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Convolutions

A convolution is an operation between two functions

It is an example of an integral transform

And thus related to, e.g., Fourier, Laplace, and other
similar transforms (which also play a major role in GP
methods)

∗
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Definition

2 Convolutions

In common engineering notational convention, a convolution between two functions f (·) and
g(·) can is denoted by

f (t) ∗ g(t) :=

∫ ∞
−∞

f (τ) g(t − τ) dτ︸ ︷︷ ︸
(f ∗g)(t)

Intuitive interpretation: The convolution formula can be described as a weighted average of
the function f (τ) at the moment t where the weighting is given by g(–τ) simply shifted by
amount t.
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Properties

Commutativity
f ∗ g = g ∗ f

Associativity

f ∗ (g ∗ h) = (f ∗ g) ∗ h

Distributivity

f ∗ (g + h) = (f ∗ g) + (f ∗ h)

Associativity with scalar multiplication

a (f ∗ g) = (a f ) ∗ g

∗
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Illustrative example
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Example convolutions

f (t)

g(t)

(f ∗ g)(t)
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Example convolutions

f (t)
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Example convolutions

f (t)
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Discrete convolutions

Depending a bit on what you aim for, you might either
consider the (continuous) integral or resort to an
approximation by discretization

In practice, you may replace the the integral with a
finite sum

This also allows for turning the convolution into a linear
mapping, where the convolution operation can be turned
into a matrix-vector multiplication
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Image filtering

Image filters in spatial domain
• A filter is a mathematical operation of a grid of numbers
• Smoothing, sharpening, edge detection

Image filters in the frequency domain
• Filtering is a way to modify the frequencies of images
• Hybrid images, sampling, image resizing

Templates and image pyramids
• Filtering is a way to match a template to the image
• Detection, coarse-to-fine registration
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Image filters

Image filtering:
A function of the local neighbourhood at each point in
the image.

The weights for the local neighbourhood are called the
filter kernel.
A sharpening kernel:0 0 0

0 2 0
0 0 0

− 1

9

1 1 1
1 1 1
1 1 1


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Sharpening
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Gaussian filter
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Box filter
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Edge detection
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What if the convolution kernel is more complicated?

Input image Convolution kernel
(what to extract)

Output
‘cat-likeness’

Arno Solin GP Course: Lecture #7 Monday February 1, 2021 17 / 38



... which leads us to CNNs

Convolutional neural networks leverage convolutions

The convolutions are learned as to best explain the data

A lot of weights are parameters that need to be ‘learned’

Image: Typical cnn, Wikimedia Commons.
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What about GPs then?

f (x) ∼ GP(0, κ(x , x ′)) GP prior

y | f ∼
n∏

i=1

p(yi | f (xi)) likelihood

Arno Solin GP Course: Lecture #7 Monday February 1, 2021 19 / 38



Convolutional Gaussian process models

Convolutional likelihood models
(observations are made through convolutions)

Convolutional GP priors
(the GP prior itself has a convolutional structure)

Convolutions in deep GP models
(this is more in the domain of the next lecture)
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Convolutional likelihood models

Consider a GP model where the latent process is observed through a convolution

As an example, this would be the case for this 1D model:

f (t) ∼ GP(0, κ(t, t ′)) GP prior

yi =

∫ ∞
−∞

f (τ) g(ti − τ)dτ + εi likelihood

for i = 1, 2, . . . , n and where g(·) is the convolution kernel and εi ∼ N(0, σ2n)

This particular problem can be seen as a deconvolution problem
(a type of an inverse problem)
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Convolutional likelihood models (example)

For simplicity, let’s assume we know the convolution
(“box filter”) kernel:

g(t) =

{
1 for − 1

2 < t < 1
2

0 elsewhere
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Convolutional likelihood models (example)
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(remember that we observe the ‘true’ process through a convolution now)
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Convolutional likelihood models

The likelihood model looks tricky

f (t) ∼ GP(0, κ(t, t ′)) GP prior

yi =

∫ ∞
−∞

f (τ) g(ti − τ)dτ + εi likelihood

But let’s define an operator C

(C f )(t) =

∫ ∞
−∞

f (τ) g(t − τ) dτ

Which now allows us to re-write the observation model as
(with some misuse of notation, sorry)

yi = C f (ti ) + εi
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Convolutional likelihood models

The next step hinges on the simple, but very powerful realization that Gaussians are
closed under linear transformations:

If x is Gaussian, y = Ax is also Gaussian

The same principle generalizes to Gaussian processes in the sense that GPs are closed
under linear operations:

If f (x) is a Gaussian process, h(x) = A f (x) is also a Gaussian process
(where A is a linear operator)
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Detour: Derivative observations

This property is perhaps better understood by considering another linear operation:
derivatives of the GP

Since differentiation is a linear operator, the derivative of a Gaussian process is another
Gaussian process

We can make inference based on the joint Gaussian distribution of function values and
partial derivatives

We get the following (mixed) covariance between function values and partial derivatives,
and between partial derivatives

cov

(
f ,
∂f

∂t ′

)
=
∂κ(t, t ′)

∂t ′
and cov

(
∂f

∂t
,
∂f

∂t ′

)
=
∂2κ(t, t ′)

∂t∂t ′

Arno Solin GP Course: Lecture #7 Monday February 1, 2021 26 / 38



Detour: Derivative observations

From Rasmussen and Williams (2006), Sec. 9.4
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Convolutional likelihood models

The realization from before (and understanding that the convolution operator C is linear)
tells us that the convolution likelihood model is actually a Gaussian observation model
(conjugate likelihood!).

Thus the problem is actually pretty close to vanilla Gaussian process regression:

E[f (t∗) | D] = k∗(K + σ2I )−1y ,

V[f (t∗) | D] = κ(t∗, t∗)− k∗(K + σ2I )−1k>∗ ,

where
[k∗]i = κ(t∗, t)C∗ |t=ti and Kij = Cκ(t, t ′)C∗ |t=ti ,t′=tj

for i , j = 1, 2, . . . , n and C∗ denotes an operator adjoint.
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Convolutional likelihood models (example cont.)
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Convolutional likelihood models (example cont.)
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Convolutional likelihood models (example cont.)
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Convolutional Gaussian process models

Convolutional likelihood models
(observations are made through convolutions)

Convolutional GP priors
(the GP prior itself has a convolutional structure)

Convolutions in deep GP models
(this is more in the domain of the next lecture)
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Convolutional GP priors

For a GP, the ability to generalise in a specific problem, are fully encoded by its
covariance function (kernel)

Most common kernel functions rely on rather rudimentary and local metrics for
generalisation, like the Euclidean distance

What kind of non-local generalisation structures can be encoded in shallow structures like
kernels, while preserving the elegant properties of GPs?
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Convolutional GP priors

van der Wilk et al. (2017) presented an approach for capturing non-local structures with
GP priors in a convolutional patch fashion

The work builds upon combining principles we have already looked into on this lecture

They leverage an additive structure and so called inter-domain GPs, where the inducing
variables are constructed using a weighted integral of the GP (this fits well with other
integral transformations as well)

um =

∫
φ(x , zm) f (x) dx

Instead of relying on an integral transformation of the GP, they construct the inducing
variables u alongside the new kernel such that the effective basis functions contain a
convolution operation
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Convolutional GP priors

The model of van der Wilk et al. (2017) takes the following form:

g ∼ GP(0, κg(z , z ′)), f (x) =
∑
p

g(x [p]),

where g(·) is a ‘patch response function’ and f (·) simply a sum over all patch responses

If g(·) is given a GP prior, a GP prior will also be induced on f (·):

f ∼ GP
(

0,
P∑

p=1

P∑
p′=1

κg(x [p], x ′[p
′])

)
,

where x [p] indicates the pth patch of the vector x
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Convolutional GP priors

The basic structure of the model is not that different
from a convnet

The model itself is complicated and does not scale well
with massive training data

The solution is considering it as a variational sparse GP
and learn the inducing points (inducing patches)

You get a chance to play with this model in the exercises

Inducing patches for the
squares data

Inducing patches for the
MNIST 0–1 data

Images from van der Wilk (2017)
Arno Solin GP Course: Lecture #7 Monday February 1, 2021 36 / 38



Recap

GPs provide a plug&play machinery for statistical
inference and learning

This lecture has tried to open your eyes in seeing how
GPs can act as building blocks in slightly more versatile
models beyond standard GP regression and classification

We have covered two aspects of how convolutions can be
used in association with Gaussian processes showing how
GPs can appear both in the likelihood model and the GP
prior itself

GP ♥

...
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