.spelman@aalto.fi,
assistant.

I D.Sc. Vishnu Unnikrishnan, vishnu.unnikirishnan@aalto.fi,
assistant, TUAS-2189.

I Most of the support is provided during the exercise sessions on
Mondays 10-12 or Thursdays 10-12 in Slack and Zoom.

I On this we do not have classroom teaching. All teaching is
executed remotely.

ELEC-E3540 Introduction
March 2, 2021

14/54

Course objective

I Objective is to learn to implement digital circuits on higher
abstraction level than the transistor

I Modeling of complex functions/algorithms or entire systems with
hardware description language (HDL)

I Translation into gate-level netlist and circuit layout with automated
synthesis and place-and-route software tools

I Consider the following:
I Examples of digital circuits, what are they?
I How the digital circuits are designed and implemented?
I Examples of design methods?
I Examples of implementation methods?

ELEC-E3540 Introduction
March 2, 2021

15/54

Course structure

I This is a self-learning course: there will be only one lecture
besides this one.

I Of course, help will be provided upon request
I Material:

I To finish the exercises, you need a book: Peter J Ashenden, “The
designer’s guide to VHDL”, 3rd edition.

I Slides, tutorials, instructions, etc. available in MyCourses and Aalto
version

ELEC-E3540 Introduction
March 2, 2021

16/54

Course structure
I Six mandatory pass/fail graded exercises

I Topics of the exercises are given in Aalto Version.
I For every exercise, a “pre-exercise task” is given in order to prepare

yourself for the actual exercise time.
I Design assignment: implementation of PIC16F84A

microcontroller
I Learn the complete design flow of a complex digital system (VHDL +

synthesis + place-and-route)
I Final course grade = design assignment grade

ELEC-E3540 Introduction
March 2, 2021

17/54

Course rules and schedule
I Purpose of exercise sessions:

I Main time to ask for help
I During the exercise time, you should ask for help for the problematic

parts, and finish the exercise.
I If questions outside exercise sessions should be posted to slack.
I Excellent time to “return” completed exercises
I Returning outside exercise session is possible, if your testbench can

be ran with a single command, and the simulation is flawless.
I In this case, the exercise is returned as a Gitlab issue, and assigned

to assistant for review.
I Do not send emails, unless the question is related to personal

matter or course administration.

ELEC-E3540 Introduction
March 2, 2021

18/54

Course rules and schedule

I Exercises can be time-consuming, so exercise session times are
not sufficient you must work also independently between the
sessions

I Exercises must be returned in order
I Not possible to e.g. return exercise 2 before 1

ELEC-E3540 Introduction
March 2, 2021

19/54

How to pass

I Complete all six exercises and get them accepted by the teacher
or assistant

I Complete the design assignment and submit it via MyCourses
(Code should be submitted to Aalto Version)

I Firm deadline for the project and everything is: 31st May 2018

ELEC-E3540 Introduction
March 2, 2021

20/54

Content of mandatory exercises

ELEC-E3540 Introduction
March 2, 2021

21/54

Six mandatory exercises

I Exercise will be carried out and completed during a Slack Hack
session.

I Assistant/lecturer will be there to help you and accept your
exercise to be completed.

I Time is limited, therefore, completing the pre-exercise task
beforehand is recommended.

I Exercises will be performed through X2Go NX-client and ssh from
computer class to computing machine vspace of Department of
MNT. Computer accounts required.

I Connection accessible only from Aalto network (e.g., computer
classrooms and through VPN)

I Tools to be used: git, gvim or emacs, Mentor Graphics Questasim.

ELEC-E3540 Introduction
March 2, 2021

22/54

On text editors

I The text editor is the most important tool you will ever use.
I I strongly suggest that you choose vim (or emacs) as your text

editor.
I Decent setup for vim will be provided with skeleton git project at

https://version.aalto.fi/gitlab/elec-e3540-exec/skeleton
I Go through “gvimtutor” to learn the basics.

ELEC-E3540 Introduction
March 2, 2021

23/54

Exercise topics

I Exercise 1: Test benches. Book chapters 1.1-1.4, 2.1-2.2, 2.5,
5.1-5.2 .
Things to learn: Types: bit, bit_vector, boolean, integer. Signals,
process, variables, sensitivity lists of the processes, process as a
part of a test bench, wait-statement, self-terminating simulation.
Workload: 2+4=6h

I Exercise 2: For loops and file IO, Book chapters 3.4, 5.3,13.1,
16.1
Things to learn: Components, File-IO, For loops, Using the
previously written test bench.
Workload: 2+4=6h

ELEC-E3540 Introduction
March 2, 2021

24/54

Exercise topics

I Exercise 3: Book chapters 9.1-9.2, 4.1-4.4, 14.1-14.2
Things to learn: Libraries, Vectors and arrays, Records,
for-if-generate, Indexing
Workload: 2+4=6h

I Exercise 4: Operation decoder for PIC. Book chapters 3.1-3.5,
2.2.5, 5.2, 21.5
Things to learn: State machines, Edge sensitive processes,
Synchronous logic, if and case, assert.
Workload: 2+8=10h

ELEC-E3540 Introduction
March 2, 2021

25/54

Exercise topics

I Exercise 5: ALU Design. Book chapters 6.1-6.6
Things to learn: Procedures and functions, structure of ALU of
the PIC16F84A microcontroller.
Workload: 2+8=10h

I Exercise 6: Memory design. Book chapters 21 particularly 21.6.
Things to earn: Memory implementations, Design for synthesis
Workload: (about) 2+8=10h

I Requirement for passing the course is participation and accepted
results of the exercises. Pass/Fail grading.

ELEC-E3540 Introduction
March 2, 2021

26/54

Design assingment: Microcontroller
implementaion

ELEC-E3540 Introduction
March 2, 2021

27/54

Design assingment: Microcontroller implementaion

I Perform the whole digital IC implementation flow of part of the
PIC16F84A microcontroller VHDL modeling + synthesis

I Starting year 2021, Place and route will be separated to course ow
it’s own.

I PIC chosen because of its simple structure, and because
assembler compiler is available

I Nevertheless, learning its functionality is not very straightforward,
so start studying immediately! datasheet available in MyCourses

ELEC-E3540 Introduction
March 2, 2021

28/54

Design Assignment: Microcontroller implementation
with VHDL
I Course will be graded based on study diary and documentation of

the design
I the study diary should document and describe the phases of the

design flow, difficulties encountered and how they were solved
I Things to be graded:

I Quality of the code, clear structure, commented, easy to read.
I Gained understanding of the subject. This should be visible in your

study diary.
I 100% functionality is not required to pass, but you should show that

you have tried your best and learned something.

ELEC-E3540 Introduction
March 2, 2021

29/54

Design Assignment: Microcontroller implementation
with VHDL

I On this course you will learn VHDL
and the whole digital IC
implementation flow while designing
a PIC16F84A Microcontroller.

I You learn the required skills during
the first six exercises, contents of
which also supports the PIC design
task.

I Learning the functionality of PIC is
hard, so start studying the
PIC-datasheet immediately.

;

ELEC-E3540 Introduction
March 2, 2021

30/54

Microcontroller implementation
I PIC16F84A has been chosen because

I Simple structure
I Small instruction set
I Simple ALU
I Assembler compiler available

ELEC-E3540 Introduction
March 2, 2021

31/54

Microcontroller implementation

I Design process of the microcontroller should be documented in a
study diary describing the design process, methods, difficulties
and sources of information.

I The designed microcontroller will be also synthesized to logic.
I Things to be graded

I Quality of the code, clear structure, commented, easy to read.
I Understanding of the subject gained. This should be visible in your

study diary.
I 100% functionality is not a required, but you should show that you

have tried your best and learned something.
I The grade of the PIC design assignment is the grade of the course.

ELEC-E3540 Introduction
March 2, 2021

32/54

Microcontroller implementation

;

ELEC-E3540 Introduction
March 2, 2021

33/54

Microcontroller implementation

;

ELEC-E3540 Introduction
March 2, 2021

34/54

Advice: Stages of command execution

I IFETCH: Fetch instruction from program memory and decode it.
I Mread: Read operand from memory, if required.
I Execute: Perform operation.
I Mwrite: Increment PC, write data to memory or register.

;
I Every instruction can be divided in “stages”. Maximum number is

four, since PIC datasheet describes execution in max four clock
cycles.

I Only Mwrite is strictly synchronous operation, but in order to make
things easier, advice is to implement the steps with a synchronous
state machine.

I Every command does not require every step.

ELEC-E3540 Introduction
March 2, 2021

35/54

Conlusion and next steps

ELEC-E3540 Introduction
March 2, 2021

36/54

Course Feedback

In the beginning of the course I had never even seen VHDL code
before and we were warned that this course would take alot of
time. This did not turn out to be an overstatement. Only the major
developments and complications were reported in this diary, since
if I would have given full disclosure this diary would probably be
double or triple the current length. Although, this course was one
of the most exhausting courses I have been to, I did learn alot of
things.

ELEC-E3540 Introduction
March 2, 2021

37/54

Course Feedback

This project has been quite a challenge since, every thing was
done for the first time. At the start of this course, I completely had
zero idea on VHDL, and digital flow. At the end, I am very
confident to try out challenging tasks and set my career at digital
design field. Overall, although quite hectic workload, I am
completely satisfied with what I have achieved.

ELEC-E3540 Introduction
March 2, 2021

38/54

Course Feedback

Lets also summarize some other aspects learned during the
process :

I I have advanced in Vim editor environment to some extent . It
made re-writing and debugging my code very easy. I insist on
every designer to know to use any editor very well.

I VHDL codes are not like the programming. The way to think is to
think hardware. Same structure can be implemented using
different commands, but it will effect how RTL is synthesized. Its
upto designer to choose command to best fit performance.

I While writing HDL codes, insted of giving fancy complicated code,
its more healthy habit to follow basic synthesizable template.

ELEC-E3540 Introduction
March 2, 2021

39/54

Course Feedback

I Digital design flow is very automatic process. The software will do
the routing and generate reports. So its necessary to know how to
use the software so that correct results are obtained.

I Digital design is very lengthy type of repetitive process, to prevent
loss of enormous time and frustation, TCL scripting knowledge will
prove to be very handy

I Another point would I emphasize while on starting to write HDL is
to proper test bench. Once made so that it will fit the purpose of
whole project, it shall save lot of time.

I Proper use of case statement and If else statement is very tricky in
VHDL. Deeper understanding in use of these statements can lead
to more optimized design

ELEC-E3540 Introduction
March 2, 2021

40/54

How to start?

I Establish X2Go connection to vspace.ecdl.hut.fi
I Add your vspace ssh key to Aalto version

https://version.aalto.fi/gitlab/profile/keys Instructions are also
provided there.

I Go to https://version.aalto.fi/gitlab/elec-e3540-exec/skeleton , read
the Readme.

I Clone it to your home directory with git clone
gitversion.aalto.fi:elec-e3540-exec/skeleton.git and do the setups
as instructed in the readme.

I Go to
https://version.aalto.fi/gitlab/elec-e3540-exec/exercise_template,
and read the Readme.

ELEC-E3540 Introduction
March 2, 2021

41/54

Appendix: Very short and comprehensive
VHDL guideline

ELEC-E3540 Introduction
March 2, 2021

42/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.

I File name always the same as entity name.
I Architecture always in the same file as the entity.
I Simple architecture names ’behav’-for behavioral and ’rtl’-for

synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

43/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.
I File name always the same as entity name.

I Architecture always in the same file as the entity.
I Simple architecture names ’behav’-for behavioral and ’rtl’-for

synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

44/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.
I File name always the same as entity name.
I Architecture always in the same file as the entity.

I Simple architecture names ’behav’-for behavioral and ’rtl’-for
synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

45/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.
I File name always the same as entity name.
I Architecture always in the same file as the entity.
I Simple architecture names ’behav’-for behavioral and ’rtl’-for

synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

46/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.
I File name always the same as entity name.
I Architecture always in the same file as the entity.
I Simple architecture names ’behav’-for behavioral and ’rtl’-for

synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

47/54

Very short and comprehensive VHDL guideline

I Dedicated directory for the VHDL code.
I File name always the same as entity name.
I Architecture always in the same file as the entity.
I Simple architecture names ’behav’-for behavioral and ’rtl’-for

synthesizable code are sufficient. No need to use imagination
here.

I Proper intendation, commenting, and structuring of the code, as in
any coding.

I No components and processes in the same file. Looks messy.
Testbench is an exception (no strict quideline).

I No positional port assignment.

ELEC-E3540 Introduction
March 2, 2021

48/54

File info and licensing
−−−
−− Copyr ight (c) 2016 Aal to U n i v e r s i t y
−−
−− Permission i s hereby granted , f r ee o f charge , to any person ob ta in ing a copy
−− of t h i s sof tware and assoc iated documentation f i l e s (the " Software ") , to deal
−− i n the Software w i thou t r e s t r i c t i o n , i n c l u d i n g w i thou t l i m i t a t i o n the r i g h t s
−− to use , copy , modify , merge , pub l ish , d i s t r i b u t e , subl icense , and / or s e l l
−− copies o f the Software , and to permi t persons to whom the Software i s
−− fu rn i shed to do so , sub jec t to the f o l l o w i n g cond i t i ons :
−−
−− Licensee i s not al lowed to d i s t r i b u t e the Software by making i t p u b l i c l y
−− a v a i l a b l e .
−−
−− The above copy r i gh t no t i ce and t h i s permiss ion no t i ce s h a l l be inc luded i n a l l
−− copies or s u b s t a n t i a l po r t i ons o f the Software .
−−
−− THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
−− IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
−− FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
−− AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
−− LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
−− OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
−− SOFTWARE.
−−−
−−
−− Timing delay measurement apparatus
−− I n i t i a l l y w r i t t e n by Marko Kosunen
−−
−− Last modi f ied by 20160219 17:50 marko . kosunen@aalto . f i
−−−
−−
−− Generics :
−− CycleCounterBi ts : Def ines the maximum of measurement du ra t i on
−− i n l o cyc les .
−− nGates : How many r e g i s t e r stages are used i n c l k domain
−− Boundaries to a l l e v i a t e m e t a s t a b i l i t y problems .
−−
−− Por ts :
−− r s t : Master rese t .
−− l o _ d i v _ i n : l o_s igna l , a lso c l k s i g n a l . i t i s assumed , t h a t
−− the delay measurement i s to be perfromed once
−− dur ing the cyc le o f t h i s s i g n a l .
−− Usual ly a master l o d i v ided by some f a c t o r .
−− osc_in : O s c i l l a t o r i np u t . This s i g n a l i s not i n synchronony wi th
−− l o _ d i v _ i n . I t i s not al lowed to be i n synchrony .
−− osc_ in_d iv : I f the osc_in i s too fas t , i t i s poss ib le to
−− d i v i d e i npu t osc f req by 1 ,2 , 4 or 8 .
−− s t a r t : R is ing edge of t h i s between two r i s i n g lo_d i v_ in ’ s t r i g g e r s
−− the measurement .
−− ncycles : How many cyc les w i l l be measured .
−− A_ref : Reference po in t o f the measurement . R is ing edge enables
−− the measurement counter .
−− A_del : Delayed A_ref . R is ing edge d isab les the measurement counter .
−− count_ re f : How many osc per iods the measurement l as ted .
−− Together w i th ncycles , prov ides the t im ing re ference
−− count_meas : Re la t i v e l y , how long i s the pulse A_ref −>A_del
−− compared to l o _ d i v _ i n per iod .
−− meas_rdy : Measurement ready i n d i c a t o r . Data a t the output r e g i s t e r s
−− i s v a l i d when t h i s s i g n a l i s high .
−−−

ELEC-E3540 Introduction
March 2, 2021

49/54

Library definitions

LIBRARY ieee ;
USE ieee . s td_ log ic_1164 .ALL ;
USE ieee . numeric_std .ALL ;
USE std . t e x t i o .ALL ;

ELEC-E3540 Introduction
March 2, 2021

50/54

Entity declaration

ENTITY t im ing_d i f fe rence_mete r IS
GENERIC(Cyc leCounterBi ts : INTEGER := 30;

nGates : INTEGER := 4) ;
PORT(r s t : IN STD_LOGIC ;

l o _ d i v _ i n : IN STD_LOGIC ;
osc_in : IN STD_LOGIC ;
osc_ in_d iv : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
s t a r t : IN STD_LOGIC ;
ncycles : IN STD_LOGIC_VECTOR(CycleCounterBi ts −1 DOWNTO 0) ;
A_ref : IN STD_LOGIC ;
A_del : IN STD_LOGIC ;
count_ re f : OUT STD_LOGIC_VECTOR(CycleCounterBi ts+1 DOWNTO 0) ;
count_meas : OUT STD_LOGIC_VECTOR(CycleCounterBi ts+1 DOWNTO 0) ;
meas_rdy : OUT STD_LOGIC

) ;
END t im ing_d i f fe rence_mete r ;

ELEC-E3540 Introduction
March 2, 2021

51/54

Architecture, type and signal declaration
ARCHITECTURE r t l OF t im ing_d i f fe rence_mete r IS

TYPE t iming_meas_state IS (i d l e , rs t_counts , running , w r i t i n g) ;
SIGNAL t iming_meas_state_current : t iming_meas_state ;
SIGNAL p r e v _ s t a r t : STD_LOGIC ;
SIGNAL cyc le_counter : STD_LOGIC_VECTOR(CycleCounterBi ts −1 DOWNTO 0) ;
SIGNAL s_en_ref : STD_LOGIC ;
SIGNAL s_en_meas_aref : STD_LOGIC ;
SIGNAL s_en_meas_adel : STD_LOGIC ;
SIGNAL s_en_meas : STD_LOGIC ;
SIGNAL s_rs t_counte rs : STD_LOGIC ;
SIGNAL s_meas_rdy : STD_LOGIC ;
SIGNAL s_en_ref_gated : STD_LOGIC_VECTOR(0 TO nGates) ;
SIGNAL s_en_meas_gated : STD_LOGIC_VECTOR(0 TO nGates) ;
SIGNAL s_meas_rdy_gated : STD_LOGIC_VECTOR(0 TO nGates) ;
SIGNAL s_wr i te_regs_gated : STD_LOGIC_VECTOR(0 TO nGates) ;
SIGNAL s_meas_rdy_gated_lo : STD_LOGIC_VECTOR(0 TO nGates) ;
SIGNAL s_wr i te_regs_gated_ lo : STD_LOGIC_VECTOR(0 TO nGates) ;

SIGNAL s_osc_in : STD_LOGIC ;

SIGNAL s_osc_div_p2 : STD_LOGIC ;
SIGNAL s_osc_div_p4 : STD_LOGIC ;
SIGNAL s_osc_div_p8 : STD_LOGIC ;
−−2 more b i t s f o r measurement counters a l low f a s t e r o s c i l l l a t o r than l o
SIGNAL s_count_re f : STD_LOGIC_VECTOR(CycleCounterBi ts+1 DOWNTO 0) ;
SIGNAL s_count_meas : STD_LOGIC_VECTOR(CycleCounterBi ts+1 DOWNTO 0) ;
SIGNAL s_wr i te_regs : STD_LOGIC ;
SIGNAL s_ack_wr i te_regs : STD_LOGIC ;
SIGNAL cycleone : STD_LOGIC_VECTOR(CycleCounterBi ts −1 DOWNTO 0) ;
SIGNAL counterone : STD_LOGIC_VECTOR(CycleCounterBi ts+1 DOWNTO 0) ;

BEGIN
−−END r t l

ELEC-E3540 Introduction
March 2, 2021

52/54

Signal assignment

−−Constants
cycleone (CycleCounterBi ts −1 DOWNTO 1) <=(OTHERS= > ’0 ’) ;
cycleone (0) <= ’1 ’ ;

counterone (CycleCounterBi ts+1 DOWNTO 1) <=(OTHERS= > ’0 ’) ;
counterone (0) <= ’1 ’ ;

ELEC-E3540 Introduction
March 2, 2021

53/54

Processes and variables
−−The osc_ in_d i v i de r
oscDiv :PROCESS(osc_in , osc_in_div , r s t)

VARIABLE v_osc_div_p2 : STD_LOGIC ;
VARIABLE v_osc_div_p4 : STD_LOGIC ;
VARIABLE v_osc_div_p8 : STD_LOGIC ;
VARIABLE v_osc_in : STD_LOGIC ;

BEGIN
IF (r s t = ’ 1 ’) THEN

v_osc_div_p2 : = ’ 0 ’ ;
v_osc_div_p4 : = ’ 0 ’ ;
v_osc_div_p8 : = ’ 0 ’ ;
v_osc_in : = ’ 0 ’ ;

ELSIF (r s t = ’ 0 ’) THEN
IF RISING_EDGE(osc_in) THEN

v_osc_div_p2 :=NOT s_osc_div_p2 ;
IF (s_osc_div_p2 = ’ 0 ’) THEN

v_osc_div_p4 :=NOT s_osc_div_p4 ;
END IF ;
IF ((s_osc_div_p2 OR s_osc_div_p4) = ’ 0 ’) THEN
v_osc_div_p8 :=NOT s_osc_div_p8 ;
END IF ;

END IF ;
END IF ;
CASE osc_ in_d iv IS

WHEN " 00 " =>
v_osc_in := osc_in ;

WHEN " 01 " =>
v_osc_in := v_osc_div_p2 ;

WHEN " 10 " =>
v_osc_in := v_osc_div_p4 ;

WHEN " 11 " =>
v_osc_in := v_osc_div_p8 ;

WHEN OTHERS =>
v_osc_in := osc_in ;

END CASE ;
s_osc_div_p2 <=v_osc_div_p2 ;
s_osc_div_p4 <=v_osc_div_p4 ;
s_osc_div_p8 <=v_osc_div_p8 ;
s_osc_in <=v_osc_in ;

END PROCESS;

ELEC-E3540 Introduction
March 2, 2021

54/54

Component usage

−−Dut here
measurementUnit : t im ing_d i f fe rence_mete r

GENERIC MAP(B i t s => Bi ts ,
nGates => nGates)

PORT MAP(
r s t => rs t ,
l o _ i n => lo ,
osc_in => osc ,
s t a r t => s t a r t ,
ncyc les => ncycles ,
A_ref => A_ref ,
A_del => A_del ,
coun t_ re f => count_ref ,
count_meas => count_meas ,
meas_rdy => meas_rdy

) ;

	Outline
	 On Digital design
	Course arrangements
	Your teachers
	Course objective
	Course structure
	Course structure
	Content of mandatory exercises
	Six mandatory exercises
	Exercise topics
	Design assingment: Microcontroller implementaion
	Design assingment: Microcontroller implementaion
	Conlusion and next steps
	How to start?

	Appendix: Very short and comprehensive VHDL guideline

