Computational Algebraic Geometry

Elimination theory

Kaie Kubjas
kaie.kubjas@aalto.fi

February 1, 2021

Last time

Definition

Given $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset k\left[x_{1}, \ldots, x_{n}\right]$ the I-th elimination ideal I_{I} is the ideal of $k\left[x_{I+1}, \ldots, x_{n}\right]$ defined by

$$
I=I \cap k\left[x_{I+1}, \ldots, x_{n}\right] .
$$

Theorem (The Elimination Theorem)

Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and let G be a Groebner basis of I wrt to lex order where $x_{1}>x_{2}>\cdots>x_{n}$. Then, for every $0 \leq I \leq n$, the set

$$
G_{l}=G \cap k\left[x_{l+1}, \ldots, x_{n}\right]
$$

is a Groebner basis of the I-th elimination ideal I_{I}.

Last time

Theorem (The Extension Theorem)

Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and let l_{1} be the first elimination ideal of I. For each $1 \leq i \leq s$, write f_{i} in the form

$$
f_{i}=g_{i}\left(x_{2}, \ldots, x_{n}\right) x_{1}^{N_{i}}+\text { terms in which } x_{1} \text { has degree }<N_{i}
$$

where $N_{i} \geq 0$ and $g_{i} \in \mathbb{C}\left[x_{2}, \ldots, x_{n}\right]$ is nonzero. Suppose that we have a partial solution $\left(a_{2}, \ldots, a_{n}\right) \in V\left(I_{1}\right)$. If $\left(a_{2}, \ldots, a_{n}\right) \notin V\left(g_{1}, \ldots, g_{s}\right)$, then there exists $a_{1} \in \mathbb{C}$ such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(I)$.

Quiz

Let $I=\langle x y-1\rangle \subseteq \mathbb{C}[x, y]$. Fix the lex order with $x>y$.
(1) What is the first elimination ideal I_{1} ?
(2) What is the set of partial solutions $\mathbb{V}\left(I_{1}\right)$?
(3) Which partial solutions in $\mathbb{V}\left(l_{1}\right)$ extend to a complete solution in $\mathbb{V}(I)$?

Overview

Today:

- The geometry of elimination
- Implicitization

The geometry of elimination

Variety of the elimination ideal

Let $\pi_{\text {}}$ be the projection map

$$
\begin{array}{rll}
\pi_{l}: & \mathbb{C}^{n} & \rightarrow \mathbb{C}^{n-I} \\
& \left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(a_{l+1}, \ldots, a_{n}\right)
\end{array}
$$

Variety of the elimination ideal

Let π_{l} be the projection map

$$
\begin{array}{ccc}
\pi_{l}: & \mathbb{C}^{n} & \rightarrow \mathbb{C}^{n-1} \\
& \left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(a_{l+1}, \ldots, a_{n}\right) .
\end{array}
$$

Lemma

Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$ and let
$I_{I}=\left\langle f_{1}, \ldots, f_{s}\right\rangle \cap \mathbb{C}\left[x_{I+1}, \ldots, x_{n}\right]$ be the I-th elimination ideal of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Then, in \mathbb{C}^{n-1} we have

$$
\pi_{l}(V) \subseteq \mathbb{V}\left(I_{I}\right)
$$

Proof: Let $f \in I_{e}$. Let $\left(a_{n}, \ldots, a_{n}\right) \in V$. Then $f\left(a_{1}, \ldots, a_{n}\right)=0$, because $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$.
Since f includes only the variable $x_{l+1}, \ldots x_{n}$, then

$$
f\left(a_{1}, \ldots, a_{n}\right)=f\left(\pi_{e}\left(a_{1}, \ldots, a_{n}\right)\right)=0 .
$$

Hence f vanishes on were pint of $\pi_{e}(V)$.

Variety of the elimination ideal

- Recall: The points of $\mathbb{V}\left(I_{l}\right)$ are called partial solutions.
- By Lemma, we can write $\pi_{l}(V)$ as

$$
\pi_{l}(V)=\left\{\left(a_{l+1}, \ldots, a_{n}\right) \in \mathbb{V}\left(l_{l}\right): \begin{array}{c}
\exists a_{1}, \ldots, a_{l} \in \mathbb{C} \text { with } \\
\\
\left.\left(a_{1}, \ldots, a_{l}, a_{l+1}, \ldots, a_{n}\right) \in V\right\} .
\end{array}\right.
$$

- $\pi_{l}(V)$ consists precisely of the partial solutions that extend to complete solutions.

$\pi_{1}(V)=\{a \in \mathbb{C}: a \neq 0\} \Rightarrow \pi_{1}(V)$ is not an affine variety!

The Geometric Extension Theorem

Theorem (The Geometric Extension Theorem)
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$, let g_{i} be as in the Extension Theorem. If I_{1} is the first elimination ideal of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$, then we have the equality in \mathbb{C}^{n-1}

$$
\mathbb{V}\left(l_{1}\right)=\pi_{1}(V) \cup\left(\mathbb{V}\left(g_{1}, \ldots, g_{s}\right) \cap \mathbb{V}\left(I_{1}\right)\right)
$$

- $\pi_{1}(V)$ fills up $\mathbb{V}\left(I_{1}\right)$ besides possibly a part that lies in $\left(\mathbb{V}\left(g_{1}, \ldots, g_{s}\right) \cap \mathbb{V}\left(l_{1}\right)\right)$
Proof: This theoum bellows from the Extension Theorem and the previous lemma.

The Geometric Extension Theorem

It is not clear how big the missing part is and it can be unnaturally large:

- $(y-z) x^{2}+x y-1$ and $(y-z) x^{2}+x z-1$ generate the same ideal as $y x-1$ and $z x-1$
- $I_{1}=\langle y-z\rangle$
- The partial solutions are $\{(a, a): a \in \mathbb{C}\}$

The Geometric Extension Theorem

It is not clear how big the missing part is and it can be unnaturally large:

- $(y-z) x^{2}+x y-1$ and $(y-z) x^{2}+x z-1$ generate the same ideal as $y x-1$ and $z x-1$
- $I_{1}=\langle y-z\rangle$
- The partial solutions are $\{(a, a): a \in \mathbb{C}\}$
- The first set of generators: $g_{1}=g_{2}=(y-z)$ and hence the Geometric Extension Theorem says nothing about the size of $\pi_{1}(V)$
- The second set of generators: $g_{1}=y$ and $g_{2}=z$ and hence all partial solutions besides $(0,0)$ extend to a complete solution

The Closure Theorem

Theorem (The Closure Theorem)

Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$ and let l_{l} be the l-th elimination ideal of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Then
(1) $\mathbb{V}\left(I_{l}\right)$ is the smallest affine variety containing $\pi_{l}(V) \subseteq \mathbb{C}^{n-I}$.
(2) When $V \neq \emptyset$, there is an affine variety $W \subsetneq \mathbb{V}\left(I_{I}\right)$ such that $\mathbb{V}\left(I_{I}\right)-W \subseteq \pi_{l}(V)$.

Proof: (1) We will jodpure the prof of the first pat. 2) We rove it for the special can $l=1$.

By the Geometric Extension Thooun

$$
V\left(I_{1}\right)=\pi_{1}(V) \cup \underbrace{\left(\mathbb{W}\left(g_{11}, g_{3}\right) \cap \mathbb{V}\left(I_{1}\right)\right)}_{W}
$$

Hence $V\left(I_{1}\right)-W \subseteq \pi_{1}(V)$ and we are dove if $W \neq \mathbb{V}\left(I_{1}\right)$.

If $W=V\left(I_{1}\right)$, We nad b modify equs olfining V so that W becomes sales.
OBSERVATION: If $W=V\left(I_{1}\right)$, then

$$
V=V\left(f_{1}, \ldots, f_{s}, g_{11} \ldots g_{s}\right)
$$

Proof of obs: " 2 " is chan. " \subseteq " Let $\left(a_{n 1}, a_{n}\right) \in V$. Then $\left(a_{2}, \ldots, a_{n}\right) \in \pi_{1}(V) \subseteq V\left(I_{1}\right)=W$. Hence $g_{i}^{\prime} s$ vanish on $\left(a_{2}, \ldots, a_{n}\right)$ and $\left(a_{1}, \ldots, a_{n}\right) \in V\left(f_{1}, \ldots, f_{1}, g_{1}, \ldots g_{5}\right)$.
Let $\tilde{I}=\left\langle f_{1}, \ldots, f_{s}, g_{n}, \ldots, q_{s}\right\rangle$. Then I and \tilde{N} might be different and hence I_{1} and \tilde{I}_{1} might be different. However, $\mathbb{V}\left(I_{1}\right)=\mathbb{Y}\left(\tilde{I}_{1}\right)$ becaux they are both the smallest varieties containing $\pi_{1}(V)$.

Next we define a better basis ton \tilde{I}. hat
$\tilde{f}_{i}=f_{i}-g_{i} x_{1}^{N_{i}}$. Then $\tilde{I}=\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{s}, g_{1}, \ldots, g_{s}\right\rangle$. The geom. Ext. Thus po $V=V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{s}, g_{1}, \ldots, g_{s}\right)$ gives

$$
\mathbb{V}\left(I_{1}\right)=\mathbb{V}\left(\tilde{I}_{1}\right)=\pi_{1}(V) \cup \tilde{W}
$$

where \tilde{W} consists of the a partial solutions where the beading beffeciecets of f on, $\tilde{f}_{s 1} g_{1 \ldots, \ldots} g_{s}$ vanish.
If $\tilde{W} \nsubseteq W$, then we are dom. It is not graanuted that \tilde{W}^{F} is strictly smaller. In this lax we can uqnat the poles. Each time the deigns of x_{1} drop (a remain zvo), so that eventually the generates will have degree O in x_{1}. This mans that V can be defined by the vanishing of pl's in $\mathbb{C}\left[x_{2}, \ldots, x_{n}\right]$ and leery partial solutions $\left(a_{2}, \ldots, a_{n}\right)$ extends to a solution $\left(a_{1}, \ldots, a_{n}\right)$ bo any $a_{1} \in \mathbb{C}$. In this ax we can hon $W=\varnothing$.

The Closure Theorem

Theorem (The Closure Theorem)

Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$ and let l_{l} be the I-th elimination ideal of $\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Then
(1) $\mathbb{V}\left(I_{I}\right)$ is the smallest affine variety containing $\pi_{l}(V) \subseteq \mathbb{C}^{n-1}$.
(2) When $V \neq \emptyset$, there is an affine variety $W \subsetneq \mathbb{V}\left(l_{l}\right)$ such that $\mathbb{V}\left(I_{I}\right)-W \subseteq \pi_{l}(V)$.

Corollary

Let $V \subseteq \mathbb{C}^{n}$ be an affine variety. Then there are affine varieties $Z_{i} \subset W_{i} \subseteq \mathbb{C}^{n-1}$ for $i \leq 1 \leq p$ such that

$$
\pi_{l}(V)=\bigcup_{i=1}^{p}\left(W_{i}-Z_{i}\right)
$$

Sets of this form are called constructible.

The Closure Theorem

Corollary

Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$, and assume that for some i, f_{i} can be written as

$$
f_{i}=c_{i} x_{1}^{N}+\text { terms in which } x_{1} \text { has degree }<N
$$

where $c \in \mathbb{C}$ is nonzero and $N>0$. If I_{1} is the first elimination ideal, then

$$
\pi_{1}(V)=\mathbb{V}\left(I_{1}\right)
$$

The Closure Theorem

Corollary

Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{C}^{n}$, and assume that for some i, f_{i} can be written as

$$
f_{i}=c_{i} x_{1}^{N}+\text { terms in which } x_{1} \text { has degree }<N
$$

where $c \in \mathbb{C}$ is nonzero and $N>0$. If I_{1} is the first elimination ideal, then

$$
\pi_{1}(V)=\mathbb{V}\left(I_{1}\right)
$$

The Extension and Closure Theorems hold over any algebraically closed field.

Implicitization

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- rational parametric representation of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- rational parametric representation of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

- require that V is the smallest variety containing these points

Rational parametrizations

Definition

A rational function in t_{1}, \ldots, t_{m} with coefficients in k is a quotient f / g of two polynomials $f, g \in k\left[t_{1}, \ldots, t_{m}\right]$, where g is not the zero polynomial. The set of all rational functions is denoted $k\left(t_{1}, \ldots, t_{m}\right)$.

- rational parametric representation of V consists of $r_{1}, \ldots, r_{n} \in k\left(t_{1}, \ldots, t_{m}\right)$ such that

$$
x_{1}=r_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=r_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

lie in V

- require that V is the smallest variety containing these points
- if r_{1}, \ldots, r_{n} are polynomials, then polynomial parametric representation
- original defining equations $f_{1}=\ldots=f_{s}=0$ are called an implicit representation
- it is easy to draw a parametric description of a curve on a computer

- plotted not using $x^{2}-y^{2} z^{2}+z^{3}=0$ but

$$
x=t\left(u^{2}-t^{2}\right), y=u, z=u^{2}-t^{2}
$$

- if we want to know whether the point $(1,2,-1)$ is on the above surface, then implicit representation is useful:
$1^{2}-2^{2}(-1)^{2}+(-1)^{3}=1-4-1=-4$

Desirability of having both representations leads to the questions

- (Parametrization) Does every affine variety have a rational parametric description?
- (Implicitization) Given a parametric representation of an affine variety, can we find the defining equations (i.e. can we find an implicit representation)?
- The answer to the first question is no. Those that can be parametrized are called unirational.
- It is difficult to tell whether a given variety is unirational or not.
- We will learn that the answer to the second question is always yes.

Implicitization

- The parametrization might not fill up all of the variety.
- Implicitization asks for the defining equations of the smallest variety containing the parametrization.
- How to find missing points?
- the twisted cubic has parametrization

$$
x=t, y=t^{2}, z=t^{3}
$$

- the tangent vector to the curve at a point is $\left(1,2 t, 3 t^{2}\right)$
- the tangent line is parametrized

$$
\left(t, t^{2}, t^{3}\right)+u\left(1,2 t, 3 t^{2}\right)=\left(t+u, t^{2}+2 t u, t^{3}+3 t^{2} u\right)
$$

- a parametrization of the entire surface is

$$
x=t+u, y=t^{2}+2 t u, z=t^{3}+3 t^{2} u
$$

- the tangent surface lies on the variety V defined by

$$
-4 x^{3} z+3 x^{2} y^{2}-4 y^{3}+6 x y z-z^{2}=0
$$

- Is V the smallest variety containing the tangent surface?
- If yes, does the tangent surface fill up V completely?
- We consider the polynomial parametrization

$$
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

where $f_{1}, \ldots, f_{n} \in k\left[t_{1}, \ldots, t_{m}\right]$.

- We can think of it as the map F

$$
\begin{aligned}
k^{m} & \rightarrow k^{n} \\
\left(t_{1}, \ldots, t_{m}\right) & \mapsto\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)
\end{aligned}
$$

- Then $F\left(k^{m}\right) \subseteq k^{n}$ is equal to the subset of k^{n} parametrized by the polynomials f_{1}, \ldots, f_{n}.
- The solution to the implicitization problem finds the smallest algebraic variety containing $F\left(k^{m}\right)$

Polynomial parametrization

Next we want to connect the implicitization and elimination. The polynomial equations

$$
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

define a variety

$$
V=\mathbb{V}\left(x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right) \subseteq k^{n+m}
$$

The points of V can be written as

$$
\left(t_{1}, \ldots, t_{m}, f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)
$$

Hence V is the graph of the map F.

Polynomial parametrization

We also have the inclusion $i: k^{m} \rightarrow k^{n+m}$ defined by

$$
i\left(t_{1}, \ldots, t_{m}\right) \mapsto\left(t_{1}, \ldots, t_{m}, f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right)
$$

and the projection $\pi_{m}: k^{n+m} \rightarrow k^{n}$ defined by

$$
\pi_{m}\left(t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)
$$

$$
i\left(k^{m}\right)=V \text { and } F\left(k^{m}\right)=\pi_{m}\left(i\left(k^{m}\right)\right)=\pi_{m}(V)
$$

Polynomial Implicitization

Theorem (Polynomial Implicitization)

If k is an infinite field, let $F: k^{m} \rightarrow k^{n}$ be the map defined by the polynomial parametrization

$$
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right) .
$$

Let $I=\left\langle x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right\rangle \subseteq k\left[t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]$ and let $I_{m}=I \cap k\left[x_{1}, \ldots, x_{n}\right]$ be the m-th elimination ideal. Then $\mathbb{V}\left(I_{m}\right)$ is the smallest variety in k^{n} containing $F\left(k^{m}\right)$.

Proof: let $V=\mathbb{V}(I) \leq k^{n+\infty}$, the gap of F. If $k=\mathbb{C}$, then $F\left(\mathbb{C}^{\prime \prime}\right)=\pi_{m}(V)$ and by the Unsure The rems $V\left(I_{m}\right)$ is the smallest variety combining $\pi_{m}(V)$.
supper k is an iexpinite subfield of \mathbb{C}. Let ${V_{k}}^{\prime}\left(I_{m}\right)$ be the variety in k^{n} and $\mathbb{Y}_{\mathbb{C}}\left(I_{m}\right)$ be the variety in $\mathbb{C}^{\prime \prime}$. We have

$$
F\left(k^{m}\right)=\pi_{m}\left(V_{k}\right) \subseteq \mathbb{V}_{k}\left(I_{m}\right) .
$$

Let $Z_{k}=\mathbb{X}_{k}\left(g_{1}, \ldots, g_{s}\right) \subset k^{n}$ be any variedly containing $F\left(k^{*}\right)$. We mut show that $\mathbb{V}_{k}\left(I_{m}\right) \leqslant Z_{k}$. Since $g_{i}=0$ on Z_{k}, also $g_{i}=0$ on $F\left(k^{k}\right)$. Hence $g_{i 0} F$ vanishes on k^{m}, ie. it is the zero function on km^{m}.

Since k is an infinite field, then $g_{i} \circ F$ is a tho function in $k\left[t_{1}, \ldots, t_{m}\right]$. Hence also $g_{i} \circ F$ vanishes an \mathbb{C}^{m} and this g_{i}^{\prime} 's vawedh on $F\left(\mathbb{C}^{m}\right)$. Hence $Z_{\mathbb{C}}=\underset{\mathbb{C}}{\mathbb{X}}\left(g_{1}, \ldots, g_{s}\right)$ is a variety containing $F\left(\mathbb{C}^{m}\right)$. Since the theorem trave bon \mathbb{C}, it flows that $\mathbb{V}_{\mathbb{C}}\left(I_{m}\right) \subset Z_{\mathbb{C}}$ in \mathbb{C}^{n}. It follows $\mathbb{V}_{k}\left(I_{m}\right) \subset Z_{k}$

Implicitization algorithm

- Let

$$
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \cdots, x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
$$

for polynomials $f_{1}, \ldots, f_{n} \in k\left[t_{1}, \ldots, t_{m}\right]$.

- Consider the ideal $I=\left\langle x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right\rangle$.
- Compute the Groebner basis of I with respect to a lexicographic order where every t_{i} is greater than every x_{j}.
- The elements of the Groebner basis not involving t_{1}, \ldots, t_{m} define the smallest variety in k^{n} containing the parametrization.

Implicitization algorithm

Tangent surface of the twisted cubic:

- $I=\left\langle x-t-u, y-t^{2}-2 t u, z-t^{3}-3 t^{2} u\right\rangle \subseteq \mathbb{R}[t, u, x, y, z]$
- Fix the lex order with $t>u>x>y>z$
- A Groebner basis is given by

$$
\begin{aligned}
& g_{1}=t+u-x, \\
& g_{2}=u^{2}-x^{2}+y, \\
& g_{3}=u x^{2}-u y-x^{3}+(3 / 2) x y-(1 / 2) z, \\
& g_{4}=u x y-u z-x^{2} y-x z+2 y^{2}, \\
& g_{5}=u x z-u y^{2}+x^{2} z-(1 / 2) x y^{2}-(1 / 2) y z, \\
& g_{6}=u y^{2}-u z^{2}-2 x^{2} y z+(1 / 2) x y^{3}-x z^{2}+(5 / 2) y^{2} z, \\
& g_{7}=x^{3} z-(3 / 4) x^{2} y^{2}-(3 / 2) x y z+y^{3}+(1 / 4) z^{2} .
\end{aligned}
$$

- Since g_{7} is the only Groebner basis element consisting of variables x, y, z only, then $\mathbb{V}\left(g_{7}\right)$ solves the implicitization problem.

Tangent surface of the twisted cubic

$$
\begin{aligned}
& g_{1}=t+u-x \\
& g_{2}=u^{2}-x^{2}+y \\
& g_{3}=u x^{2}-u y-x^{3}+(3 / 2) x y-(1 / 2) z \\
& g_{4}=u x y-u z-x^{2} y-x z+2 y^{2} \\
& g_{5}=u x z-u y^{2}+x^{2} z-(1 / 2) x y^{2}-(1 / 2) y z \\
& g_{6}=u y^{2}-u z^{2}-2 x^{2} y z+(1 / 2) x y^{3}-x z^{2}+(5 / 2) y^{2} z \\
& g_{7}=x^{3} z-(3 / 4) x^{2} y^{2}-(3 / 2) x y z+y^{3}+(1 / 4) z^{2}
\end{aligned}
$$

Quiz: Which partial solutions $(x, y, z) \in \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{7}\right) \subseteq \mathbb{C}^{3}$ extend to a solution of $\mathbb{V}(I) \subseteq \mathbb{C}^{5}$?

Tangent surface of the twisted cubic

$$
\begin{aligned}
& g_{1}=t+u-x \\
& g_{2}=u^{2}-x^{2}+y \\
& g_{3}=u x^{2}-u y-x^{3}+(3 / 2) x y-(1 / 2) z \\
& g_{4}=u x y-u z-x^{2} y-x z+2 y^{2} \\
& g_{5}=u x z-u y^{2}+x^{2} z-(1 / 2) x y^{2}-(1 / 2) y z \\
& g_{6}=u y^{2}-u z^{2}-2 x^{2} y z+(1 / 2) x y^{3}-x z^{2}+(5 / 2) y^{2} z \\
& g_{7}=x^{3} z-(3 / 4) x^{2} y^{2}-(3 / 2) x y z+y^{3}+(1 / 4) z^{2}
\end{aligned}
$$

Quiz: Which partial solutions $(x, y, z) \in \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{7}\right) \subseteq \mathbb{C}^{3}$ extend to a solution of $\mathbb{V}(I) \subseteq \mathbb{C}^{5}$?

- $I_{1}=\left\langle g_{2}, \ldots, g_{7}\right\rangle$ is the first elimination ideal of I_{2} and the coefficient of u^{2} in g_{2} is $1 \Rightarrow$ all partial solutions in $\mathbb{V}\left(I_{2}\right)$ extend to a solution in $\mathbb{V}\left(l_{1}\right)$

Tangent surface of the twisted cubic

$$
\begin{aligned}
& g_{1}=t+u-x \\
& g_{2}=u^{2}-x^{2}+y \\
& g_{3}=u x^{2}-u y-x^{3}+(3 / 2) x y-(1 / 2) z \\
& g_{4}=u x y-u z-x^{2} y-x z+2 y^{2} \\
& g_{5}=u x z-u y^{2}+x^{2} z-(1 / 2) x y^{2}-(1 / 2) y z \\
& g_{6}=u y^{2}-u z^{2}-2 x^{2} y z+(1 / 2) x y^{3}-x z^{2}+(5 / 2) y^{2} z \\
& g_{7}=x^{3} z-(3 / 4) x^{2} y^{2}-(3 / 2) x y z+y^{3}+(1 / 4) z^{2}
\end{aligned}
$$

Quiz: Which partial solutions $(x, y, z) \in \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{7}\right) \subseteq \mathbb{C}^{3}$ extend to a solution of $\mathbb{V}(I) \subseteq \mathbb{C}^{5}$?

- $I_{1}=\left\langle g_{2}, \ldots, g_{7}\right\rangle$ is the first elimination ideal of I_{2} and the coefficient of u^{2} in g_{2} is $1 \Rightarrow$ all partial solutions in $\mathbb{V}\left(l_{2}\right)$ extend to a solution in $\mathbb{V}\left(l_{1}\right)$
- the coefficient of t in g_{1} is $1 \Rightarrow$ all partial solutions in $\mathbb{V}\left(I_{1}\right)$ extend to a solution in $\mathbb{V}(I)$

Tangent surface of the twisted cubic

- Since all partial solutions in $\mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{2}\right)$ extend to a complete solution in $\mathbb{V}(I)$, then the tangent surface of the twisted cubic fills $\mathbb{V}\left(g_{2}\right)$.

Tangent surface of the twisted cubic

- Since all partial solutions in $\mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{2}\right)$ extend to a complete solution in $\mathbb{V}(I)$, then the tangent surface of the twisted cubic fills $\mathbb{V}\left(g_{2}\right)$.
- It can be shown that in this example every real partial solution $(x, y, z) \in \mathbb{V}\left(I_{2}\right)$ extents to a real complete solution in $\mathbb{V}(I)$.

Tangent surface of the twisted cubic

- Since all partial solutions in $\mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(g_{2}\right)$ extend to a complete solution in $\mathbb{V}(I)$, then the tangent surface of the twisted cubic fills $\mathbb{V}\left(g_{2}\right)$.
- It can be shown that in this example every real partial solution $(x, y, z) \in \mathbb{V}\left(I_{2}\right)$ extents to a real complete solution in $\mathbb{V}(I)$.
- In general there is no easy answer to the question whether a parametrization fills the minimal variety containing it and each case has to be analyzed separately.

$$
x=\frac{u^{2}}{v}, y=\frac{v^{2}}{u}, z=u
$$

- (x, y, z) always lies on the surface $x^{2} y=z^{3}$
- clearing the denominators in the above parametrization gives the ideal

$$
I=\left\langle v x-u^{2}, u y-v^{2}, z-u\right\rangle
$$

- the second elimination ideal is $I_{2}=\left\langle z\left(x^{2} y-z^{3}\right)\right\rangle$
- $\mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(x^{2} y-z^{3}\right) \cup \mathbb{V}(z)$
- hence $\mathbb{V}\left(I_{2}\right)$ is not the smallest variety containing the parametrization
- We consider a rational parametrization

$$
x_{1}=\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \cdots, x_{n}=\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}
$$

where $f_{1}, g_{1}, \ldots, f_{n}, g_{n} \in k\left[t_{1}, \ldots, t_{m}\right]$.

- The map $F: k^{m} \rightarrow k^{n}$ given by

$$
F\left(t_{1}, \ldots, t_{m}\right)=\left(\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \cdots, \frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}\right)
$$

might not be defined everywhere because of the denominators.

- Let $W=\mathbb{V}\left(g_{1} g_{2} \cdots g_{n}\right) \subset k^{m}$.
- Then $F: k^{m}-W \rightarrow k^{n}$ is well-defined.

$$
K^{M}-W \rightarrow K^{n}
$$

- $i\left(k^{m}-W\right) \subseteq \mathbb{V}(I)$ where $I=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}\right\rangle$
- $\mathbb{V}(I)$ might not be the smallest variety containing $i\left(k^{m}-W\right)$
- add an extra variable to control the denominators:

$$
J=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}, 1-g y\right\rangle \subseteq k\left[y, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]
$$

where $g=g_{1} \cdot g_{2} \cdots g_{n}$

Rational parametrization

$$
K^{M}-W+K^{n}
$$

The map $j: k^{m}-W \rightarrow k^{n+m+1}$ is defined by
$j\left(t_{1}, \ldots, t_{m}\right)=\left(\frac{1}{g\left(t_{1}, \ldots, t_{m}\right)}, t_{1}, \ldots, t_{m}, \frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \cdots, \frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}\right)$.
We have $j\left(k^{m}-W\right)=\mathbb{V}(J)$ and
$F\left(k^{m}-W\right)=\pi_{m+1}\left(j\left(k^{m}-W\right)\right)=\pi_{m+1}(\mathbb{V}(J))$.

Rational Implicitization

Theorem (Rational Implicitization)

If k is an infinite field, let $F: k^{m}-W \rightarrow k^{n}$ be the function defined by the rational parametrization

$$
x_{1}=\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \cdots, x_{n}=\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}
$$

Let
$J=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}, 1-g y\right\rangle \subseteq k\left[y, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]$, where $g=g_{1} \cdot g_{2} \cdots g_{n}$, and let $J_{m+1}=J \cap k\left[x_{1}, \ldots, x_{n}\right]$ be the $(m+1)$-st elimination ideal. Then $\mathbb{V}\left(J_{m+1}\right)$ is the smallest variety in k^{n} containing $F\left(k^{m}-W\right)$.

Rational Implicitization

Theorem (Rational Implicitization)

If k is an infinite field, let $F: k^{m}-W \rightarrow k^{n}$ be the function defined by the rational parametrization

$$
x_{1}=\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \cdots, x_{n}=\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}
$$

Let
$J=\left\langle g_{1} x_{1}-f_{1}, \ldots, g_{n} x_{n}-f_{n}, 1-g y\right\rangle \subseteq k\left[y, t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}\right]$, where $g=g_{1} \cdot g_{2} \cdots g_{n}$, and let $J_{m+1}=J \cap k\left[x_{1}, \ldots, x_{n}\right]$ be the $(m+1)$-st elimination ideal. Then $\mathbb{V}\left(J_{m+1}\right)$ is the smallest variety in k^{n} containing $F\left(k^{m}-W\right)$.

This theorem gives an implicitization algorithm for rational parametrizations similarly to the polynomial parametrizations case.

Implicitization algorithm

- $x=\frac{u^{2}}{v}, y=\frac{v^{2}}{u}, z=u$
- $J=\left\langle v x-u^{2}, u y-v^{2}, z-u, 1-u v w\right\rangle$
- the third elimination ideal is $J_{3}=\left\langle x^{2} y-z^{3}\right\rangle$

Guiding questions

We started the Groebner bases chapter with four guiding questions:

- The ideal description problem: Does every ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ have a finite generating set?
- The ideal membership problem: Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, determine if $f \in I$.
- The problem of solving polynomial equations: Find all common solutions in k^{n} of a system of polynomial equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{n}\right)=0
$$

- The implicitization problem: If V is given by a rational parametric representation, find a system of polynomial equations that defines V.

Solving systems of polynomial equations

Not all systems of polynomial equations have nice solutions:

$$
x y=4, y^{2}=x^{3}-1
$$

The Groebner basis for the lex order with $x>y$ is given by

$$
g_{1}=16 x-y^{2}-y^{4}, g_{2}=y^{5}+y^{3}-64
$$

The polynomial g_{2} has no rational roots. One can obtain numerically

$$
y=2.21363,-1.78719 \pm 1.3984 i, 0.680372 \pm 2.26969 i
$$

These solutions can be substituted into g_{1} to find the values of x. We will return to the topic when we talk about numerical algebraic geometry.

Conclusion

Today:

- The geometry of elimination
- Implicitization

Next time:

- Hilbert's Nullstellensatz
- Rational ideals
- Ideal-variety correspondence

