Tokamaks and Tokamak Physics

Dr. Timo Kiviniemi and Prof. Mathias Groth Aalto University

School of Science, Department of Applied Physics

Learning outcomes

- Describe/recap plasma motion in electromagnetic fields
- Define toroidal and poloidal fields in tokamaks ⇒ device setup and plasma geometry
 - Tokamak = Toroidal'naya Kamera s Magnitnymi
 Katushkami (= Toroidal chamber with mangetic coils)
- Understand tokamak startup and flattop phases: how is a tokamak operated? What does a tokamak plasma look like?
- Be familiar with principal configurations: limiter and diverted configurations

At fusion-relevant temperatures, a plasma of unbounded ions and electrons exists

From lecture 2:

- Outside the Debye sphere, plasmas are electrostatically neutral
- Plasmas need to be constrained, or confined to remain hot
 - Magnetic fields
 - Inertia
 - Gravity

(Also in a cylindrical system) charges particles will eventually leave the confinement system

 Plasma particles expand into vacuum until walls are reached

Applying a homogenous and axisymmetric magnetic field confines the particles to field lines

 Particles move along field lines and gyrate around them given by their Larmor radius:

$$r_{L} = \frac{m \, V_{\perp}}{eB}$$

 Yet, particles still move across the B-field, but more slowly than without the field

Electric fields and inhomogeneous magnetic fields lead to cross-B field drifts

Electric fields and inhomogeneous magnetic fields lead to cross-B field drifts

 Non-field aligned electric fields (chargeindependent!):

$$\vec{v}_{ExB} = \frac{E \times B}{B^2}$$

Electric fields and inhomogeneous magnetic fields lead to cross-B field drifts

 Non-field aligned electric fields (chargeindependent!):

$$\vec{\mathbf{v}}_{ExB} = \frac{E \times B}{B^2}$$

 Inhomogeneous Bfield ⇒ ions and electrons drift in opposite directions ⇒ charge separation ⇒ electric field:

$$\vec{v}_{\nabla B} = \frac{\underline{m}_{e,i} \underline{v}_{\perp}}{2e_{e,i}} \quad \frac{B \times \nabla B}{B} \underline{v}_{\perp}$$

Connecting the two ends of a cylinder forms a closed system, i.e., a torus

A purely toroidal system will lead to (up-down) charge separation and ∇B radial outward drifts

⇒ Short-circuit of up-down charge separation is required

A poloidal magnetic field produced by an electric current cancels the top-bottom charge separation

Resulting magnetic field is **B**tor В helical **Axisymmetry simplifies** tokamaks to two Ion drift dimensions Accelerated electron **Electron** drift Magnetic field line Ion driff Electron drift Toroidal direction

Technical realization

A plasma is created and contained in a vacuum chamber at a base pressure ≈ 10-6 to 10-5 Pa (10-8 – 10-7 atm)

A plasma a is created and contained in a vacuum chamber at a base pressure ≈ 10-6 to 10-5 Pa

- Vacuum pumping is required (prior to start) to eliminate all sources of organic molecules
- It is also required to create low density—about one million times lower than the density of air.
- Mechanical/cryogenic pumps evacuate the air out of the vessel and the cryostat
- E.g in ITER, this operation will take 24 to 48 hours.

Iter.org

In a tokamak, a transformer-induced current in the plasma generates a poloidal field

- External toroidal field
- → Question: # of coils?
- Transformer winding

 ⇔ plasma acts as
 secondary circuit
- Toroidal +
 poloidal fields ⇒
 helical field

Toroidal'naya Kamera s Magnitnymi Katushkami

An additional set of poloidal field coils are needed to plasma positioning and shaping

A larger number of toroidal field coils reduces the toroidal field inhomogeneity (toroidal ripple)

The toroidal field exhibits 1/R dependence, which leads to trapping of particles on the low field side

Toroidal magnetic field strength by Ampere's law:

$$\Rightarrow$$
 B_T non-uniform in R:

$$\nabla \times B = \mu_0 I_{TF} \Rightarrow B_T = \frac{\mu_0 I_{TF}}{2\pi R}$$

$$\frac{\Delta B_T}{B_{T,0}} \approx \frac{2R_{\text{minor}}}{R_0} \approx \frac{3}{4}$$

Particles moving into the higher magnetic field can be reflected (mirror effect)

Torus center

Trapping, if:

$$\frac{\mathbf{V}_{_{\parallel,0}}}{\mathbf{V}_{\perp,0}} \leq \sqrt{2\frac{r}{R_{_{0}}}}$$

- Guiding center drifts lead to banana shaped orbits
- Orbits are wide compared to "classical" gyroorbits → neoclassical transport

Inductive start-up of the plasma

- In present day tokamaks, the main technique to initiate breakdown and drive a toroidal current is use of a central solenoid that supplies magnetic flux and induces a toroidal electric field.
- Typically, before start-up, hydrogen or deuterium gas is injected into the vacuum vessel and the solenoid is precharged with a current in the desired direction of the plasma current.
- Start-up phase also heats the plasma (Ohmic heating)

A time-varying current in the transformer primary induces a toroidal electric field ⇒ plasma current

Maxwell-Faraday:

$$-\frac{\partial B}{\partial t} = \nabla \times \vec{\mathbf{E}}$$

- ⇒ Tokamaks are pulsed devices
 - Electric field drives plasma ion in one direction, electrons in the opposite ⇒ collisions heat plasmas

The current in primary coils is ramped down, then up, to break down the plasma and to drive the current

2)

- 3)
 Generator
- 1) Pre-magnetization of primary poloidal field coils
- 2) Plasma break-down at $I_{primary} = 0$
- 3) Reconnection and re-direction of I_{primary}

The current in primary coils is ramped down, then up, to break down the plasma and to drive the current

In diverted configurations, the main plasma-wall interaction is at the bottom ⇒ hydrogen emission

Typically, the interaction of the plasma with the wall is imaged ⇒ excitation of hydrogen atoms

Plasma in JET: https://www.youtube.com/watch?v=IS9YBmgcHX4

Tokamak fields, dimensions, currents and plasma configurations

Tokamaks are defined by their fields and currents, and their sizes

- Toroidal fields (B_T) up to 5 T
- Plasma currents (I_p) up to 7 MA
- Poloidal fields
 (B_P) of
 conventional
 tokamaks) ≈
 1/10 B_T

Tokamaks are defined by their fields and currents, and their sizes

- Major and minor radius up to 3 m and 1.5 m, respectively (6.2m and 2m for ITER)
- Aspect ratio:

$$A \equiv \frac{R_{\mathrm{major}}}{R_{\mathrm{minor}}}$$

 Conventional tokamaks: A ≈ 3, spherical tokamaks A → 1

Magnetic surfaces can also be described by poloidal and toroidal fluxes

- Ψ_p through surface with normal A_p and boundary K_t
- Ψ_t through surface with normal A_t and boundary K_p
- \Rightarrow Describe equilibrium by $(\Psi_p, I_p) \Rightarrow$ Grad-Shafranov equation

Tokamaks are defined by their fields and currents, and their sizes

- Toroidal magnetic field (B_T) peaks at the torus center and falls off radially (1/R)
- Poloidal field (B_P) is zero on the magnetic axis ⇒ B_P/B_T ≈ 1/10
 - Plasma current
 density (j_{tor}, up to MA/
 m²) peaks on the
 magnetic axis ⇒
 plasma current of the
 order MA's

The combination of toroidal and poloidal fields produces nested surfaces

 Stationary equilibrium determined by balance between plasma pressure and magnetic force (Grad- Shafranov equation):

$$j \times B = \nabla p$$

 Efficiency of magnetic confinement measured by

$$\beta \equiv \frac{p}{B^2 / 2\mu_0}$$

Plasma instabilities, or modes, are often localized on rational values of the safety factor (q)

Safety factor:

$$q(r) \equiv \frac{rB_{T}(r)}{R_{major}B_{P}(r)}$$

- Typically, q(r) monotonically increase towd. edge
- Instabilities grow on rational q values
- ⇒ toroidal and poloidal mode numbers n and m

The most basic magnetic configuration is an axisymmetric limiter configuration

- Plasma typically vertically elongated (Dshaped) to improve its stability
- Plasma fills vacuum chamber
- A protruding material surface (limiter) defines the confined plasma and the scrapeoff layer (SOL)

Adding coils at the bottom end of the device produces a diverted configuration

- Magnetic null separating the confined plasma from divertor plasma
- Main interaction zone of plasma with divertor targets
- Loss of magn. volume
- + Better control of plasma density and impurity content
- ⇒ Improvement of confinement by 2x

Fusion of hydrogen ions occurs in the center of the plasma, where T ≈ 10 keV

- JET neutron from D-T and neutral beams at 100 keV
- Two orthogonal neutron cameras (res. ~ 10 cm)
- Detectors include
- NE213 liquid scintillators for
- 2.5 MeV (D-D) and 14 MeV (D-T)
- Plastic Bicron 418 scintillators (14 MeV)
- Csl (Tl) photodiodes (hard x-rays and γ emission:
- $2 < E_{\gamma} < 6 \text{ MeV}$

Summary

- A tokamak is a toroidal confinement device with magnetic field coils
- Plasma generated in vacuum chamber by transformer action driving a plasma current c.f., stellarators
- Strong toroidal field for stability, weaker poloidal field for plasma confinement
- Nested flux surfaces of balanced force between plasma pressure and electromagnetic force: jxB=∇p
- Principal tokamak configurations are the limiter and divertor configurations
- Lectures concerning ITER, SOL, PWI etc still to come!