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Recap
Flows on the line. Analysis of growth model having logistic
growth part and predation. Insect outbreak.

Ṅ = RN

✓
1� N

K

◆
� p(N)

Emergence of a cusp catastrophe:

Flows on the circle to describe
one-dimensional periodic
systems.
Attemped phase-
locking of fireflies:



Part II

Two-Dimensional Flows



Linear systems
In one-dimensional spaces flow is confined: trajectories are
forced to move monotonically or remain constant.

In higher-dimensional spaces there are many possibilities.

First step: linear systems in two dimensions.

Interesting in their own right, but particularly important
for the classification of fixed points of nonlinear systems.



Linear systems
Two-dimensional linear system

ẋ = ax+ by
ẏ = cx+ dy

a, b, c, and d are parameters.

ẋ = Ax

A =

✓
a b
c d

◆
x =

✓
x
y

◆

Matrix form



Linear systems
ẋ = ax+ by
ẏ = cx+ dy

Linear system → if x1 and x2 are solutions, any linear
combination c1x1+ c2x2 is also solution

ẋ = 0 when x = 0 ! x⇤ = 0 always fixed point, 8A



Example I

m = mass, k = spring constant,
x = displacement of mass from
equilibrium

mẍ+ kx = 0

Simple harmonic oscillator

Analytical solution in terms of
sines and cosines.

Phase plane analysis

ẋ = v
v̇ = � k

mx



Example I
Simple harmonic oscillator

!2 =
k

m
! ẋ = v

v̇ = �!2x

Vector field

The origin is a fixed point.



Example I
Simple harmonic oscillator

Phase point initiating anywhere (except the origin) would
circulate around the origin and return to its starting point.



Example I
Simple harmonic oscillator

Closed orbits correspond to periodic oscillations of the
mass.

Phase portrait



Example I
Simple harmonic oscillator



Example II
Solve the linear system

ẋ = Ax ! A =

✓
a 0
0 �1

◆

✓
ẋ

ẏ

◆
=

✓
a 0
0 �1

◆✓
x

y

◆

ẋ = ax
ẏ = �y

Equations are decoupled: they can be solved individually.



Example II
Solution

x(t) = x0eat

y(t) = y0e�t

Phase portraits

• a < -1 → x(t) decays faster
than y(t) (x*=0 stable node)

• a = -1 → straight lines
(ratio x(t)/y(t) is constant,
x*=0 star)

• -1 < a < 0 → y(t) decays
faster than x(t) (x*=0 stable
node)

• a = 0 → x(t) is constant,
trajectories are vertical (x-
axis is line of fixed points)

• a > 0 → x*=0 unstable →
saddle point

ẋ = ax
ẏ = �y



Example II
Saddle points

The Man known for 
his work on saddle 
points.

𝑉(𝑥, 𝑦)

𝑦
𝑥



Example II
Saddle points

• Trajectories veer away from x* and head out to infinity
• If a trajectory starts on the 𝑦 -axis, the system’s state

converges to x*: the 𝑦-axis is the stable manifold of the
saddle point (i.e. initial conditions bringing the system to x*)

• Stable manifold: set where one ends up when starting at x*
and runs the dynamics backward in time (𝑡 → −∞) ; here the
𝑦-axis

• Trajectories starting off the 𝑦-axis converge asymptotically
(𝑡 → ∞) to the x-axis that is the unstable manifold

• Unstable manifold: set of initial conditions leading to x*
when dynamics runs backward in time (𝑡 → −∞) ; here the
x-axis



Example II
Saddle points

Manifold: A topological space, 
which is homeomorphic to Euclidian
space ℝ! locally. (homeomorpism: 
there is continuos function f
between spaces, and f -1 exists)

(Recall: the half-stable fixed point is the saddle point in 1D.)



Stability language
• x* is an attracting fixed point when all trajectories starting

near x* approach it asymptotically: if all trajectories are
attracted, the point is called globally attracting

• x* is Lyapunov stable if all trajectories that start
sufficiently close to x* remain close to it at any time

• x* is neutrally stable if it is Lyapunov stable but not
attracting: nearby trajectories are neither attracted nor
repelled from the point (common in mechanical systems
without friction: e.g. simple harmonic oscillator)

• x* is stable (or asymptotically stable) if it is both Lyapunov
stable and attracting

• x* is unstable if it is neither Lyapunov stable nor attracting



Stability language
• x*=0 is (globally) attracting

(a-c)
• x* = 0 is Lyapunov stable

(a-d)
• x*= 0 is neutrally stable (d)
• x*= 0 is unstable (e)
Typically, a globally
attracting FP is also
Lyapunov stable, but there
are some rare counter
examples: 



Classification of linear 
systems

Goal: to classify all possible phase portraits that can occur.

From the previous example: Any straight line trajectories?
More generally:

x(t) = e�tv

• exponential motion along the line of vector v
• 𝜆 = growth rate

What does v stand for?

v is an eigenvector of A with eigenvalue λ

x(t) = e�tv
ẋ = Ax

! �e�tv = e�tAv ! Av = �v



Classification of linear 
systems

Eigenvalues and eigenvectors

Av = �v

det(A� �I) = 0

Characteristic equation

A =

✓
a b
c d

◆
! det

✓
a� � b
c d� �

◆
= 0

�2 � ⌧�+� = 0

⌧ = trace(A) = a+ d
� = det(A) = ad� bc



Classification of linear 
systems

Solution(s)

�1 =
⌧ +

p
⌧2 � 4�

2
, �2 =

⌧ �
p
⌧2 � 4�

2

Typical situation: λ1 ≠ λ2 → the corresponding eigenvectors
v1 and v2 are linearly independent, so they span the entire
plane.

If x0 is any initial condition:

x0 = c1v1 + c2v2



Classification of linear 
systems

General solution for 𝑥(𝑡)

x(t) = c1e
�1tv1 + c2e

�2tv2

• It is a solution, because it is a linear combination of
solutions to

• For 𝑡 = 0→ x(0) = x0.
• Due to the uniqueness theorem, for this x(0) it must be

the only solution.

ẋ = Ax



Example I
Solve the initial value problem

ẋ = x+ y
ẏ = 4x� 2y

subject to the initial condition (𝑥0 , 𝑦0) = (2,−3)
✓
ẋ

ẏ

◆
=

✓
1 1
4 �2

◆✓
x

y

◆

⌧ = �1, � = �6 ! �2 + �� 6 = 0 ! �1 = 2, �2 = �3



Example I
Solve the initial value problem: first the eigenvectors

✓
1� � 1
4 �2� �

◆✓
v1
v2

◆
=

✓
0

0

◆

�1 = 2 !
✓

�1 1
4 �4

◆✓
v1
v2

◆
=

✓
0

0

◆
!

✓
v1
v2

◆
=

✓
1

1

◆

�2 = �3 !
✓

4 1
4 1

◆✓
v1
v2

◆
=

✓
0

0

◆
!

✓
v1
v2

◆
=

✓
1

�4

◆

v1 =

✓
1

1

◆
, v2 =

✓
1

�4

◆



Example I
General solution:

x(t) = c1

✓
1

1

◆
e2t + c2

✓
1

�4

◆
e�3t

Initial condition:
✓

2

�3

◆
= c1

✓
1

1

◆
+ c2

✓
1

�4

◆

✓
2

�3

◆
= c1

✓
1

1

◆
+ c2

✓
1

�4

◆
! 2 = c1 + c2

�3 = c1 � 4c2
! c1 = c2 = 1

x(t) = e2t + e�3t

y(t) = e2t � 4e�3t



Example I
Phase portrait

�1 = 2 ! eigensolution grows exponentially
�2 = �3 ! eigensolution decays exponentially
The origin is a saddle point.



Example II

Both eigenvalues are negative, so the eigensolutions are
both decaying exponentially towards the origin, which is
stable.

Trajectories approach origin
tangent to the slow
eigendirection (the direction
of the eigenvector with
smaller |λ|).

𝜆" < 𝜆# < 0→ phase portrait?



Example III
What happens if the eigenvalues are complex numbers?

Two possibilities:
• The fixed point is a center
• The fixed point is a spiral

• Orbits around a center are closed → a center is neutrally
stable.

• Orbits around a spiral are not closed → they may
converge towards the fixed point or go away from it.



Example III

�1 =
⌧ +

p
⌧2 � 4�

2
, �2 =

⌧ �
p
⌧2 � 4�

2

if ⌧2 � 4� < 0 ! complex solutions

�1,2 = ↵± i!

 
↵ =

⌧

2
,! =

p
4�� ⌧2

2

!

If ω ≠ 0, the eigenvalues are distinct.

x(t) = c1e
(↵+i!)tv1 + c2e

(↵�i!)tv2



Example III
x(t) = c1e

(↵+i!)tv1 + c2e
(↵�i!)tv2

e(↵±i!)t = e↵t(cos!t± i sin!t)

• Exponentially decaying oscillations for α < 0 (stable
spiral).

• Exponentially growing oscillations for α > 0 (unstable
spiral).

If α = 0 (purely imaginary eigenvalues), the solutions are
periodic with period T = 2π/ω→ the fixed point is a center
( = neutrally stable).



Example IV

Two possibilities:
• There are two independent eigenvectors corresponding to 𝜆
• There is only one eigenvector corresponding to 𝜆

What happens if 𝜆1 = 𝜆2 = 𝜆 ?

If there are two independent eigenvectors, their linear
combinations are also eigenvectors and span the whole space,
so every vector is an eigenvector with the same eigenvalue 𝜆 .
An arbitrary vector x0 can be written as
x0 = c1v1 + c2v2 ! Ax0 = A(c1v1 + c2v2) = c1�v1 + c2�v2 = �x0

A =

✓
� 0
0 �

◆
! x(t) = e�tx0

So the arbitrary vector x0 is an eigenvector.



Example IV
All trajectories are straight lines through the origin, which is a
star node.

If 𝜆 = 0, the whole plane is filled with fixed points (trivial
system ).ẋ = 0



Example IV
On the other hand, if there is only one eigenvector → the
eigenspace corresponding to 𝜆 is one-dimensional

Example:

A =

✓
� b
0 �

◆

with b ≠ 0

In this case the fixed
point is a degenerate
node.



Example IV
As t → + ∞ or t → -∞ the
trajectories become all
parallel to the only
available eigendirection.
A degenerate node can be
viewed as the limit of an
ordinary node when
eigendirections converge.



Classification of fixed points
�1,2 =

1

2

⇣
⌧ ±

p
⌧2 � 4�

⌘
, � = �1�2, ⌧ = �1 + �2

(�� �1)(�� �2) = �2 � (�1 + �2)�+ �1�2 = �2 � ⌧�+� = 0

D and t are solved from



Classification of fixed points
�1,2 =

1

2

⇣
⌧ ±

p
⌧2 � 4�

⌘
, � = �1�2, ⌧ = �1 + �2

• Δ < 0 → eigenvalues are real and have
opposite signs → origin is a saddle
point

• Δ > 0 → eigenvalues are real with the
same sign (nodes), if τ2-4Δ > 0. Stable
(unstable) node if τ < 0 (τ > 0)

• Δ > 0 → eigenvalues are complex
conjugate (spirals and centers), if τ2-4Δ
< 0. Stable (unstable) spiral if τ < 0 (τ >
0). Center if τ =0

• Δ > 0 → the origin is a star node, or
degenerate node, if τ2-4Δ = 0

• Δ = 0 → at least one eigenvalue is zero
→ the origin is not an isolated fixed
point: there is either a whole line or a
plane of fixed points



Examples 
1) Classify the fixed point x* = 0
for the system

ẋ = Ax, A =

✓
1 2
3 4

◆

Δ = -2→ saddle point

2) Classify the fixed point x* = 0
for the system

ẋ = Ax, A =

✓
2 1
3 4

◆

Δ = 5, τ = 6, τ2 - 4Δ = 16 > 0
→ unstable node



Love affairs
Strogatz is no Shakespeare:
1) The more Romeo loves Juliet, the more she wants to
withdraw
2) When Romeo backs off, Juliet finds him attractive
3) Romeo loves Juliet the more, the more she loves him
R(t) = Romeo’s love/hate for Juliet at time t
J(t) = Juliet’s love/hate for Romeo at time t

Ṙ = aJ
J̇ = �bR

a, b > 0

Result: a never-ending cycle of love and hate.



Love affairs
Forecast by the general linear equation

Ṙ = aR+ bJ
J̇ = cR+ dJ

a, b, c, d can be of all possible signs.

In this model
a > 0, b > 0 → Romeo is spurred on by both his own and
Juliet’s love
OR
a < 0, b > 0→ Romeo is a cautious lover



Love affairs
Special case: identically cautious lovers

Ṙ = aR+ bJ
J̇ = bR+ aJ

a < 0, b > 0.

a = measure of cautiousness (tendency not to throw oneself
at the other)
b = measure of responsiveness (tendency to get excited by
the other’s advances)

A =

✓
a b
b a

◆
! ⌧ = 2a < 0, � = a2 � b2, ⌧2 � 4� = 4b2 > 0

Fixed point (R, J) = (0,0) is a saddle point if a2 < b2 and a stable
node if a2 > b2.



Love affairs

• If a2 > b2 relationship evolves towards indifference (R = 0, J = 0)
• If a2 < b2 explosive relationship (love fest or war):

asymptotically R = J (mutual feelings)

�1 = a+ b, v1 = (1, 1), �2 = a� b, v2 = (1,�1)



Phase Plane

two-dimensional nonlinear systems.

And now, after all the introductory drill, we finally start
learning on



Phase portraits

The general form of a vector field on the phase plane:

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

ẋ = f(x)

In vector notation:

[x = (x1, x2), f(x) = (f1(x), f2(x))]

x = point in phase plane

ẋ = velocity at that point



Phase portraits
Solution x(t) describes a trajectory on the phase plane

The whole plane is filled with (non-intersecting)
trajectories starting from different phase points.

For nonlinear systems there is no hope to find trajectories
analytically + the analytical solutions would not provide
much insight.
Our approach: determine the qualitative behavior of the
solutions via phase portraits.



Phase portraits
There’s a zoo of possible phase portraits

1) Fixed points (A, B, C): f(x*)=0, steady states or equilibria of
the system.

2) Closed orbits (D): periodic solutions, 𝐱(𝑡 + 𝑇) = 𝐱(𝑡).
3) Arrangement of trajectories near fixed points and closed

orbits.
4) Stability or instability of the fixed points and closed orbits.

Salient features:



Numerical computation of 
phase portraits 

Runge-Kutta method in the vector form.

k1 = f(xn)�t
k2 = f(xn + 1

2k1)�t
k3 = f(xn + 1

2k2)�t
k4 = f(xn + k3)�t

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4)

ẋ = f(x), x(t0) = x0

A stepsize Δt =0.1 usually provides sufficient accuracy.
See e.g. Press, Teukolsky, et al., Numerical Recipes In 
C/C++/Fortran. The book and free open source codes available
online.



Example I
ẋ = x+ e�y

ẏ = �y

Fixed points
ẋ = x+ e�y = 0
ẏ = �y = 0

x⇤ = �1
y⇤ = 0

Stability

t ! 1 : e�y ! 1 ! ẋ ⇡ x+ 1

Exponentially growing solutions: the fixed point is unstable
(in the x-direction).

for t ! 1, y(t) ⇠ e�t ! 0

Procedure: First find out analytically/graphically qualitative
features of the phase portrait, then solve numerically for a 
direction field.

So, as 



Example I

Phase portrait: plot the nullclines.

ẋ = x+ e�y

ẏ = �y

The nullclines are the curves where

ẋ = 0 or ẏ = 0

On the nullclines the flow is either purely horizontal or
purely vertical

x+ e�y = 0
y = 0



Example I
ẋ = x+ e�y

ẏ = �y
Numerical solution:Analysis:



Example I
ẋ = x+ e�y

ẏ = �y
The flow is horizontal on the 
nullcline x-axis and to the right when 

The flow is vertical on the nullcline
ẋ = x+ e�y = 0.

ẏ = �yDue to
the flow is downwards, 
when 𝑦 > 0, and upwards,
when 𝑦 < 0.

Directions of flow in the different regions can now be deduced 
from the directions on the nullclines.

and to the left when x < -1.
ẋ = x+ e�y = x+ 1 > 0 , x > �1



Existence, uniqueness and 
topological consequences

Existence and Uniqueness Theorem: Consider the initial
value problem Let f and all its
partial derivatives be
continuous for x in some open connected set . Then
for the initial value problem has a solution x(t) on
some time interval (-τ, τ) about t = 0, and the solution is
unique.

@fi/@xj , i, j = 1, · · · , n
D ⇢ Rn

x0 2 D

ẋ = f(x), x(t0) = x0.

The existence and uniqueness theorem given previously 
for 1 D can be generalized to n dimensions.



Existence, uniqueness and 
topological consequences

ẋ = f(x), x(t0) = x0

Corollary: different trajectories never intersect!

If two trajectories did intersect there would be two solutions
starting from the same point (the crossing point).



Existence, uniqueness and 
topological consequences

Consequence in two dimensions: any trajectory starting
from inside a closed orbit will be trapped inside it forever!

What will happen in the limit t → ∞ ? The trajectory will
either converge to a fixed point or to a closed (periodic)
orbit! (The last part: Poincaré-Bendixson theorem.)


