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Last time

Definition
Given I = 〈f1, . . . , fs〉 ⊂ k [x1, . . . , xn] the l-th elimination ideal Il
is the ideal of k [xl+1, . . . , xn] defined by

Il = I ∩ k [xl+1, . . . , xn].

Theorem (The Elimination Theorem)

Let I ⊂ k [x1, . . . , xn] be an ideal and let G be a Groebner basis
of I wrt to lex order where x1 > x2 > · · · > xn. Then, for every
0 ≤ l ≤ n, the set

Gl = G ∩ k [xl+1, . . . , xn]

is a Groebner basis of the l-th elimination ideal Il .
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Last time

Theorem (The Extension Theorem)

Let I = 〈f1, . . . , fs〉 ⊆ C[x1, . . . , xn] and let I1 be the first
elimination ideal of I. For each 1 ≤ i ≤ s, write fi in the form

fi = gi(x2, . . . , xn)x
Ni
1 + terms in which x1 has degree < Ni ,

where Ni ≥ 0 and gi ∈ C[x2, . . . , xn] is nonzero. Suppose that
we have a partial solution (a2, . . . ,an) ∈ V (I1). If
(a2, . . . ,an) 6∈ V (g1, . . . ,gs), then there exists a1 ∈ C such that
(a1,a2, . . . ,an) ∈ V (I).
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Quiz

Let I = 〈xy − 1〉 ⊆ C[x , y ]. Fix the lex order with x > y .

1 What is the first elimination ideal I1?
2 What is the set of partial solutions V(I1)?
3 Which partial solutions in V(I1) extend to a complete

solution in V(I)?
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Overview

Today:
The geometry of elimination
Implicitization
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The geometry of elimination
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Variety of the elimination ideal

Let πl be the projection map

πl : Cn → Cn−l ,

(a1, . . . ,an) 7→ (al+1, . . . ,an).

Lemma
Let V = V(f1, . . . , fs) ⊆ Cn and let
Il = 〈f1, . . . , fs〉 ∩ C[xl+1, . . . , xn] be the l-th elimination ideal of
〈f1, . . . , fs〉. Then, in Cn−l we have

πl(V ) ⊆ V(Il).
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Variety of the elimination ideal

Recall: The points of V(Il) are called partial solutions.
By Lemma, we can write πl(V ) as

πl(V ) = {(al+1, . . . ,an) ∈ V(Il) : ∃a1, . . . ,al ∈ C with
(a1, . . . ,al ,al+1, . . . ,an) ∈ V}.

πl(V ) consists precisely of the partial solutions that extend
to complete solutions.

π1(V ) = {a ∈ C : a 6= 0} ⇒ π1(V ) is not an affine variety!
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The Geometric Extension Theorem

Theorem (The Geometric Extension Theorem)
Let V = V(f1, . . . , fs) ✓ Cn , let gi be as in the Extension
Theorem. If I1 is the first elimination ideal of hf1, . . . , fsi, then we
have the equality in Cn�1

V(I1) = ⇡1(V ) [ (V(g1, . . . , gs) \ V(I1)) .

⇡1(V ) fills up V(I1) besides possibly a part that lies in
(V(g1, . . . , gs) \ V(I1))
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The Geometric Extension Theorem

It is not clear how big the missing part is and it can be
unnaturally large:

(y − z)x2 + xy − 1 and (y − z)x2 + xz − 1 generate the
same ideal as yx − 1 and zx − 1
I1 = 〈y − z〉
The partial solutions are {(a,a) : a ∈ C}

The first set of generators: g1 = g2 = (y − z) and hence
the Geometric Extension Theorem says nothing about the
size of π1(V )

The second set of generators: g1 = y and g2 = z and
hence all partial solutions besides (0,0) extend to a
complete solution
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The Closure Theorem

Theorem (The Closure Theorem)

Let V = V(f1, . . . , fs) ⊆ Cn and let Il be the l-th elimination ideal
of 〈f1, . . . , fs〉. Then

1 V(Il) is the smallest affine variety containing πl(V ) ⊆ Cn−l .
2 When V 6= ∅, there is an affine variety W ( V(Il) such that

V(Il)−W ⊆ πl(V ).

Corollary

Let V ⊆ Cn be an affine variety. Then there are affine varieties
Zi ⊂Wi ⊆ Cn−1 for i ≤ 1 ≤ p such that

πl(V ) =

p⋃
i=1

(Wi − Zi).

Sets of this form are called constructible.
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The Closure Theorem

Corollary

Let V = V(f1, . . . , fs) ⊆ Cn, and assume that for some i, fi can
be written as

fi = cixN
1 + terms in which x1 has degree < N,

where c ∈ C is nonzero and N > 0. If I1 is the first elimination
ideal, then

π1(V ) = V(I1).

The Extension and Closure Theorems hold over any
algebraically closed field.
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Implicitization
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Rational parametrizations

Definition
A rational function in t1, . . . , tm with coefficients in k is a
quotient f/g of two polynomials f ,g ∈ k [t1, . . . , tm], where g is
not the zero polynomial. The set of all rational functions is
denoted k(t1, . . . , tm).

rational parametric representation of V consists of
r1, . . . , rn ∈ k(t1, . . . , tm) such that

x1 = r1(t1, . . . , tm), · · · , xn = rn(t1, . . . , tm)

lie in V

require that V is the smallest variety containing these points

if r1, . . . , rn are polynomials, then polynomial parametric
representation
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Parametric vs implicit form

original defining equations f1 = . . . = fs = 0 are called an
implicit representation
it is easy to draw a parametric description of a curve on a
computer

plotted not using x2 − y2z2 + z3 = 0 but

x = t(u2 − t2), y = u, z = u2 − t2.

if we want to know whether the point (1,2,−1) is on the
above surface, then implicit representation is useful:
12 − 22(−1)2 + (−1)3 = 1− 4− 1 = −4
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Parametric vs implicit form

Desirability of having both representations leads to the
questions

(Parametrization) Does every affine variety have a rational
parametric description?
(Implicitization) Given a parametric representation of an
affine variety, can we find the defining equations (i.e. can
we find an implicit representation)?
The answer to the first question is no. Those that can be
parametrized are called unirational.
It is difficult to tell whether a given variety is unirational or
not.
We will learn that the answer to the second question is
always yes.
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Implicitization

The parametrization might not fill up all of the variety.
Implicitization asks for the defining equations of the
smallest variety containing the parametrization.
How to find missing points?
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Twisted cubic

the twisted cubic has parametrization

x = t , y = t2, z = t3

the tangent vector to the curve at a point is (1,2t ,3t2)

the tangent line is parametrized

(t , t2, t3) + u(1,2t ,3t2) = (t + u, t2 + 2tu, t3 + 3t2u)

a parametrization of the entire surface is

x = t + u, y = t2 + 2tu, z = t3 + 3t2u

the tangent surface lies on the variety V defined by

−4x3z + 3x2y2 − 4y3 + 6xyz − z2 = 0

Is V the smallest variety containing the tangent surface?
If yes, does the tangent surface fill up V completely?

Kaie Kubjas Elimination theory



Polynomial parametrization

We consider the polynomial parametrization

x1 = f1(t1, . . . , tm), · · · , xn = fn(t1, . . . , tm),

where f1, . . . , fn ∈ k [t1, . . . , tm].
We can think of it as the map F

km → kn,

(t1, . . . , tm) 7→ (f1(t1, . . . , tm), . . . , fn(t1, . . . , tm))

Then F (km) ⊆ kn is equal to the subset of kn parametrized
by the polynomials f1, . . . , fn.
The solution to the implicitization problem finds the
smallest algebraic variety containing F (km)
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Polynomial parametrization

Next we want to connect the implicitization and elimination. The
polynomial equations

x1 = f1(t1, . . . , tm), · · · , xn = fn(t1, . . . , tm),

define a variety

V = V(x1 − f1, . . . , xn − fn) ⊆ kn+m.

The points of V can be written as

(t1, . . . , tm, f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Hence V is the graph of the map F .
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Polynomial parametrization

We also have the inclusion i : km → kn+m defined by

i(t1, . . . , tm) 7→ (t1, . . . , tm, f1(t1, . . . , tm), . . . , fn(t1, . . . , tm))

and the projection πm : kn+m → kn defined by

πm(t1, . . . , tm, x1, . . . , xn) = (x1, . . . , xn).

i(km) = V and F (km) = πm(i(km)) = πm(V )
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Polynomial Implicitization

Theorem (Polynomial Implicitization)

If k is an infinite field, let F : km → kn be the map defined by
the polynomial parametrization

x1 = f1(t1, . . . , tm), · · · , xn = fn(t1, . . . , tm).

Let I = 〈x1 − f1, . . . , xn − fn〉 ⊆ k [t1, . . . , tm, x1, . . . , xn] and let
Im = I ∩ k [x1, . . . , xn] be the m-th elimination ideal. Then V(Im)
is the smallest variety in kn containing F (km).
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Implicitization algorithm

Let

x1 = f1(t1, . . . , tm), · · · , xn = fn(t1, . . . , tm).

for polynomials f1, . . . , fn ∈ k [t1, . . . , tm].
Consider the ideal I = 〈x1 − f1, . . . , xn − fn〉.
Compute the Groebner basis of I with respect to a
lexicographic order where every ti is greater than every xj .
The elements of the Groebner basis not involving t1, . . . , tm
define the smallest variety in kn containing the
parametrization.
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Implicitization algorithm

Tangent surface of the twisted cubic:
I = 〈x − t − u, y − t2 − 2tu, z − t3 − 3t2u〉 ⊆ R[t ,u, x , y , z]
Fix the lex order with t > u > x > y > z
A Groebner basis is given by

g1 = t + u − x ,

g2 = u2 − x2 + y ,

g3 = ux2 − uy − x3 + (3/2)xy − (1/2)z,

g4 = uxy − uz − x2y − xz + 2y2,

g5 = uxz − uy2 + x2z − (1/2)xy2 − (1/2)yz,

g6 = uy2 − uz2 − 2x2yz + (1/2)xy3 − xz2 + (5/2)y2z,

g7 = x3z − (3/4)x2y2 − (3/2)xyz + y3 + (1/4)z2.

Since g7 is the only Groebner basis element consisting of
variables x , y , z only, then V(g7) solves the implicitization
problem.
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Tangent surface of the twisted cubic

g1 = t + u − x ,

g2 = u2 − x2 + y ,

g3 = ux2 − uy − x3 + (3/2)xy − (1/2)z,

g4 = uxy − uz − x2y − xz + 2y2,

g5 = uxz − uy2 + x2z − (1/2)xy2 − (1/2)yz,

g6 = uy2 − uz2 − 2x2yz + (1/2)xy3 − xz2 + (5/2)y2z,

g7 = x3z − (3/4)x2y2 − (3/2)xyz + y3 + (1/4)z2.

Quiz: Which partial solutions (x , y , z) ∈ V(I2) = V(g7) ⊆ C3 extend to
a solution of V(I) ⊆ C5?

I1 = 〈g2, . . . ,g7〉 is the first elimination ideal of I2 and the
coefficient of u2 in g2 is 1⇒ all partial solutions in V(I2) extend
to a solution in V(I1)
the coefficient of t in g1 is 1⇒ all partial solutions in V(I1)
extend to a solution in V(I)
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Tangent surface of the twisted cubic

Since all partial solutions in V(I2) = V(g2) extend to a
complete solution in V(I), then the tangent surface of the
twisted cubic fills V(g2).

It can be shown that in this example every real partial
solution (x , y , z) ∈ V(I2) extents to a real complete solution
in V(I).
In general there is no easy answer to the question whether
a parametrization fills the minimal variety containing it and
each case has to be analyzed separately.
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Rational parametrization

x =
u2

v
, y =

v2

u
, z = u

(x , y , z) always lies on the surface x2y = z3

clearing the denominators in the above parametrization
gives the ideal

I = 〈vx − u2,uy − v2, z − u〉

the second elimination ideal is I2 = 〈z(x2y − z3)〉
V(I2) = V(x2y − z3) ∪ V(z)
hence V(I2) is not the smallest variety containing the
parametrization
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Rational parametrization

We consider a rational parametrization

x1 =
f1(t1, . . . , tm)
g1(t1, . . . , tm)

, · · · , xn =
fn(t1, . . . , tm)
gn(t1, . . . , tm)

,

where f1,g1, . . . , fn,gn ∈ k [t1, . . . , tm].
The map F : km → kn given by

F (t1, . . . , tm) =
(

f1(t1, . . . , tm)
g1(t1, . . . , tm)

, · · · , fn(t1, . . . , tm)
gn(t1, . . . , tm)

)
might not be defined everywhere because of the
denominators.
Let W = V(g1g2 · · · gn) ⊂ km.
Then F : km −W → kn is well-defined.
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Rational parametrization

i(km −W ) ⊆ V(I) where I = 〈g1x1 − f1, . . . ,gnxn − fn〉
V(I) might not be the smallest variety containing i(km −W )

add an extra variable to control the denominators:

J = 〈g1x1−f1, . . . ,gnxn−fn,1−gy〉 ⊆ k [y , t1, . . . , tm, x1, . . . , xn],

where g = g1 · g2 · · · gn
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Rational parametrization

The map j : km −W → kn+m+1 is defined by

j(t1, . . . , tm) =
(

1
g(t1, . . . , tm)

, t1, . . . , tm,
f1(t1, . . . , tm)
g1(t1, . . . , tm)

, · · · , fn(t1, . . . , tm)
gn(t1, . . . , tm)

)
.

We have j(km −W ) = V(J) and
F (km −W ) = πm+1(j(km −W )) = πm+1(V(J)).
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Rational Implicitization

Theorem (Rational Implicitization)

If k is an infinite field, let F : km −W → kn be the function
defined by the rational parametrization

x1 =
f1(t1, . . . , tm)
g1(t1, . . . , tm)

, · · · , xn =
fn(t1, . . . , tm)
gn(t1, . . . , tm)

.

Let
J = 〈g1x1− f1, . . . ,gnxn− fn,1−gy〉 ⊆ k [y , t1, . . . , tm, x1, . . . , xn],
where g = g1 · g2 · · · gn, and let Jm+1 = J ∩ k [x1, . . . , xn] be the
(m + 1)-st elimination ideal. Then V(Jm+1) is the smallest
variety in kn containing F (km −W ).

This theorem gives an implicitization algorithm for rational
parametrizations similarly to the polynomial parametrizations
case.
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Implicitization algorithm

x = u2

v , y = v2

u , z = u
J = 〈vx − u2,uy − v2, z − u,1− uvw〉
the third elimination ideal is J3 = 〈x2y − z3〉
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Guiding questions

We started the Groebner bases chapter with four guiding
questions:

The ideal description problem: Does every ideal
I ⊂ k [x1, . . . , xn] have a finite generating set?
The ideal membership problem: Given f ∈ k [x1, . . . , xn]
and ideal I = 〈f1, . . . , fs〉, determine if f ∈ I.
The problem of solving polynomial equations: Find all
common solutions in kn of a system of polynomial
equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0.

The implicitization problem: If V is given by a rational
parametric representation, find a system of polynomial
equations that defines V .
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Solving systems of polynomial equations

Not all systems of polynomial equations have nice solutions:

xy = 4, y2 = x3 − 1

The Groebner basis for the lex order with x > y is given by

g1 = 16x − y2 − y4,g2 = y5 + y3 − 64

The polynomial g2 has no rational roots. One can obtain
numerically

y = 2.21363,−1.78719± 1.3984i ,0.680372± 2.26969i .

These solutions can be substituted into g1 to find the values of
x . We will return to the topic when we talk about numerical
algebraic geometry.
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Conclusion

Today:
The geometry of elimination
Implicitization

Next time:
Hilbert’s Nullstellensatz
Rational ideals
Ideal-variety correspondence
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