Problem 1: An operating point of a grid converter

The figure below shows a grid converter, whose DC voltage is $u_{\mathrm{dc}}=600 \mathrm{~V}$, DC current is $i_{\mathrm{dc}}=10 \mathrm{~A}$, and filter inductance is $L_{\mathrm{f}}=10 \mathrm{mH}$. The electric grid is assumed to be a balanced three-phase voltage source with frequency of 50 Hz and phase-to-phase rms voltage of 400 V . The displacement power factor at the PCC is controlled to unity. The converter can be assumed to be lossless and switching-cycle-averaged quantities are considered.
(a) Calculate the converter current vector in grid-voltage coordinates.
(b) Calculate the magnitude of the converter output voltage vector.

Problem 2: DC-link voltage controller

A PI controller is used to regulate the DC-link voltage of a power converter,

$$
p_{\mathrm{c}, \text { ref }}=-k_{\mathrm{p}}\left(W_{\mathrm{dc}, \text { ref }}-W_{\mathrm{dc}}\right)-k_{\mathrm{i}} \int\left(W_{\mathrm{dc}, \text { ref }}-W_{\mathrm{dc}}\right) \mathrm{d} t
$$

where $p_{\mathrm{c}, \text { ref }}$ is the reference of the converter output power, $W_{\mathrm{dc}}=(C / 2) u_{\mathrm{dc}}^{2}$ is the energy of the DC-link capacitor, and $W_{\mathrm{dc}, \text { ref }}=(C / 2) u_{\mathrm{dc}, \text { ref }}^{2}$ is its reference. Power control is assumed to be ideal, i.e. $p_{\mathrm{c}}=p_{\mathrm{c}, \text { ref }}$. The input power $p_{\mathrm{dc}}=u_{\mathrm{dc}} i_{\mathrm{dc}}$ is an unknown disturbance.
(a) Calculate the closed-loop transfer functions $W_{\mathrm{dc}}(s) / W_{\mathrm{dc}, \text { ref }}(s)$ and $W_{\mathrm{dc}}(s) / p_{\mathrm{dc}}(s)$.
(b) Express the controller gains k_{p} and k_{i} as functions of the damping ratio ζ and the undamped natural frequency ω_{0} of the closed-loop characteristic polynomial.

