Lecture 6

Directional derivatives, the gradient vector, local extrema (2nd derivative test), absolute extrema

- Noted that (as long as f is differentiable) that D_u f = grad(f) dot u. where grad f
 = <f_x, f_y> is the gradient vector.
- It turns out that grad(f) is a very useful quantity. Some important facts (1) The direction of grad(f) is the direction of the maximum rate of change of f. (2) || grad f || is the maximum rate of change of the function. (3) grad is orthogonal to the level curve of f
- Used (3) to find the tangent plane to a surface.
- Reviewed critical points and the 2nd derivative test to classify extrema in 1 variable.
- Looked at f(x,y) = x^2 + y^2 cxy. Noted how the type of critical point at (0,0) changes from a local min to a saddle as c changes from less than 2 to greater than 2. Looked at computer generated surfaces for different values of c (see "minimum to saddle" in Code and Images). We understood that the xy term contributes most along the line x = y. And when c > 2 the surface is "pulled down" so much along the x=y direction that the surface becomes a saddle.
- Stated the second derivative test for a function of 2 variables. The quantity f_xx f_yy (f_xy)^2 is a little mysterious at first. The bonus exercise in homework#4 will help you understand it is essentially a proof of the 2nd derivative test. The related later discussion of Taylor series/polynomials will help also.
- Did an example of finding and classifying local extrema
- Reviewed absolute extrema in 1 variable
- Introduced closed and bounded domains and stated than on such a domain a contunuous function of 2 variables attaims its extrema.
- Noted that finding absolute extrema breaks down into looking at the interior and the boundary. Finding extrema on the boundary is a type of constrained optimization problem. Next class we will learn a method for dealing with this the method of Lagrange multipliers.

Where to find this material

- Adams and Essex 12.7, 13.1
- Corral, 2.4, 2.5
- Guichard, 14.5, 14.7
- Active Calculus. 10.6,10.7

$$D_{\vec{u}} f(P) = a \frac{\partial f(P)}{\partial x} + b \frac{\partial f}{\partial y}(P) \begin{pmatrix} \vec{u} = (a, b) \\ ||\vec{u}|| = 1 \end{pmatrix}$$

$$= \langle 9, b \rangle \cdot \langle \frac{\partial f(\rho)}{\partial x}, \frac{\partial f(\rho)}{\partial y} \rangle$$

$$= \vec{\mathcal{U}} \cdot \vec{\nabla} f(P)$$

Note. This is true provided f is

$$\vec{\nabla} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos \phi$$

Question: At a given point P, in which direction does f(x,y) increase most raipdly?

Answer
$$D\vec{u} f = \vec{u} \cdot \vec{\nabla} f$$

Coso has a max of 1 at
$$0 = 0$$

and this occurs when it is parallel to
$$\nabla f$$

(that is,
$$\vec{u} = \sqrt[3]{f}$$
)

Note Minimum occurs when
$$0 = TT$$
.
So $\vec{u} = -\vec{\gamma}f/11\vec{\gamma}f$ and

Gradient vector example

A happy bug accidentally lands on a hot grill plate with $\frac{\text{Univealistic}}{\text{surface temperature given by}} T(x,y) = 5000 \mathrm{e}^{-(x^2+3y^2)}$

The bug has landed at the point (1,1).

Question: In which direction should the bug start walking in order to cool its feet most rapidly.

Intuition The level curves are ellipses

$$\frac{Ca|cu|ations}{\frac{\partial T}{\partial x}} = -2xce^{u}$$

$$\frac{\partial T}{\partial x} = -2xce^{u}$$

$$\frac{\partial T}{\partial x} = -2ce^{u}$$

$$\frac{\partial T}{\partial y} = -6yc e'''$$
 $\frac{\partial T}{\partial y}(i,i) = -6ce'''$

$$\frac{1}{\sqrt{2}} \sqrt{2} \left(\frac{1}{1} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2}$$

Direction of max increase is <-1,-3>

Direction of max decrease is < 1,37

200ks about right

Gradient vector (3)

The fact that the gradient is orthogonal to the level surface can be used to find tangent planes

Here is the example from lecture #4.

Find the tangent plane to the surface $Z = 6 - x^2 - y^2$ at the point (1,2,1)

Solution Write the surface as a level surface $Z = 6 - x^2 - y^2$ $(Z = 6 - x^2 - y^2)$ $(Z = 6 - x^2 - y^2)$

Need O Paint V Given (1,2,1)

2 normal?

7 8 F(1,2,1)

Plant: 2(x-1)+4(y-2)+1(z-1)=02x+4y+2=11 Note: We could have used this idea to derive the general tangent plane equation **much** easier than what we did in lecture #4. However, what we did in lecture #4 is conceptually important and useful for other purposes.

Then
$$-f(x,y)+z=0$$

Let $F(x,y,z)=-f(x,y)+z=0$

normal =
$$\vec{n}$$
 = $\nabla F(P)$
= $\langle -\partial f(p) - \partial f(p), 1 \rangle$
as before !!!

Local extrema (min / max)

1 variable review

$$f''(A) < 0 \Rightarrow local max$$
 $f''(B) > 0 \Rightarrow local min$
 $f''(D) = 0$
 $f''($

Local extrema in 2 variables

LOCAL

LOCAL

SADDLIE POINT

Recall that we have $4 2^{nd}$ - derivatives f_{xx} , f_{yy} , $f_{xy} = f_{yx}$

First, let's do a series of examples before we state the 2nd derivative test.

Find and classify the critial points of the function $f(x, y) = x^2 + y^2 - cxy$ for c = 0, 1, 2, 4.

$$\frac{\partial f}{\partial x} = 2x - cy = 0$$

$$\frac{\partial f}{\partial y} = 2y - cx = 0$$

$$\frac{\partial f}{\partial y} = 2y - cx = 0$$

$$\frac{\partial f}{\partial y} = 2y - cx = 0$$

$$\frac{\partial f}{\partial y} = 2y - cx = 0$$

case c # ±2 Only 1 critical point at (0,0)

Case $C = \pm 2$

Every point on the line $y = \pm x$ is a critical point

Example (continued)

Find and classify the critial points of the function

$$f(x,y) = x^2 + y^2 - cxy$$

$$f_x = 2x - cy$$
, $f_y = 2y - cx$, $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = -c$

4)
$$C = 4$$
, $f = x^2 + y^2 - 4xy$ SADDLE

 $x = y = t$ $f = -2t^2$
 $x = -y = s$ $f = 6s^2$
 $f_{xx} > 0$, $f_{yy} > 0$, $f_{xy} = -4$

O=0 Critical point at (0,0)

$$f = x^2 + y^2$$

$$= x + y$$

$$f_{xx} > 0, f_{yy} > 0, f_{xy} = 0$$

$$Local MIN$$

2) c=1 From software

fxx>0, fyy>0, fxy=1

LOCAL hin

3
$$C=2$$
, $f=x^2+y^2-2xy=(x-y)^2$

 $f_{xx} > 0, f_{yy} > 0, f_{xy} = -2$ $f_{xx} > 0, f_{yy} > 0, f_{xy} = -2$ $f_{xz} = 0$ $f_{xx} > 0, f_{yy} > 0, f_{xy} = -2$ $f_{xz} = 0$ $f_{xy} = 0$ $f_{xy} = 0$

Think! In all cases $f_{xx} = 2 = f_{yy}$ $f_{xy} = -C$ is measuring the "size" of the xy term

GPulls the surface down in the x=y direction

Let P = (a, b) be a critical point of a function f(x, y)

Let
$$D = \begin{vmatrix} fxx & fxy \\ fyx & fyy \end{vmatrix} = f_{xx}f_{yy} - f_{xy}f_{yx} = f_{xx}f_{yy} - f_{xy}^2$$

(the Hessian matrix of f)

- 1. D(a,b) < 0 \Rightarrow saddle point
- 2. D(a,b) > 0 and $f_{xx}(a,b) > 0 \Rightarrow$ local min
- 3. D(a,b) > 0 and $f_{rr}(a,b) < 0 \Rightarrow local max$

Notes

(b) If fxx >0 and fgy <0 then D < 0

(c) Because of (b), if D>0 then fxx > 0 if and only if fyy > 0

> So in 2. and 3. the condition on fxx could be replaced with fyy

Back to the example on the previous page

Find and classify the critial points of the function

$$f(x,y) = x^2 + y^2 - cxy$$

$$f_x = 2x - cy$$
, $f_y = 2y - cx$, $f_{xx} = 2$, $f_{yy} = 2$, $f_{xy} = -c$

$$D(x,y) = f_{xx} f_{yy} - f_{xy}^2 = 4 - c^2$$

At the critical point P= (0,0)

$$D(0,0) = 4-c^2$$

(But we figured directly 1+ 11 a local min)

(D) C=4, D=4-42<0

STEP 2 Apply the 2nd derivative test fxx = 6x, fyy = 6y, fxy = -3 At (0,0): D(0,0) = frx (0,0) fyy (0,0) - 9 < O SADDUE At (1,1): fxx (1,1) = 6 > 0 D(1,1) = fxx (1,1) fyy (1,1) -9 = 6.6 -9 >0 LOCAL MIN

