ELEC-E3540 Digital Microelectronics Il
Writing synthesizable VHDL

Enrico Roverato
enrico.roverato@aalto.fi

12.03.2018

ELE Department

* Logic synthesis = the process of turning a behavioral
model of a digital circuit (i.e. VHDL) into a design
iImplementation in terms of logic gates (AND, OR, ...)

« The circuit manufacturer provides the library of

“standard cells”
— each standard cell implements an elementary logic function
— each cell is usually available in a multitude of driving strengths

« Synthesis is a highly automated task!

A,, Aalto University

« During the 6 exercises, you are learning the basics of
VHDL coding and simulation

 However, not all VHDL constructs can be understood by
the synthesis tool

 In addition, there are some “good practices” that will
produce a better synthesis outcome

A,, Aalto University

RTL
coding style

,, Aalto University
School of Electrical ELEC-E3540 - Digital Microelectronics Il 12.03.2018
Engineering 4/35

 RTL (Register Transfer Level) is the standard design
abstraction used to model synchronous digital circuits
with hardware description languages (Verilog, VHDL)

 Learning the RTL coding style is mandatory in order
to pass this course!

— exercises 4-6 and the final assignmentwill not be accepted,
unless they follow the RTL style

— even though everything seemsto work!

A,, Aalto University

« RTL = describe a digital design "
In terms of clk
« registers (memory elements) and
» the flow/transformation of data between them (combinational logic)

* Only the registers have memory
* Only the registers are triggered by the clock signal

« Combinational logic only calculates outputs when inputs
change

« Implementation resembles state machine

,, Aalto University
School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 6/35

RTL coding style

* In simple words, RTL is all about this:

EVERYTHING
ELSE

/

outl

REGISTERS

&

Aalto Uni
A,, School fEI t cal ELEC-E3540 - Digital Microelectronics Il 12.03.2018
Engineering 7/35

How to model a register

« Simple edge-triggered D flip-flop

» With a process:

DFF: process(clk)

begin
if rising edge(clk) then
3 3 Q == D;
D (g end if;
end process;
JAN
clk —
» Without a process (concurrent signal assignment):
Q == D when rising edge(clk);
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 8/35

How to model a register

* D flip-flop with asynchronous reset

_ I
clk st

DFF_arst: process(rst, clk)
begin
if rst = '1' then
Q0 == (others == '0');
elsif rising edge(clk) then
Q == D;
end if;
end process;

,, Aalto University
School of Electrical

Engineering

ELEC-E3540 - Digital Microelectronics |

12.03.2018
9/35

How to model a register

* D flip-flop with synchronous reset

DFF srst: process(clk)
begin

if rising edgeiclk) then
if rst = '1' then
D Q == (others == '0"):
E— Q —> else
0 == D;
A eqd if;
clk | end if;
— end process:
rst P
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 10/35

How to model a register

* D flip-flop with synchronous write enable

DFF _en: process(clk)

begin
en — if rising edge(clk) then
if en = '1" then
—D Q}l—
0 == D;
end if;
AN end if;
clk — end process;
,, Aalto University
A School of Electrical ELEC-E3540 - Digital Microelectronics|I 12.03.2018
Engineering 11/35

* The basic constructs shown in the previous slides can
be combined to build more complex registers

« Example: D flip-flop with asynchronous reset and
synchronous write enable

DFF_arst en: process(rst, clk]

begin
en — if rst = '1' then
Q0 == (others => '8');
D Q elsif rising edge(clk) then
if en = '1" then
AN | 0 <= D;
clk — 'El_'ld if;
rst end if;
end process;
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics Il 12.03.2018
Engineering

12/35

» Typically with a process which is sensitive to all input
signals to the logic block

* In VHDL-2008, reserved word “all” can be used to
replace a complete sensitivity list

comb logic: process{inl, in2, 1in3)

begin
- end process; _
Inl _ outl
in2 comb_logic
in3 out2

comb logic: process(all)
begin

end process;

A,, Aalto University

How to model combinational logic

 IMPORTANT: all outputs of a combinational logic block
must be assigned some unigue value, for every value
of the inputs!

« Otherwise the circuit has memory - it is no longer
purely combinational

 Violation of this rule will result in “latch inferred”
warnings during the elaboration phase of logic synthesis

,, Aalto University
School of Elect ical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineerin 14/35

How to model combinational logic

« Example 1: output not assigned under certain conditions

inl | outl
!n2 comb_logic comb_logic_wrong: process(all)
IN3 out2 begin
if inl = '1' then
outl == 1n2 and in3;
out2 == 1n2 or in3;
else
outl == 1n2 xor 1in3;
. . — end if:
out2 not assigned when inl = ‘0’ end process;
A’, Aalto University o _ _
School of Electrical ELEC-E3540 - Digital Microelectronics Il 12.03.2018
Engineering 15/35

How to model combinational logic

« Example 1: output not assigned under certain conditions

inl | outl
!n2 comb_logic comb_logic_correctl: process(all)
IN3 out2 begin

if inl = '1' then
outl == 1n2 and in3;
out2 == 1in2 or in3:;
else
outl == in2 xor 1in3;

_ —_————_____9, out2 == (others == '0"');
Solution #1.: end if;

assign a value for out2 in all cases end process;
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 16/35

How to model combinational logic

« Example 1: output not assigned under certain conditions

inl | outl
!n2 comb_logic comb_logic correct2: process(all)
N3 out2 begin
out?2 <= (others == '8');
if inl = '1' then
outl == in2 and in3;
out?2 == in2 or in3;
else
_ outl == 1n2 xor 1in3;
Solution #2: end if;
initialize out2 before the if-statement end process;
A’, Aalto University_ o _ _
School of Electrical ELEC-E3540 - Digital Microelectronics Il 12.03.2018
Engineering 17/35

How to model combinational logic

« Example 2: incomplete conditional statement (don’t write

these)
inl outl b logi (all)
: ; comb logic wrong: process(a
!n2 comb _logic begin
IN3 out2 case inl is
when "00" ==
outl <= in2 + in3;
out2 <= in2 * in3;
when "01" ==
outl <= in2 - in3;
out2 <= in2 & in3;
when "18" ==
. . — 44" outl == in2;
not defined what happens when in1 =“11” —> out2 - some function(in2, in3):
end case;
end process;
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 18/35

How to model combinational logic

« Example 2: incomplete conditional statement

comb_logic correct: process{all)

begin
) case inl is
In1 outl when "80" ==
. . outl == in2 + 1in3;
In2 comb_loglc out2 == in2 * in3;
in3 out? when "01" ==
outl == in2 - in3;
out?2 <= in2 & 1in3;
when "18" ==
outl == in2;
_ _ o out2 == some function(in2, in3)};
Solution: terminate conditional ___— when others -
. = i
statements with else, when others out? < (others —> '6'):
to include all possible cases end case;
end process;
,, Aalto University
A School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 19/35

Other useful hints

,, Aalto University
School of Electrical ELEC-E3540 - Digital Microelectronics Il 12.03.2018
Engineering 20/35

« Before starting the final assignment work, it is strongly
recommended that you read:

1. P.J.Ashenden, The designer’s guide to VHDL, 3rd ed.
« Chapter 21 - Design for synthesis

2. H. Bhatnagar, Advanced ASIC chip synthesis (PDF in
MyCourses)

« Chapter 5 - Patrtitioning and coding styles

A,, Aalto University

 When writing VHDL, have always in mind what you want
the synthesis tool to implement!

 If you have no idea how your VHDL is going to be

Implemented, most likely the synthesis tool has no idea
as well :-)

« Remember: the synthesis tool is stupid (and the static
verification tool is even more stupid)

A,, Aalto University

 The simpler your VHDL code
— the smallerthe area and power consumption
— the easier your life
— the better your VHDL will be understood by the synthesis tool

 Ideally, your VHDL code should achieve the desired
functionality with the minimum possible complexity!

A,, Aalto University

Students are usually tempted to make extensive use of
variables within processes

— Similarity with software-oriented programming languages

— Avoid “delta cycle delay” of signal assignments.

— Consequent assignments to same signal within one clock cycle
usually do not result in the intended (programming style)
behaviour.

However, try not to abuse variables

Reason: variables are abstract, signals are real (i.e. physical
wires in your chip)

Using too many variables
— is in contrast with the “think hardware” guideline given earlier

— will cause troubles, because you don’t understand how they are
mapped to a physical circuit

A,, Aalto University

« Statements like after, wait for and similar are
meaningless for the synthesis tool
— don’t waste your time with those

 VHDL should describe the ideal logic behavior of your
circuit
— timing is taken into account during synthesis and P&R

 P.S. = The simulation testbench must contain wait
statements! This is not a problem, as the testbench will
not be synthesized

A,, Aalto University

 Initial values (e.g. in signal declarations) are ignored by

the synthesis tool

— You MUST initialize your signal with reset, or assing constants
to them with proper signal assignment (not in signal declaration)

— Not doing this is very risky.
— Again, you can still use them in the simulationtestbench

 If you want to be sure that your memory and/or registers
are initialized to 0, you must include a RESET signal
— Wither synchronous or asynchronous

A,, Aalto University

« The synthesized netlist is written in VERILOG

* In your VHDL, avoid using names that are reserved
words for VERILOG

— examples: “input”, “output” can be used in VHDL, but they will

cause problemsin VERILOG

* As a general rule, use your common sense
— avoid any potentially dangerous words :-)

A,, Aalto University

« Simple arithmetic operations are well supported by
synthesis tools
— package ieee.numeric_std

« Correct way to implement an addition:
sum <= STD LOGIC VECTOR(UNSIGNED(a) + UNSIGNED(b)});

« Correct way to address a memory cell:

sel <= to_integer(UNSIGNED (addr));
RAM out <= RAM array(sel);

 Don’timplement e.g. the internal adder architecture by
yourself! Let the synthesis tool do this for you

A,, Aalto University

A couple of words on TCL

,, Aalto Uni
School fEI t cal
Engineering

 Tool Command Language (TCL) is the scripting
language used to control all tools needed for the digiflow
— QuestaSim, Design Compiler, Formality, Encounter, PrimeTime

« Every operation performed through the GUI corresponds
to one or many TCL commands
— the inverse is not necessarily true :-)

« Worth learning at least the very basics of the language
— 1f you want to learn more, use google!

A,, Aalto University

Command invocation

« A TCL script consists of several command invocations:

commandl argll argl2 ... arglN
command2 arg2l arg22 ... arg2N

* The list of valid command names and arguments can be
found in each tool’s text reference manual

,, Aalto University
School of Elect ical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineerin 31/35

Command substitution

« Square brackets [] allow to execute commands in a

nested fashion

— the commandinside brackets is executed first, and its result is
used as argument to another command

« Example (Design Compiler):

set load 0.017 [all _outputs]

/| \

command name arg#l (explicit) arg#2 (result from nested command)

,, Aalto University
School of Electrical ELEC-E3540 — Digital Microelectronics I 12.03.2018
Engineering 32/35

Variables

Variable declaration:
set varname varvalue

Variable substitution (i.e. using the variable’s content):
$varname
${varname}

All variables are manipulated as strings!

Example:
set loadvalue 0.017
set_load $loadvalue [all_outputs]

,, Aalto University
School of Electrical ELEC-E3540 - Digital Microelectronics | 12.03.2018
Engineering 33/35

* Quotes are used to group many space-separated words
Into a single argument
— for example, to create lists

« Two tipes of quotes used in TCL
— double quotes " ": substitution does take place within them
— curly braces { }. substitution does not take place within them

A,, Aalto University

Quotes

« Example:
set varl valuel
commandl "$varl [command2]"
commandl {$varl [command?2]}

« Assume that executing command?2 returns value2

— the line with double quotes uses string valuel value2 as first
argument of commandl

— the line with curly braces uses string $varl [command?2] as first
argument of command1 (no substitution!)

,, Aalto University
School of Electrical ELEC-E3540 - Digital Microelectronics | 12.03.2018
Engineering 35/35

