Lecture 7

- Gave an intuitive definition of a closed and bounded region in the plane and stated the result that continuous functions on such domain attain their absolute extrema.
- Did the following example and looked at computer generated images (see "Materials") to help understand our calculations. Find the absolute extrema of $f(x, y)=x^{\wedge} 2+2 y^{\wedge} 2$ on the disk of radius one centered at $(0,0)$.
- Discussed the method of Lagrange multipliers and justified it intuitively by looking at a sketch of level curves and using the fact that the gradient vectors are orthogonal to the corresponding level curves.
- Re-solved the previous example using the method of Lagrange multipliers.
- Did another example of Lagrange multipliers: On the curve $x^{\wedge} 2+x y+y^{\wedge} 2$ which points are closest and furthest from the origin?
- Reviewed Taylor series and Taylor polynomials 1 variable.
- Gave the definition of the nth Taylor polynomial in two variables. Wrote out the 2nd order Taylor polynomial on 2 variables. Noted that (1) the 1st order Taylor polynomial gives the tangent plane equatin as expected., and (2) The 2nd order terms can be written [x-x_0 $\left.y-y_{-} 0\right] H\left(x_{-} 0, y_{-} 0\right)\left[x-x_{-} 0 y-y_{-} 0\right]^{\wedge} \mathrm{T}$ (where T denoted transpose and H is the Hessian). The 2nd derivative test can be understood by learning the corresdpondence between properties of the Hessian H and the properties of the quadratic polynomial $\left[x-x_{-} 0 y-y_{-} 0\right] H(x-$ $\left.0, y _0\right)\left[x-x _0 y-y_{-} 0\right]^{\wedge}$, but we will not discuss this in this course. But it is closely related to the bonus exercise in assignment 4.
- Showed an example using Maple of the the 2nd order Taylor polynomial approximating a surface. The code and output can be found in "materials".
- (Not covered in class but in the notes)

Where to find this material

- Adams_and_Essex 13.1, 13.2, 13.3
- Adams_and_Essex. 12.9. See "materials" for a copy of this sections.
- Corral, 2.5, 2.7
- Guichard, 14.7, 14.8
- Active Calculus. 10.7, 10.8

Absolute extrema (2)

Theorem: A continuous function $f(x, y)$ on a closed and bounded domain $D \subset \mathbb{R}^{2}$ attains its absolute maximum and minimum on D.
closed.

D contains all its boundary points (see lecture $\# 2$)

example
(1) $D=\{(x, y) \mid x \geqslant 0, y \geqslant 0\}$ is closed and unbounded

How to find absolute extrema?
Need to look

1. In the interior - the extrema can only occur at critical points (relatively easy to find)
2. On the boundary - this is difficult as the boundary is in general a curve. We say that we a finding extrema subject to the constraint of being on the boundary. This is an example of constrained optimization which is a very general problem type that appears in a huge variety of applications.

Extrema example

Find the absolute extrema of $f(x, y)=x^{2}+2 y^{2}$ on the closed disk of radius 1 .

Interior: $x^{2}+y^{2}<1$
Boundary: $x^{2}+y^{2}=1$

INTERIOR: Find the critical points

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=2 x=0 \\
\frac{\partial f}{\partial y}=4 y=0
\end{array}\right\} \Rightarrow(x, y)=(0,0)
$$

BOUNDARY We don't have a general method yet, but in this simple example we can manage with 1 -variable methods by elimanting one of the variable.

$$
x^{2}+y^{2}=1 \Rightarrow y^{2}=1-x^{2}
$$

So $f(x, y(x))=x^{2}+2\left(1-x^{2}\right)$

$$
=2-x^{2}
$$

on the domain $[-1,1]$
We now have a 1-variable problem

Critical point: $f^{\prime}(x)=-2 x=0$
$(0,1),(0,-1) \quad \Rightarrow x=0$

$$
\Leftrightarrow y= \pm 1
$$

Endpoints $x=-1, x=1$

$$
(1,0),(-1,0), \quad \Rightarrow y=0
$$

Possible locations for the absolute extrema

LOCATION	VALUE	
$(0,0)$	$f=0$	Abs max $f=2$ at
$(0,1)$ $f=2$		
$(0,-1)$	$f=2$	
$(1,0)$ $f=1)$ $(-1,0)$ $f=1)$ $f=1$	Abs min $f=0$	
		See software plots

Lagrange multipliers
The boundary part of the previous example (extrema values
of $f(x, y)=x^{2}+2 y^{2}$ on the curve $x^{2}+y^{2}=1$) is a
problem of the following form.
$\begin{aligned} & \text { Find the absolute extrema of a function } f(x, y) \text { subject to a } \\ & \text { constraint } g(x, y)=c\end{aligned}$
Let's invent a method. Hamm....?

Questions
0 Can the max be at 4 ? No (cross level curve)
(2) Can the max be at B? Yes
(just touch the level curve)
(3) Can the max be at C? No

The point B is special. Mathematically we can encode this by saying

- Tangents are parallel
- So, the normal are parallel
- So, $\vec{\nabla} g(B)$ is parallel to $\vec{\nabla} f(B)$
- So $\vec{\nabla} f(B)=($ constant $) \vec{\nabla} g(B)$

$$
\vec{\nabla} f(B)=(\lambda \sqrt{\overrightarrow{\nabla g}(B)} \text { Lagrange }
$$

Lagrange multipliers (2)

The method of Lagrange multipliers.
The absolute extrema of a function $f(x, y)$ subject to a constraint $g(x, y)=c$ can only occur at points where $\vec{\nabla} f=\lambda \vec{\nabla} g$ or $\vec{\nabla} f$ is undefined.

Let us look at the previous example using this method.

$$
f(x, y)=x^{2}+2 y^{2}
$$

Constraint. $g(x, y)=x^{2}+y^{2}=1$
Solution: $\quad \vec{\nabla} f=\langle 2 x, 4 y\rangle, \vec{\nabla} g=\langle 2 x, 2 y\rangle$
Solve $\left.\begin{array}{rl}\vec{\nabla} f & =\lambda \vec{\nabla} g \\ g & =1\end{array}\right\} \Rightarrow \begin{aligned} & 2 x=\lambda_{2 x} \\ & 2 y=\lambda_{4 y} \\ & x^{2}+y^{2}\end{aligned}=1$

$$
\text { (1) } \Rightarrow x(1-\lambda)=0 \Rightarrow x=0 \text { or } \lambda=1
$$

case $x=0$: (3) $\Rightarrow y^{2}=1 \Rightarrow y= \pm 1$
points $(0,1),(0,-1)$
case $\lambda=1 \quad(2) \Rightarrow 2 y=4 y \Rightarrow y=0$
Then (3) $\Rightarrow x^{2}=1 \Rightarrow x= \pm 1$
points $(1,0),(-1,0)$
Conclusion The possible extrema occur at $(1,0),(-1,0),(0,1),(0,-1)$
as before

Example 2

Find the closest and furthest points on the curve $x^{2}+x y+y^{2}=1$ from the origin.
Set-up

$$
\text { Let } g(x, y)=x^{2}+x y+y^{2}
$$

$$
\text { Let } \begin{aligned}
f(x, y) & =\text { distance } \\
& =x^{2}+y^{2}
\end{aligned}
$$

Note: minimizing distance or distance ^2 gives the same locations.

Aim Minimize $f(x, y)=x^{2}+y^{2}$ subject to the constraint $g(x, y)=x^{2}+x y+y^{2}=1$
Solve $\vec{\nabla} f=\lambda \overrightarrow{\nabla g}$

$$
g=1
$$

$$
\frac{\partial f}{\partial x}=2 x, \quad \frac{\partial f}{\partial y}=2 y
$$

$$
\begin{equation*}
\Rightarrow \quad 2 x=\lambda(2 x+y) \tag{0}
\end{equation*}
$$

$$
2 y=\lambda(2 y+x)(2)
$$

$$
\begin{equation*}
x^{2}+x y+y^{2}=1 \tag{3}
\end{equation*}
$$

Hint: Look at (1)- (2) $\operatorname{cor}(1)+(2))$

$$
2(x-y)=\lambda(x-y) \Rightarrow(x-y)(2-\lambda)=0
$$

$(y=x$ or $\lambda=2 \Rightarrow 2 x=4 x+2 y$
II)
(3) $x^{2}+x^{2}+x^{2}=1$
$x= \pm 1 / \sqrt{3}$
what shape is the curve? (extra - not examinable) change variables: $u=\frac{x-y}{2}, v=\frac{x+y}{2}$
Then $u+v=x, v-u=y$

$$
\begin{aligned}
x^{2}+x y+y^{2} & =\left(u^{2}+v^{2}+2 u v\right)+\left(v^{2}-\dot{u}^{2}\right)+\left(\dot{u}^{2}+v^{2}-2 u v\right) \\
& =u^{2}+3 v^{2}=1
\end{aligned}
$$

Taylor series

1 variable review
Function $f(x)=\cos (x)$

$$
\begin{aligned}
\begin{array}{c}
\text { Taylor series } \\
\binom{\text { centered at }}{x=0}
\end{array} & =T(x)
\end{aligned}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n} .
$$

$$
2^{\text {nd }} \text { degree } \quad=T_{2}(x)
$$

Taylor polynomial

$$
=1-\frac{x^{2}}{2!}
$$

Idea/use: Information about f and all it's derivates at $x=\mathrm{a}$ is often enough to determine $f(x)$ for other values of x.
(1) In the previous example in fact $\cos (x)=T(x)$ for all x .
and $f(0)=0$
(2) If $f(x)=\mathrm{e}^{-1 / x^{2}}$ the Taylor series centered at $x=0$ is $T(x) \equiv 0$. So $f(x) \neq T(x) \quad \forall x \neq 0$

Why are the coefficients $\frac{f^{(n)}(0)}{n!}$?
Idea: Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
How can we extract the coefficients, a_{0}, a_{1}, a_{2}, a_{3} $p(0)=a_{0} \quad$ (constant term is easy)
Now, let's make b into the constant term.

$$
\begin{aligned}
& p^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}, p^{\prime}(0)=a_{1} \\
& p^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x, \quad \frac{p^{\prime \prime}(0)}{2}=a_{2} \\
& p^{\prime \prime \prime}(x)=3 \cdot 2 \cdot a_{3}, \quad \frac{p^{\prime \prime \prime}(0)}{(3 \cdot 2)}=a_{3} \\
& \text { In general } \\
& a_{n}=p^{(n)}(0) / n!
\end{aligned}
$$

Taylor polynomial in 2 variables
The same idea motivates the definition. Lets see how to

$$
3 x^{2} y^{4}
$$ extract the coefficinet of a term in a polynomial of x and y.

Say $p(x, y)=a_{i j} x^{i} y^{j}$. Then $a_{i j}=\frac{\partial^{i+j} p(0)}{\partial x^{i} \partial y^{j}} / i!j!$
The $n^{\text {th }}$ degree Taylor polynomial of $f(x, y)$ is

$$
\operatorname{Tn} f\left(x_{0}, y_{0}\right)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} \frac{\partial^{i+j} f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{i}\left(y-y_{0}\right)^{j}}{\partial x^{i} \partial y^{j}}
$$

The $2^{\text {nd }}$ degree Taylor polynomial is (look at the case $\left(x_{0}, y_{0}\right)=(0,0)$ to shorten notation)

$$
\begin{aligned}
& T_{2} f(0,0)=\underbrace{f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y}_{\text {Linear sapporo } x}+\frac{f_{x x}(0,0) x^{2}}{2=2!}+f_{x y(0,0)}^{1!1!} x y=\frac{f_{y y}(0,0) y^{2}}{2} \\
& =f(0,0)+\left[\begin{array}{cc}
f_{x}(0,0) & f_{y}(0,0) \\
&
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
f_{x x}(0,0) & f_{x y}(0,0) \\
f_{y x}(0,0) & f_{y y}(0,0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \vec{\nabla} f(0,0) \cdot\langle x, y\rangle \\
& \text { Hessian (matrix) } \\
& =\mathrm{H}
\end{aligned}
$$

Taylor series example
$f(x, y)=\sqrt{x^{2}+y^{3}}$. Compute $T_{2} f(x, y)$
centered at $(1,2)$
0^{+4} degree term: $\quad f(1,2)=\sqrt{1+8}=3$
$1^{s t}$ degree terms:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{x}{\sqrt{ }} \\
& \frac{\partial f}{\partial x}(1,2)=\frac{1}{3} \\
& \frac{\partial f}{\partial y}=\frac{\frac{3}{2} y^{2}}{\sqrt{ }} \\
& \frac{\partial f}{\partial y}(1,2)=\frac{6}{3}=2
\end{aligned}
$$

$2^{\text {ned }}$ degree terms: Arris hl!!'!

Let's look at the polynomial and the graphs using computer software.

Note: in exams you will get functions that are quick to differentiate

$$
T 2 f:=-\frac{4}{3}+2 y+\frac{x}{3}+\frac{4(x-1)^{2}}{27}-\frac{2(y-2)(x-1)}{9}+\frac{(y-2)^{2}}{3}
$$

Plots are on the next page
(code and images are in MyCourses)

The surface and it's quadratic approximation at (1,2)

Zooming in

$$
Z=T 2 f:=-\frac{4}{3}+2 y+\frac{x}{3}+\frac{4(x-1)^{2}}{27}-\frac{2(y-2)(x-1)}{9}+\frac{(y-2)^{2}}{3}
$$

