
PHYS-E0463 Fusion Energy Technology 27.1.2021

Groth Kiviniemi Kumpulainen Exercise set 4

General information

The exercise sessions will be held as blackboard sessions, where the participants will present
their solutions to the group. As such, the problems should be set up and solved before
the session. The focus of the exercises lies on analyzing and discussing the task at hand
together with the group: thus, a perfect solution is not required to be awarded points. The
(attempted) solutions should be submitted via email to the assistant at the start of the
exercise session on February 10th. A point will be awarded for each question, and a person
will be chosen to present their solution from the pool.
This exercise set concentrates on tokamaks and highlights especially the key concept of
trapped particles that play a role in several physical processes in tokamaks, including trans-
port of heat and particles.

Exercise 1.

Tritium breeding in tokamaks For tokamak reactors, a breeding blanket is expected to
surround the plasma to breed tritium out of lithium through the following reactions:

6Li + n→4 He + T + 4.8MeV
7Li + n→4 He + T + n− 2.5MeV.

Consider a 50-50 D-T fuel fusion plasma, neglecting the residual D-D fusion energy pro-
duction. Estimate the contribution of the energy production by the n-Li reactions in the
breeding blanket on the overall energy production in the reactor, assuming:

a natural isotope ratio between 6Li (7.42 %) and 7Li (92.58 %).a)

a 1:1 isotope ratio.b)

Comment on your results.

Figure 1: Cross-sections for n-Li reactions.

c)
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Exercise 2.

Plasma con�nement in tokamaks

In order to understand the plasma con�nement in tokamaks, one must consider the loss-
and transport phenomenon of heat and particles in the plasma. Classical and neoclassical
predictions for radial transport in tokamaks will be investigated. These theoretical �ndings
will be compared to experimentally observed values. Despite the many calculations and the
platitude of information, the mathematics are straightforward, so do not lose hope.

The experimentally observed con�nement time in tokamaks is τE ∼ 1 s, while the minor
radii in reactor scale tokamaks are approximately a ∼ 1 m. Based on these ballpark
values, estimate the radial transport (di�usion) coe�cient for tokamaks, assuming D ∼
r2/τ .

a)

Using the classical concept of collisional di�usion, the di�usion coe�cient can be ex-

pressed as D ∼ (step size)2 × (collisionfrequency). Thus, the classical estimate for the
radial di�usion coe�cient is given by

Dclassic ∼ (rL,e)
2νei,

where rL,e is the electron gyroradius and νei is the electron-ion collision frequency. The
classical collisional thermal conductivity coe�cients are

χs,classic ∼ (rL,s)
2νss

where the subscript s refers to electrons and ions (s ∈ {i, e}), rL,s is the ion/electron
gyro radius, while νss are the ion-ion/electron-electron self-collision frequencies. Now,
calculate the resulting values for Dclassic, χi,classic, and χe,classic assuming νei ∼ 4.6 ×
103 s−1 ∼ νee, νii ∼ (me/mi)

1/2νei, Te = Ti ∼ 5 keV, and B0 ∼ 5 T.

b)
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Due to the geometry of the tokamak, the toroidal �eld coils are denser towards the
axis of symmetry, resulting in a stronger magnetic �eld closer to the axis of symmetry.
Thus, the side of the plasma close to the axis of symmetry is referred to as the high
�eld side (HFS), and the outer plasma as the low �eld side (LFS). This inhomogeneity
in the toroidal magnetic �eld further enhances the transport in the device, due to cross-
�eld drifts. These drifts e�ectively increase the di�usion step size, and the resulting
transport, from the classical step size, and the resulting transport is referred to as
neoclassical transport.

The radial gradient in the magnetic �eld also results in a phenomenon called parti-
cle trapping, in which a fraction of the particles are re�ected before reaching the HFS
plasma. Most of these trapped particles complete banana shaped orbits and are, natu-
rally, called banana trapped particles, while the non-trapped particles are referred to as
passing particles. Figure 2 should help, but watching an animation is even better, e.g.
https://www.youtube.com/watch?v=XUhNium3VEo.

Calculate the di�usion coe�cient estimates for both trapped and passing particles, using
the neoclassical transport coe�cient approximation for passing particles:

Dp
neoclassic ∼ 4q2Dclassic

χps,neoclassic ∼ q2χs,classic

where q is the safety factor, a quantity related to the windedness of the magnetic �eld.
The neoclassical transport coe�cient for trapped particles can then be estimated as

Dt
neoclassic ∼ 2.2q2(R0/r)

3/2Dclassic

χte,neoclassic ∼ 0.89q2(R0/r)
3/2χe,classic

χti,neoclassic ∼ 0.68q2(R0/r)
3/2χi,classic

Calculate the neoclassical estimates for the radial transport coe�cients assuming R0 ∼ 3
m, r ∼ 1 m, and q ∼ 3.

c)

What conclusions can you make regarding classical and neoclassical collisional di�usion
with regards the estimated cross-�eld transport calculated in a)?

d)
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Figure 2: Illustration of trapped particle orbits in a tokamak. The phenomenon is not limited
just to fusion devices but occurs also in e.g. Earth's magnetosphere.

Exercise 3.

Trapped particles

Consider a particle starting at the outer mid-plane (LFS) of the poloidal cross-section of
the torus with velocity v0 = v‖,0b+v⊥,0, where ‖ stands for parallel and ⊥ for perpendicular
relative to the magnetic �eld direction b. The kinetic energy of the particle can similarly be
divided into perpendicular and parallel components. Ref. [1] might prove helpful in these
calculations.

Calculate the particle trapping condition for the pitch
(
v‖,0
v0

<
√

1− Bmin

Bmax

)
. Consider

the extreme cases of the particle being located at at the LFS (minimum B) and bounc-
ing HFS (maximum B), and use the conservation of energy and magnetic moment(
µ =

mv2⊥
2B

)
and the fact that the parallel velocity is momentarily zero at the bounce.

a)

Show that this condition is equivalent to the one given in the lecture slides
(
v‖,0
v0

<
√

2 r
R0

)
when assuming R0 >> r and B(x) = B0R0

R0+x
with −r ≤ x ≤ r. B0 is the magnetic �eld

at the magnetic axis (in the middle of the cross section of the torus).

b)
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Assuming Maxwellian velocity distribution, integrate over the trapped cone in the ve-
locity space in spherical coordinates to obtain the fraction of trapped particles, i.e.
calculate

ft =
1

n

∫ π−θc

θc

sinθdθ

∫ 2π

0

dφ

∫ ∞
0

FM(v)v
2dv,

where θ corresponds to cos θ =
v‖,0
v0

and θc to the boundary between trapped and passing
particles. Utilising the calculations from b), the answer should be of the form ft =√

2r/R0. What does this say about the balance between trapped and passing particles
in a tokamak, i.e. where are the trapped particles most likely to dominate?

c)

Exercise 4.

Maximum allowable current density in a tokamak

The helicity of the magnetic �eld in a tokamak is typically described with the safety factor,
q, which is de�ned as the number of full toroidal loops that the magnetic �eld completes
during a single poloidal revolution. The name stems from the fact that with certain q values,
the plasma becomes susceptible to magnetohydrodynamic (MHD) instabilities, which may
eventually lead to disruption and shut down of the reactor.

Find the maximum allowable current density in the tokamak, such that the minimum
edge safety factor, in this case q > 1, is still within operational boundaries imposed
by plasma instabilities. Assume the toroidal magnetic �eld to be BT ∼ 7 T, and the
major radius to be R ∼ 7 m. Assume a circular symmetric poloidal cross-section, large
aspect-ratio tokamak, such that the safety factor can be approximated by the equation:

q =
rBT

RBθ

,

where r is the local minor radius of the tokamak, BT is the total toroidal �eld magnitude,
R is the major radius of the tokamak, and Bθ is the total magnitude of the poloidal
�eld. The poloidal �eld is induced by a current running through the plasma, and so
depends on the current density.

a)

[1] J. P. Freidberg, Plasma Physics and Fusion Energy, Cambridge University Press, 2007,
p.484-485
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