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Recap
1D, three kinds of bifurcations:

1. Saddle-node:
2. Transcritical:
3. Pitchfork:

a) Supercritical
b) Subcritical

4. Imperfect bifurcations
for example

Normal form

ẋ = r + x2

ẋ = rx� x3

ẋ = rx� x2

ẋ = rx+ x3

ẋ = h+ rx� x3



Insect outbreak
Spruce budworm: a pest in eastern Canada, where it
attacks the leaves of the balsam fir tree

When outbreak occurs the budworm can kill most of the fir
trees in the forest in about four years.



Insect outbreak

Time scale separation: budworm population evolves on a
fast time scale, trees grow and die on a slow time scale →
for the purpose of budworm dynamics, forest variables
may be treated as constants

Model by Ludwig et al. (1978)

Ṅ = RN

✓
1� N

K

◆
� p(N)

N(t) = budworm population

In the absence of predation, N(t) grows logistically, with
growth rate R and carrying capacity K (foliage, slowly
drifting).

p(N) = death rate due to predation



Insect outbreak
Ṅ = RN

✓
1� N

K

◆
� p(N)

p(N) is small when N is small (birds seek food elsewhere).
p(N) becomes relevant when budworm population exceeds
some critical level A and saturates (birds are eating as fast
as they can).

𝑝



Insect outbreak
Ludwig et al. assumed the form (A, B > 0):

p(N) =
BN2

A2 +N2
! Ṅ = RN

✓
1� N

K

◆
� BN2

A2 +N2

Dimensionless formulation: one could use either x = N/A
or x = N/K. In order to push the dimensionless groups
into the logistic part to ease the graphical analysis, we
choose

x =
N

A
! A

B

dx

dt
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r and k are the dimensionless growth rate and carrying capacity



Insect outbreak
dx
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1 + x2

Fixed points
FP x* = 0 is unstable for any choice of the parameters:
dx/d𝜏 = 𝑓 𝑥 ; 𝑓! 𝑥 = 0 = 𝑟 > 0. Exponential growth of x in
the absence of predation.

⇢
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�
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1+x2

Graphical method

Other FPs:

Dimensionless form



Insect outbreak
⇢

y = r
�
1� x

k

�

y = x
1+x2

Graphical method

• For small k only one intersection for any r
• For large k one, two or three intersections are possible,

depending on r

Thanks to the way we nondimensionalised, only the line 
moves as we vary parameters r and k.



Insect outbreak

Saddle-node bifurcation when straight line is tangent to
curve (b coincides with c; dashed line).

Stability of fixed points
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Insect outbreak

Stability of fixed points

a = refuge level of budworm population
c = outbreak level of budworm population

For pest control one should keep the population near a and
away from c!
Outbreak occurs for the initial condition: x0 > b (threshold).

Outbreak can also be triggered by a saddle-node bifurcation.
r, k grow large→ a disappears and x jumps to c.



Insect outbreak

Bifurcation curves will be in (k, r) space.

Condition for bifurcation: straight line intersects curve
tangentially
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Insect outbreak
Bifurcation curves

(
r = 2x3

(1+x2)2

k = 2x3

x2�1

Parametric equations to derive the bifurcation relation
between r and k: for a given value of x, we compute r(x) and
k(x) and plot the points on the (k, r) plane. (Note: since k > 0,
x > 1.)



Insect outbreak

• The refuge level is the only stable state for low r
• The outbreak level is the only stable state for large r
• For intermediate r both stable states exist

The regions in the stability diagram labelled by the existing stable fixed points.



Insect outbreak
The stability diagram is a projection of the 
cusp catastrophe surface.



Insect outbreak
Comparison with observation

Determine biologically plausible values of
dimensionless variables r = RA/B and k = K/A .
r increases as the forest grows, k remains fixed (Ludwig et
al., 1978).
S = average size of the trees → total surface area of the
branches in a stand. Carrying capacity and half-saturation
proportional to S. For birds the relevant quantity A’ is in
dimensions of budworms per unit area:

K = K 0S, A = A0S ! r =
RA0

B
S, k =

K 0

A0

Experimental observations: k ≈ 300, r < ½ (bistable region)

As the forest grows S increases → r increases (danger of
outbreak).



Flows on the circle
Vector field on the circle

✓̇ = f(✓)

✓ = point on the circle

✓̇ = angular velocity at that point

Flows on the circle are like flows on the line with a new
important property: by flowing in one direction a particle
can eventually return to its starting place.→ periodicity

The most basic model of systems that can oscillate.



Example I
Sketch the vector field on the circle corresponding to

✓̇ = sin ✓

Fixed points

sin ✓⇤ = 0 ! ✓⇤1,2 = 0,⇡

Linear stability

f 0(✓⇤) = cos ✓⇤ ! cos ✓⇤1 = +1 > 0 unstable point
cos ✓⇤2 = �1 > 0 stable point



Example II
Question: Can the linear system

Answer: No, velocity is not uniquely defined, 𝜃 =
0, 2𝜋 coincide on the circle, but velocities are different!

✓̇ = ✓
be regarded as a vector field on the circle, if −∞ < 𝜃 < +∞?

Q: What happens if −𝜋 < 𝜃 < +𝜋 ?
A: No cigar. The ends of the range correspond to the same
point on the circle, so there is a discontinuity in the
velocity at that point, i.e. the vector field is not smooth.
(No problem if the vector field is on the line.)
Definition: A vector field on the circle is a rule that assigns
a unique velocity vector to each point on the circle → 𝑓(𝜃)
must be a periodic function with period 2𝜋.



Uniform oscillator
The angle (or phase) changes uniformly

✓̇ = !

Solution:
✓(t) = !t+ ✓0

𝜔 is the angular frequency.

𝑇 = 2𝜋/𝜔 is the period of the oscillation.
Note: There is no amplitude (or the amplitude is constant).
If the amplitude is changed, the phase space would be two
dimensional (phase plane).



Example
Two joggers, Speedy and Pokey, are running at a steady
pace around a circular track. It takes Speedy T1 seconds to
run once around the track, whereas it takes pokey T2 > T1
seconds. How long does it take for Speedy to lap Pokey
once, assuming that they start together?

✓̇1 = !1, !1 = 2⇡/T1

✓̇2 = !2, !2 = 2⇡/T2

Phase difference:

� = ✓1 � ✓2 ! �̇ = ✓̇1 � ✓̇2 = !1 � !2

Tlap =
2⇡

!1 � !2
=

✓
1

T1
� 1

T2

◆�1
Time for 𝜙 to increase by 2𝜋



Nonuniform oscillator

It is very common, for example, in:
1) Electronics (phase-locked loops)
2) Biology (oscillating neurons, firefly flashing rhythm,

human sleep-wake cycle)
3) Condensed-matter physics (Josephson junction, charge-

density waves)
4) Mechanics (Overdamped pendulum driven by a

constant torque)

✓̇ = ! � a sin ✓

Assume: 𝜔 > 0, 𝑎 ≥ 0 (results
for negative values are
similar).



Nonuniform oscillator
✓̇ = ! � a sin ✓

𝑎 = 0: uniform oscillator

𝑎 > 0: flow is not uniform: fastest at 𝜃 = −𝜋/2,
slowest at 𝜃 = 𝜋/2
• If 𝑎 is slightly less than 𝜔, it takes a long time for the phase

point to pass through the bottleneck near 𝜃 = 𝜋/2.
• If 𝑎 = 𝜔, the system stops oscillating: a half-stable fixed point

has been born in a saddle-node bifurcation at 𝜃 = 𝜋/2.
• If 𝑎 > 𝜔, a pair of fixed points appears (one stable, the other

unstable): all orbits are attracted by the stable fixed point as
𝑡 → ∞.



Nonuniform oscillator
✓̇ = ! � a sin ✓



Nonuniform oscillator
✓̇ = ! � a sin ✓

Fixed points for 𝑎 > 𝜔

sin ✓⇤ = !/a ! cos ✓⇤ = ±
p
1� (!/a)2

Linear stability

f 0(✓⇤) = �a cos ✓⇤ = ⌥a
p

1� (!/a)2

cos ✓⇤1 = +
p

1� (!/a)2 ! stable point

cos ✓⇤2 = �
p

1� (!/a)2 ! unstable point



Nonuniform oscillator
✓̇ = ! � a sin ✓

Oscillations for 𝑎 < 𝜔: the period?

T =

Z
dt =

Z 2⇡

0

dt

d✓
d✓ =

Z 2⇡

0

d✓

✓̇
=

Z 2⇡

0

d✓

! � a sin ✓
=

2⇡p
!2 � a2

T versus a

• When 𝑎 = 0, 𝑇 = 2𝜋/𝜔 (uniform oscillator)
• When 𝑎 = 𝜔, 𝑇 diverges



Nonuniform oscillator
✓̇ = ! � a sin ✓

Order of divergence of period 𝑇

p
!2 � a2 =

p
! + a

p
! � a ⇡

p
2!

p
! � a ! lim

a!!�
T ⇡

 
⇡
p
2p
!

!
1p

! � a

Square-root scaling law

Very general feature of systems close to a saddle-node
bifurcation: after the fixed points collide they disappear,
however there is a saddle-node remnant (ghost) leading to
slow passage through a bottleneck.

as 𝑎 → 𝜔!



Nonuniform oscillator
✓̇ = ! � a sin ✓

Trajectory spends practically all its time getting through the
bottleneck.



Nonuniform oscillator
General scaling law for time to get through the bottleneck

Two observations:
1) What counts is the behavior of the velocity field 𝑓(𝜃) near

its minimum, since the time spent there dominates over all
other time scales of the problem

2) 𝑓(𝜃) looks parabolic near its minimum

ẋ = r + x2, 0 < r ⌧ 1

Normal form for a saddle-node bifurcation:

(𝑟 is the distance from the bifurcation)



Nonuniform oscillator
ẋ = r + x2, 0 < r ⌧ 1

arctan z =

Z z

0

dt

1 + t2

Tbottleneck ⇡
Z 1

�1

dx

ẋ
=

Z 1

�1

dx

r + x2
=

1p
r

Z 1

�1

dt

1 + t2

=
arctan(1)� arctan(�1)p

r
=

⇡p
r

𝑡 =
𝑥
𝑟 (An unfortunate choice for denoting the change of variable, 

sorry. 𝑡 here is just an arbitrary variable to do the integral.)



Example

✓̇ = ! � a sin ✓

Estimate the period of

in the limit 𝑎→ ω- using the normal form method.

The period is essentially the time required to go through the
bottleneck.
Taylor expansion about 𝜃 = 𝜋/2, where the bottleneck occurs

� = ✓ � ⇡/2 ! �̇ = ! � a sin
⇣
�+

⇡

2

⌘
= ! � a cos� = ! � a+

1

2
a�2 + · · ·

x =
⇣a
2

⌘1/2
�, r = ! � a !

✓
2

a

◆1/2

ẋ ⇡ r + x2



Example

r = ! � a, a ! !� ! 2

a
|a!!� =

2

!

lim
a!!�

T ⇡
 
⇡
p
2p
!

!
1p

! � a

⇣2
a

⌘1/2
ẋ ⇡ r + x2

Separate the variables to get

Close to the saddle-node ghost:

T ⇡
r

2

a

Z 1

�1

dx

r + x2
=

r
2

a

⇡p
r



Overdamped pendulum

mL2✓̈ + b✓̇ +mgL sin ✓ = �

Newton’s law:

Overdamped limit:
b✓̇ +mgL sin ✓ = �

Nondimensionalise:
b

mgL
✓̇ =

�

mgL
� sin ✓

Let ⌧ =
mgL

b
t, � =

�

mgL

⇒ 𝜃! = 𝛾 − sin 𝜃,where 𝜃! =
𝑑𝜃
𝑑𝜏
.

← dimensionless groups



Overdamped pendulum
✓0 = � � sin ✓ Continual overturning when 

𝛾 > 1.When 𝛾 → 1#, a FP 
appears at 𝜃∗= 𝜋/2. This splits 
into two when 𝛾 < 1.

Saddle-node bifurcation.



Fireflies
Thousands of male 
fireflies gather in 
trees and flash on 
and off to attract 
females flying 
overhead. The males 
synchronise.

𝜃(𝑡) is the phase of the flashing rhythm; 𝜃 = 0 corresponds to 
the instant when a flash is emitted.

No stimuli: ✓̇ = !



Fireflies
A periodic stimulus: ⇥̇ = ⌦

Model: ✓̇ = ! +A sin(⇥� ✓), where A > 0.

Dynamics of the phase difference:
�̇ = ⇥̇� ✓̇ = ⌦� ! �A sin� (nonuniform oscillator)

Nondimensionalizing: ⌧ = At, µ =
⌦� !

A

) �0 = µ� sin� (�0 = d�/d⌧)

(=resetting strength)



Fireflies

(a) Simultaneous flashing, (b) phase-locking to the stimulus, 
(c) phase drift.
The range of entrainment: ! �A  ⌦  ! +A

⌧ = At, µ =
⌦� !

A



Fireflies
FP gives the phase difference during entrainment

sin�⇤ =
⌦� !

A

Period of the phase drift:

Tdrift =

Z
dt =

Z 2⇡

0

dt

d�
d� =

Z 2⇡

0

d�

⌦� ! �A sin�

Comparing with the previous solution for nonuniform 
oscillator, we get

Tdrift =
2⇡p

(⌦� !)2 �A2



Next time: 2D


