
ELEC-E3540 Digital Microelectronics II

Writing synthesizable VHDL

Enrico Roverato

enrico.roverato@aalto.fi

12.03.2018

ELE Department

ELEC-E3540 – Digital Microelectronics II 12.03.2018
2/35

Logic synthesis

• Logic synthesis = the process of turning a behavioral

model of a digital circuit (i.e. VHDL) into a design

implementation in terms of logic gates (AND, OR, …)

• The circuit manufacturer provides the library of

“standard cells”

– each standard cell implements an elementary logic function

– each cell is usually available in a multitude of driving strengths

• Synthesis is a highly automated task!

ELEC-E3540 – Digital Microelectronics II 12.03.2018
3/35

What is synthesizable VHDL?

• During the 6 exercises, you are learning the basics of

VHDL coding and simulation

• However, not all VHDL constructs can be understood by

the synthesis tool

• In addition, there are some “good practices” that will

produce a better synthesis outcome

ELEC-E3540 – Digital Microelectronics II 12.03.2018
4/35

RTL

coding style

ELEC-E3540 – Digital Microelectronics II 12.03.2018
5/35

RTL coding style

• RTL (Register Transfer Level) is the standard design

abstraction used to model synchronous digital circuits

with hardware description languages (Verilog, VHDL)

• Learning the RTL coding style is mandatory in order

to pass this course!

– exercises 4-6 and the final assignment will not be accepted,

unless they follow the RTL style

– even though everything seems to work!

ELEC-E3540 – Digital Microelectronics II 12.03.2018
6/35

RTL coding style

• RTL = describe a digital design

in terms of

• registers (memory elements) and

• the flow/transformation of data between them (combinational logic)

• Only the registers have memory

• Only the registers are triggered by the clock signal

• Combinational logic only calculates outputs when inputs

change

• Implementation resembles state machine

R

R RC1

C2

clk

in1

out2

out1

ELEC-E3540 – Digital Microelectronics II 12.03.2018
7/35

RTL coding style

• In simple words, RTL is all about this:

REGISTERS
EVERYTHING

ELSE
vs

R

R RC1

C2

clk

in1

out2

out1

ELEC-E3540 – Digital Microelectronics II 12.03.2018
8/35

How to model a register

• Simple edge-triggered D flip-flop

D Q

clk

• With a process:

• Without a process (concurrent signal assignment):

ELEC-E3540 – Digital Microelectronics II 12.03.2018
9/35

How to model a register

• D flip-flop with asynchronous reset

D Q

clk
rst

ELEC-E3540 – Digital Microelectronics II 12.03.2018
10/35

How to model a register

• D flip-flop with synchronous reset

D Q

clk
rst

ELEC-E3540 – Digital Microelectronics II 12.03.2018
11/35

How to model a register

• D flip-flop with synchronous write enable

D Q

clk

en

ELEC-E3540 – Digital Microelectronics II 12.03.2018
12/35

How to model a register

• The basic constructs shown in the previous slides can

be combined to build more complex registers

• Example: D flip-flop with asynchronous reset and

synchronous write enable

D Q

clk
rst

en

ELEC-E3540 – Digital Microelectronics II 12.03.2018
13/35

How to model combinational logic

• Typically with a process which is sensitive to all input

signals to the logic block

• In VHDL-2008, reserved word “all” can be used to

replace a complete sensitivity list

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
14/35

How to model combinational logic

• IMPORTANT: all outputs of a combinational logic block

must be assigned some unique value, for every value

of the inputs!

• Otherwise the circuit has memory → it is no longer

purely combinational

• Violation of this rule will result in “latch inferred”

warnings during the elaboration phase of logic synthesis

ELEC-E3540 – Digital Microelectronics II 12.03.2018
15/35

How to model combinational logic

• Example 1: output not assigned under certain conditions

out2 not assigned when in1 = ‘0’

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
16/35

How to model combinational logic

• Example 1: output not assigned under certain conditions

Solution #1:

assign a value for out2 in all cases

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
17/35

How to model combinational logic

• Example 1: output not assigned under certain conditions

Solution #2:

initialize out2 before the if-statement

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
18/35

How to model combinational logic

• Example 2: incomplete conditional statement (don’t write

these)

not defined what happens when in1 = “11”

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
19/35

How to model combinational logic

• Example 2: incomplete conditional statement

Solution: terminate conditional

statements with else, when others

to include all possible cases

comb_logic

in1

in2

in3

out1

out2

ELEC-E3540 – Digital Microelectronics II 12.03.2018
20/35

Other useful hints

ELEC-E3540 – Digital Microelectronics II 12.03.2018
21/35

Read the book!

• Before starting the final assignment work, it is strongly

recommended that you read:

1. P. J. Ashenden, The designer’s guide to VHDL, 3rd ed.

• Chapter 21 - Design for synthesis

2. H. Bhatnagar, Advanced ASIC chip synthesis (PDF in

MyCourses)

• Chapter 5 - Partitioning and coding styles

ELEC-E3540 – Digital Microelectronics II 12.03.2018
22/35

Think “hardware”!

• When writing VHDL, have always in mind what you want

the synthesis tool to implement!

• If you have no idea how your VHDL is going to be

implemented, most likely the synthesis tool has no idea

as well :-)

• Remember: the synthesis tool is stupid (and the static

verification tool is even more stupid)

ELEC-E3540 – Digital Microelectronics II 12.03.2018
23/35

Avoid unessential features

• The simpler your VHDL code

– the smaller the area and power consumption

– the easier your life

– the better your VHDL will be understood by the synthesis tool

• Ideally, your VHDL code should achieve the desired

functionality with the minimum possible complexity!

ELEC-E3540 – Digital Microelectronics II 12.03.2018
24/35

Variables vs signals

• Students are usually tempted to make extensive use of
variables within processes
– Similarity with software-oriented programming languages

– Avoid “delta cycle delay” of signal assignments.

– Consequent assignments to same signal within one clock cycle
usually do not result in the intended (programming style)
behaviour.

• However, try not to abuse variables

• Reason: variables are abstract, signals are real (i.e. physical
wires in your chip)

• Using too many variables
– is in contrast with the “think hardware” guideline given earlier

– will cause troubles, because you don’t understand how they are
mapped to a physical circuit

ELEC-E3540 – Digital Microelectronics II 12.03.2018
25/35

“After” statements

• Statements like after, wait for and similar are

meaningless for the synthesis tool

– don’t waste your time with those

• VHDL should describe the ideal logic behavior of your

circuit

– timing is taken into account during synthesis and P&R

• P.S. = The simulation testbench must contain wait

statements! This is not a problem, as the testbench will

not be synthesized

ELEC-E3540 – Digital Microelectronics II 12.03.2018
26/35

Initial values

• Initial values (e.g. in signal declarations) are ignored by

the synthesis tool

– You MUST initialize your signal with reset, or assing constants

to them with proper signal assignment (not in signal declaration)

– Not doing this is very risky.

– Again, you can still use them in the simulation testbench

• If you want to be sure that your memory and/or registers

are initialized to 0, you must include a RESET signal

– Wither synchronous or asynchronous

ELEC-E3540 – Digital Microelectronics II 12.03.2018
27/35

Naming

• The synthesized netlist is written in VERILOG

• In your VHDL, avoid using names that are reserved

words for VERILOG

– examples: “input”, “output” can be used in VHDL, but they will

cause problems in VERILOG

• As a general rule, use your common sense

– avoid any potentially dangerous words :-)

ELEC-E3540 – Digital Microelectronics II 12.03.2018
28/35

Dealing with numbers

• Simple arithmetic operations are well supported by

synthesis tools

– package ieee.numeric_std

• Correct way to implement an addition:

• Correct way to address a memory cell:

• Don’t implement e.g. the internal adder architecture by

yourself! Let the synthesis tool do this for you

A couple of words on TCL

ELEC-E3540 – Digital Microelectronics II 12.03.2018
30/35

Tool Command Language

• Tool Command Language (TCL) is the scripting

language used to control all tools needed for the digiflow

– QuestaSim, Design Compiler, Formality, Encounter, PrimeTime

• Every operation performed through the GUI corresponds

to one or many TCL commands

– the inverse is not necessarily true :-)

• Worth learning at least the very basics of the language

– if you want to learn more, use google!

ELEC-E3540 – Digital Microelectronics II 12.03.2018
31/35

Command invocation

• A TCL script consists of several command invocations:

command1 arg11 arg12 ... arg1N

command2 arg21 arg22 ... arg2N

...

• The list of valid command names and arguments can be

found in each tool’s text reference manual

ELEC-E3540 – Digital Microelectronics II 12.03.2018
32/35

Command substitution

• Square brackets [] allow to execute commands in a

nested fashion

– the command inside brackets is executed first, and its result is

used as argument to another command

• Example (Design Compiler):

set_load 0.017 [all_outputs]

command name arg#1 (explicit) arg#2 (result from nested command)

ELEC-E3540 – Digital Microelectronics II 12.03.2018
33/35

Variables

• Variable declaration:

set varname varvalue

• Variable substitution (i.e. using the variable’s content):

$varname

${varname}

• All variables are manipulated as strings!

• Example:

set loadvalue 0.017

set_load $loadvalue [all_outputs]

ELEC-E3540 – Digital Microelectronics II 12.03.2018
34/35

Quotes

• Quotes are used to group many space-separated words

into a single argument

– for example, to create lists

• Two tipes of quotes used in TCL

– double quotes " ": substitution does take place within them

– curly braces { }: substitution does not take place within them

ELEC-E3540 – Digital Microelectronics II 12.03.2018
35/35

Quotes

• Example:

set var1 value1

command1 "$var1 [command2]"

command1 {$var1 [command2]}

• Assume that executing command2 returns value2

– the line with double quotes uses string value1 value2 as first

argument of command1

– the line with curly braces uses string $var1 [command2] as first

argument of command1 (no substitution!)

