Lecture 2: Scalar-Controlled Induction Motor Drive

ELEC-E8402 Control of Electric Drives and Power Converters

Marko Hinkkanen
Spring 2021

Learning Outcomes

After this lecture and exercises you will be able to:

- Express the dynamic inverse- Γ model in synchronous coordinates
- Calculate steady-state operating points and draw the corresponding vector diagrams
- Explain the operating principle of the scalar control

Motor Model

Scalar Control

Model in Stator Coordinates

- Voltage equations
$\underline{u}_{\mathrm{s}}^{\mathrm{s}}=R_{\mathrm{s}} \mathrm{s}_{\mathrm{s}}^{\mathrm{s}}+\frac{\mathrm{d} \underline{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{d} t}$
$\underline{u}_{\mathrm{R}}^{\mathrm{s}}=R_{\mathrm{R}} i_{\mathrm{R}}^{\mathrm{s}}+\frac{\mathrm{d} \psi_{\mathrm{R}}^{\mathrm{s}}}{\mathrm{d} t}-\mathrm{j} \omega_{\mathrm{m}} \underline{\psi}_{\mathrm{R}}^{\mathrm{s}}=0$
- Flux linkages

$$
\begin{aligned}
\psi_{\mathrm{s}}^{\mathrm{s}} & =L_{\sigma} \underline{i}_{\mathrm{s}}^{\mathrm{s}}+\underline{\psi}_{\mathrm{R}}^{\mathrm{s}} \\
\underline{\psi}_{\mathrm{R}}^{\mathrm{s}} & =L_{\mathrm{M}}\left(\underline{i}_{\mathrm{s}}^{\mathrm{s}}+\underline{i}_{\mathrm{R}}^{\mathrm{s}}\right)
\end{aligned}
$$

- Steady state: $\mathrm{d} / \mathrm{d} t=\mathrm{j} \omega_{\mathrm{s}}$

Model in Synchronous Coordinates

- Synchronous (dq) coordinates rotate at the angular speed ω_{s}
- Coordinate transformation $\underline{i}_{\mathrm{s}}^{\mathrm{s}}=\underline{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{s}}}$, where no superscript is used in synchronous coordinates
- Voltage equations become

$$
\begin{aligned}
& \underline{u}_{\mathrm{s}}=R_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\frac{\mathrm{d} \underline{\psi}_{\mathrm{s}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{s}} \underline{\psi}_{\mathrm{s}} \\
& \underline{u}_{\mathrm{R}}=R_{\mathrm{R}} \underline{i}_{\mathrm{R}}+\frac{\mathrm{d} \underline{\psi}_{\mathrm{R}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{r}} \underline{\psi}_{\mathrm{R}}=0
\end{aligned}
$$

- Angular speed of the coordinate system
- ω_{s} with respect to the stator
- $\omega_{\mathrm{r}}=\omega_{\mathrm{s}}-\omega_{\mathrm{m}}$ with respect to the rotor

Model in Synchronous Coordinates

- Voltage equations

$$
\begin{aligned}
& \underline{u}_{\mathrm{s}}=R_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\frac{\mathrm{d} \underline{\psi}_{\mathrm{s}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{s}} \underline{\psi}_{\mathrm{s}} \\
& \underline{u}_{\mathrm{R}}=R_{\mathrm{R}} \underline{i}_{\mathrm{R}}+\frac{\mathrm{d} \underline{\psi}_{\mathrm{R}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{r}} \underline{\psi}_{\mathrm{R}}=0
\end{aligned}
$$

- Flux linkages

$$
\begin{aligned}
\underline{\psi}_{\mathrm{s}} & =L_{\sigma} \underline{i}_{\mathrm{s}}+\underline{\psi}_{\mathrm{R}} \\
\underline{\psi}_{\mathrm{R}} & =L_{\mathrm{M}}\left(\underline{i}_{\mathrm{s}}+\underline{i}_{\mathrm{R}}\right)
\end{aligned}
$$

- Steady state: $\mathrm{d} / \mathrm{d} t=0$

Power Balance

$$
\frac{3}{2} \operatorname{Re}\left\{\underline{u}_{\mathrm{s}} \underline{i}_{\mathrm{s}}^{*}+\underline{u}_{\mathrm{R}} \underline{i}_{\mathrm{R}}^{*}\right\}=\frac{3}{2} R_{\mathrm{s}}\left|\underline{i}_{\mathrm{s}}\right|^{2}+\frac{3}{2} R_{\mathrm{R}}\left|\underline{i}_{\mathrm{R}}\right|^{2}+\frac{\mathrm{d} W_{\mathrm{f}}}{\mathrm{~d} t}+T_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{p}
$$

- Electromagnetic torque

$$
T_{\mathrm{M}}=\frac{3 p}{2} \operatorname{Im}\left\{\underline{i}_{\mathrm{s}} \underline{\psi}_{\mathrm{s}}^{*}\right\}
$$

- Rate of change of the magnetic field energy

$$
\frac{\mathrm{d} W_{\mathrm{f}}}{\mathrm{~d} t}=\frac{3}{2} \operatorname{Re}\left\{\underline{i}_{\mathrm{s}}^{*} \frac{\mathrm{~d} \underline{\psi}_{\mathrm{s}}}{\mathrm{~d} t}+\underline{i}_{\mathrm{R}}^{*} \frac{\mathrm{~d} \underline{\psi}_{\mathrm{R}}}{\mathrm{~d} t}\right\}=\frac{3}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{2} L_{\sigma}\left|\underline{i}_{\mathrm{s}}\right|^{2}+\frac{1}{2} L_{\mathrm{M}}\left|\underline{i}_{\mathrm{M}}\right|^{2}\right)
$$

is zero in the steady state

Vector Diagram: Currents and Flux Linkages

- Airgap and leakage flux paths are sketched
- All vectors are constant in synchronous coordinates in the steady state (but the rotor slips at $-\omega_{\mathrm{r}}$)

Steady-State Torque

- Torque in the steady state

$$
T_{\mathrm{M}}=\frac{2 T_{\mathrm{b}}}{\omega_{\mathrm{r}} / \omega_{\mathrm{rb}}+\omega_{\mathrm{rb}} / \omega_{\mathrm{r}}}
$$

- Breakdown torque

$$
T_{\mathrm{b}}=\frac{3 p}{2} \frac{L_{\mathrm{M}}}{L_{\mathrm{M}}+L_{\sigma}} \frac{\psi_{\mathrm{s}}^{2}}{2 L_{\sigma}}
$$

- Breakdown slip

$$
\omega_{\mathrm{rb}}=\frac{R_{\mathrm{R}}}{\sigma L_{\mathrm{M}}} \quad \text { where } \quad \sigma=\frac{L_{\sigma}}{L_{\mathrm{M}}+L_{\sigma}}
$$

Motor Model

Scalar Control

Stator Voltage vs. Stator Frequency

- Steady-state stator voltage

$$
\underline{u}_{\mathrm{s}}=R_{\mathrm{s}} \underline{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{s}} \underline{\psi}_{\mathrm{s}}
$$

- Approximate magnitude

$$
u_{\mathrm{s}}=\left|\omega_{\mathrm{s}}\right| \psi_{\mathrm{s}}
$$

where $u_{\mathrm{s}}=\left|\underline{u}_{\mathrm{s}}\right|$ and $\psi_{\mathrm{s}}=\left|\underline{\psi}_{\mathrm{s}}\right|$

- Maximum voltage is limited

$$
u_{\mathrm{s}}<u_{\max }
$$

Scalar Control or Constant-Volts-per-Hertz Control

- Based on the steady-state equations
- Supply frequency $\omega_{\mathrm{s}, \text { ref }}$ corresponds to the desired rotor speed
- Some speed error due to the slip (can be partly compensated for)
- Slow or oscillating dynamics

- Torque cannot be controlled
- Current cannot be limited
$u_{\mathrm{s}, \text { ref }}=\omega_{\mathrm{s}, \text { ref }} \psi_{\mathrm{s}, \text { ref }}\left(+R_{\mathrm{s}} i_{\mathrm{s}}\right.$ compensation)
- For simple applications

$$
\vartheta_{\mathrm{s}}=\int \omega_{\mathrm{s}, \mathrm{ref}} \mathrm{~d} t
$$

$$
\underline{u}_{\mathrm{s}, \text { ref }}^{\mathrm{s}}=u_{\mathrm{s}, \text { ref }} \mathrm{j}^{\mathrm{j} \vartheta_{\mathrm{s}}}
$$

