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Learning outcomes
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• Describe/recap plasma motion in electromagnetic fields

• Define toroidal and poloidal fields in tokamaks ⇒ device 
setup and plasma geometry

       – Tokamak = Toroidal’naya Kamera s Magnitnymi 
Katushkami  (= Toroidal chamber with mangetic coils)

• Understand tokamak startup and flattop phases: how is a 
tokamak operated? What does a tokamak plasma look like?

• Be familiar with principal configurations: limiter and 
diverted configurations



At fusion-relevant temperatures, a plasma of 
unbounded ions and electrons exists

• Outside the Debye 
sphere, plasmas are 
electrostatically neutral

• Plasmas need to be 
constrained, or 
confined to remain hot

– Magnetic fields

– Inertia

– Gravity

From lecture 2:
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(Also in a cylindrical system) charges particles 
will eventually leave the confinement system

• Plasma particles expand 
into vacuum until walls are 
reached

H+
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Applying a homogenous and axisymmetric 
magnetic field confines the particles to field lines

• Particles move along field lines and gyrate 
around them given by their Larmor radius:

• Yet, particles still move
across the B-field, but more 
slowly than without the field

rL  
m v

eB

B
e-

H+
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Electric fields and inhomogeneous magnetic 
fields lead to cross-B field drifts
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Electric fields and inhomogeneous magnetic 
fields lead to cross-B field drifts

• Non-field aligned 
electric fields (charge- 
independent!):

vExB  
E  B 

B2

Mathias Groth Fusion Technology PHYS-E0463 “Tokamak Physics”, Aalto University 7



Electric fields and inhomogeneous magnetic 
fields lead to cross-B field drifts

• Non-field aligned 
electric fields (charge- 
independent!):

• Inhomogeneous B- 
field ⇒ ions and 
electrons drift in 
opposite directions ⇒ 
charge separation ⇒ 
electric field:
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vB  
m

e,i
v  B  B

2e
e,i

B        B2

v

vExB  
E  B 

B2



Connecting the two ends of a cylinder forms a 
closed system, i.e., a torus

B

∇B

Mathias Groth Fusion Technology PHYS-E0463 “Tokamak Physics”, Aalto University 10

Toroidal field coil

Torus center



A purely toroidal system will lead to (up-down) 
charge separation and B radial outward drifts

B

∇B

e-

H+

E

-

+

⇒ Short-circuit of up-down charge separation is required
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A poloidal magnetic field produced by an electric 
current cancels the top-bottom charge separation

Btor

Itor 

Bpol

• Resulting magnetic field is 
helical

• Axisymmetry simplifies 
tokamaks to two 
dimensions

∇B
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Technical realization
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A plasma is created and contained in a vacuum 
chamber at a base pressure ≈ 10-6  to 10-5  Pa 

The JET tokamak in 2011

3.7 m

2.7 m
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(10-8 – 10-7 atm)



A plasma a is created and contained in a vacuum 
chamber at a base pressure ≈ 10-6  to 10-5  Pa
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● Vacuum pumping is required (prior to start) to eliminate all 
sources of organic molecules
● It is also required to create low density—about one million 
times lower than the density of air. 

Iter.org

● Mechanical/cryogenic 
pumps evacuate the air 
out of the vessel and the 
cryostat 
● E.g in ITER, this 
operation will take 24 to 48 
hours.



In a tokamak, a transformer-induced current in the 
plasma generates a poloidal field

Toroidal’naya Kamera s 
Magnitnymi Katushkami
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• External toroidal 
field

→ Question: # of 
coils?

Transformer winding ⇔ plasma acts as  
secondary circuit

• Toroidal + 
poloidal fields ⇒ 
helical field



An additional set of poloidal field coils are needed 
to plasma positioning and shaping
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A larger number of toroidal field coils reduces the 
toroidal field inhomogeneity (toroidal ripple)

16 / 0.8% 32 / 0.08% 18 / 1.0%
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The toroidal field exhibits 1/R dependence, which 
leads to trapping of particles on the low field side

∇B

•Toroidal magnetic field 
strength by Ampere’s law:

⇒ BT  non-uniform in R:

B


  B  0 ITF   BT  

0 ITF

2 R

ITF

ΔBT

BT ,0
 

2Rminor

R0
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Particles moving into the higher magnetic field 
can be reflected (mirror effect)

Torus center

∇B

• Trapping, if:

• Guiding center drifts 
lead to banana 
shaped orbits

• Orbits are wide 
compared to 
“classical” gyro-
orbits → 
neoclassical 
transport

V 
||,0

v,0
 2

r

R0
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Inductive start-up of the plasma

● In present day tokamaks, the main technique to initiate 
breakdown and drive a toroidal current is use of a central 
solenoid that supplies magnetic flux and induces a 
toroidal electric field. 

● Typically, before start-up, hydrogen or deuterium gas is 
injected into the vacuum vessel and the solenoid is 
precharged with a current in the desired direction of the 
plasma current.

● Start-up phase also heats the plasma (Ohmic heating) 
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A time-varying current in the transformer primary 
induces a toroidal electric field ⇒ plasma current

• Maxwell-Faraday:

 B 
   


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⇒ Tokamaks are 
pulsed devices

• Electric field drives 
plasma ion in one 
direction, electrons 
in the opposite ⇒ 
collisions heat 
plasmas

t
E



The current in primary coils is ramped down, then up, to 
break down the plasma and to drive the current

1) Pre-magnetization of primary 
poloidal field coils

2) Plasma break-down at Iprimary = 0

3) Reconnection and re-direction of 

Iprimary

1) 2)

3)
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The current in primary coils is ramped down, then up, to 
break down the plasma and to drive the current

• Tokamaks are 
pulsed devices

• Change in Iprimary 

determines Iplasma

• Resistivity (~T-3/2) of 
the plasma limits 
Iplasma  flattop phase

Plasma current flattop

Toroidal field flattop

Break 
down

Primary 
recon.

0.01 g 
D2
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In diverted configurations, the main plasma-wall 
interaction is at the bottom ⇒ hydrogen emission

Balmer- 
emission

Hot Core

Divertor
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Typically, the interaction of the plasma with the 
wall is imaged ⇒ excitation of hydrogen atoms
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https://www.youtube.com/watch?v=IS9YBmgcHX4Plasma in JET:

https://www.youtube.com/watch?v=IS9YBmgcHX4


Tokamak fields, 
dimensions, currents 

and plasma 
configurations
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Tokamaks are defined by their fields and currents, 
and their sizes

• Toroidal fields 
(BT) up to 5 T

• Plasma 
currents (Ip) up 
to 7 MA

• Poloidal fields 
(BP) of 
conventional 
tokamaks) ≈ 
1/10 BT
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Tokamaks are defined by their fields and currents, 
and their sizes

• Major and minor 
radius up to 3 m 
and 1.5 m, 
respectively (6.2m 
and 2m for ITER)

• Aspect ratio:

• Conventional 
tokamaks: A ≈ 3, 
spherical 
tokamaks A → 1

A 
Rmajor

Rminor
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Magnetic surfaces can also be described by 
poloidal and toroidal fluxes

 p  through surface with normal Ap  and boundary Kt

 t  through surface with normal At  and boundary Kp

⇒ Describe equilibrium by (p,Ip) ⇒ Grad-Shafranov 
equation
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Tokamaks are defined by their fields and currents, 
and their sizes

Magnetic axis

• Toroidal magnetic 
field (BT) peaks at the 
torus center and falls 
off radially (1/R)

• Poloidal field (BP) is 
zero on the magnetic 
axis ⇒ BP/BT  ≈ 1/10

• Plasma current 
density (jtor, up to MA/
m2) peaks on the 
magnetic axis ⇒ 
plasma current of the 
order MA’s

Torus center
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The combination of toroidal and poloidal fields 
produces nested surfaces

• Stationary equilibrium 
determined by balance 
between plasma 
pressure and magnetic 
force (Grad- Shafranov 
equation):

j  B  p

• Efficiency of magnetic 
confinement measured 
by

 
p

B2  / 2 0
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Plasma instabilities, or modes, are often localized 
on rational values of the safety factor (q)

• Safety factor:

• Typically, q(r) 
monotonically 
increase towd. edge

• Instabilities grow on 
rational q values⇒ toroidal and poloidal 
mode numbers n and m

q(r) 
rBT (r)

Rmajor BP (r)

rho  r /Rminor

(2/1)
(3/2)
(1/1)
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The most basic magnetic configuration is an 
axisymmetric limiter configuration

• Plasma typically 
vertically elongated (D-
shaped) to improve its 
stability

• Plasma fills vacuum 
chamber

• A protruding material 
surface (limiter) 
defines the confined 
plasma and the scrape-
off layer (SOL)

Limiter 

config.
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Adding coils at the bottom end of the device 
produces a diverted configuration

• Magnetic null 
separating the 
confined plasma from 
divertor plasma

+  Main interaction zone 
of plasma with divertor 
targets

- Loss of magn. volume

+  Better control of 
plasma density and 
impurity content

⇒ Improvement of 
confinement by 2x

Divertor 

config.
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Fusion of hydrogen ions occurs in the center of 
the plasma, where T ≈ 10 keV

• JET neutron from D-T 
and neutral beams at 100 
keV

• Two orthogonal neutron 
cameras (res. ~ 10 cm)

• Detectors include

– NE213 liquid scintillators for
2.5 MeV (D-D) and 14 MeV (D-T)

– Plastic Bicron 418 scintillators 
(14 MeV)

– CsI (TI) photodiodes (hard x-rays 
and  emission:

2 < E < 6 Mev)
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Summary
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• A tokamak is a toroidal confinement device with magnetic 
field coils

• Plasma generated in vacuum chamber by transformer 
action driving a plasma current ⇔ c.f., stellarators

• Strong toroidal field for stability, weaker poloidal field for 
plasma confinement

• Nested flux surfaces of balanced force between plasma 
pressure and electromagnetic force: jxB=∇p

• Principal tokamak configurations are the limiter and 
divertor configurations

• Lectures concerning ITER, SOL, PWI etc still to come! 
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