Lecture 7/

e Gave an intuitive definition of a closed and bounded region in the plane and Where to find this material
stated the result that continuous functions on such domain attain their
absolute extrema. e Adams_and_Essex 13.1,13.2, 13.3

¢ Did the following example and looked at computer generated images (see
"Materials") to help understand our calculations. Find the absolute extrema of
f(x,y) = x*2 + 2 y*2 on the disk of radius one centered at (0,0).

e Discussed the method of Lagrange multipliers and justified it intuitively by
looking at a sketch of level curves and using the fact that the gradient vectors
are orthogonal to the corresponding level curves.

¢ Re-solved the previous example using the method of Lagrange multipliers.

¢ Did another example of Lagrange multipliers: On the curve x"2 + xy+y"2
which points are closest and furthest from the origin?

e Reviewed Taylor series and Taylor polynomials 1 variable.

¢ Gave the definition of the nth Taylor polynomial in two variables. Wrote out
the 2nd order Taylor polynomial on 2 variables. Noted that (1) the 1st order
Taylor polynomial gives the tangent plane equatin as expected., and (2) The
2nd order terms can be written [x-x_0y-y_0] H(x_0,y_0) [x-x_0 y-y_OJ T
(where T denoted transpose and H is the Hessian). The 2nd derivative test can
be understood by learning the corresdpondence between properties of the
Hessian H and the properties of the quadratic polynomial [x-x_0 y-y_0] H(x_
0,y_0) [x-x_0y-y_O0]*T, but we will not discuss this in this course. But it is
closely related to the bonus exercise in assignment 4.

e Showed an example using Maple of the the 2nd order Taylor polynomial
approximating a surface. The code and output can be found in "materials".

* (Not covered in class but in the notes)

Adams_and_Essex. 12.9. See "materials" for a copy of this sections.

Corral, 2.5, 2.7

Guichard, 14.7, 14.8

Active Calculus. 10.7, 10.8
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Absolute extrema (2)

exanple \
Theorem: A continuous function f(x, y) on a closed and N\

bounded domain D c IR attains its absolute maximum and @ D= g (X,&) | X2,0 92 03 | [

minimum on D. )
iy clored oawdd on bouncfed

D )
closed . D contas all
ntJ' boam o{ar\j Ioo M‘{f How to find absolute extrema?
[yee /eC+Ufe #2) Need to look
1. In the interior - the extrema can only occur at
[/1 critical points (relatively easy to find)
bOUm e(/{ "le
X [heve eyst R>0 2. On the boundary - this is difficult as the boundary
5UGL1 ‘M’la'!‘ is in general a curve. We say that we a finding
D extrema subject to the constraint of being on the
R \ \ D // es 7 HV{Q boundary. This is an example of constrained
optimization which is a very general problem type
Q/ fh £ c(/C,/e that appears in a huge variety of applications.
of raies R
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Extrema example

Find the absolute extrema of f(x,y) = x2 + 2y?on the
closed disk of radius 1.

Y Infesor - X%y~ < |
Bawo//arj : X z+y"‘: |

M: Find the cvitical ,oohn‘f

We don't have a general method yet, but
in this simple example we can manage
with 1-variable methods by elimanting
one of the variable.

BoUNDARY

® ><1+t91=l =7f:|~7<1

kan

We ol have o j-f/owqé/e /Omé/em

So ‘P(K,y(x)) = x%2 (/“)(2)
=2~ x*
on the clomaly [, 7]
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(2,1) | (0)_0 < X0

{dl ,I X

&= y=1I

| L Bedpew!t xecl ) =
(1,0), (o) = Y=0

POSS!M( /om'ltlomj for 'HR aéso/uﬁ extrema

LoCAT/ox) | VALUE.

(0,0 (=0 Aby ppax T2 2t
(0, [ f=2 (9,1), (0,71
(o | f=a

(101 | £= Abs mm Lo
(-,0) T£= at (0)0)

See Sebwar plots
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Lagrange multipliers

The boundary part of the previous example (extrema values
of f(x,¥) = x? + 2y?onthe curve x? + y2 = 1) is a
problem of the following form.

Find the absolute extrema of a function f(x, y) subject to a
constraint g(x, y) =cC

L°+IS f.VlVBWI" ot Me‘f"luai HW\W\W\ R ?

Questians
(D Cau the rax be ot A ’ N (ZZZJ j
leve/ curit
@ Con the wmax be ot & 7 yf’.f

(vt Foch the fovel eume )
(3) Can the pax Yo at C ? Mg

The panﬂ' B i ;,oml. Mm[ém?‘/m//y
W cau encoafe fél\f él_y qumg

’ Tmngem}s are {owq//e/

* So, The novme/ ave pa/\a//e/

* So, 93(8) 5 pwalle] 4y 74 (8)
& onstant ) U9 ()

v#R) = oniteat.
<\ - LQ yravp e
V)= (N3 s) mobier

T So
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Lagrange multipliers (2)

The method of Lagrange multipliers.
The absolute extrema of a function f(x, y) subject to a
constraint g(x, y) = ¢ can only occur at points where

V)f = /ﬁg or Vf is undefined.

Letus look of +he revious ean‘f/f Urng
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Solve $F= 1\33 'k X = NAX
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The /Damé/e extremon OCCUr
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aj éc-%('e \/

Coviglyscoin
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Example 2

Find the closest and furthest points on the curve
x? + xy + y? = 1 from the origin.

Set-- g
P Let j(?‘,j ) s ’WXj +f/'?
A
(o 9) Let £ j) = cfirfance”
= KL-I;yl
ohs"cqw(g o Note: minimizing distance or
distance 22 gives the same
> locations.
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Taylor series

1 variable review

Fungtron

Taj/of selles _ T
(fewf'eresl of )

d{olfgree
T'aj/or Polﬂngwal - K

{1

()

P(O} = a, ( Constaut +eru i eqrj)

Idea/use: Information about f and all it's derivates at x = a
is often enough to determine f (x) for other values of x.

(1) In the previous example in fact cos(x) = T (x) for all x.

(2) If f(x) = e 1/**the Taylor series centered at x = 0 is
T(x) =0.Sof(x) #T(x) Vx+0

(n)
Why are the coefficients ! n(o)

Tofea - !

(/24 P(X)=010+ a|K+Qd><l~F aj)(

HOL\/ con /e E;C‘/'Vbc'f‘ -H[e coqpp/c/-e'q{f .‘Z‘; ) G,
- 93

Noty, let's make | jnfo +he consfout ferma.
P' (x) =z X 4 la,ﬂ,x + 34’37{1 , [OI[O) 2a|

plie) = Aag A7 E%Q):C\Q

ni

p‘”(x): 3 &Gy 9_@) = O

—_ 3 A
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Taylor polynomial in 2 variables The same idea motivates the definition. Lets see how to

X 93 & extract the coefficinet of a term in a polynomial of x and y.
1 Cod A . ety
5\“3 P(K/9>_ d‘-J- bed y ) /4\‘31'\ o{t-d — 2 P(O)

Ix¢ 9‘7\) ( 'J{

_ﬂlf VJ”‘ o’fc\’gree I—qy/or ,’\)O/jl/)owl{a/ O‘F ‘P(X?) K
N N~ ™
Thlage)s S0 > 20E(sg) (o) (yoy)

T["fi g’lW{O/fg/‘ee Tay/o,p Po/jmwy/q/ s (/ovk ot +he care (xajy\,)cfb,a) to shoden Mofaf,o;,)
T.;--P(‘)/O} = @: '(;(0)0) X r '@(D,o)ﬂ/ + *F\x,c_(zli) XJ' 4 -Q‘-y(a}g) ?(y 4 o)y

= £loo)) + [f(o) @(0,033[;] + [x 9] )'ﬂ,;(o,a) fyloo) ] [ 7]

X
J
>
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J
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Taylor series example

‘P(“/j) :fxlfy;. COIMFJILC EP(’Q&)

CemLt’/‘ey( ot C’,,Z)

0“,,499@5 ferm 1“(‘;1)=JH2 =3

lS*M@gree ferms:  OF = X
2} nm
J.
%;F(U’g") = 3
_F
A 0)
—
ot = 6 -
ﬁj(,’)) 9 =3

Let's look at the polynomial and the graphs using
computer software.

Note: in exams you will get functions that are quick to
differentiate

Plots are on the next page

(code and images are in MyCourses)
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The surface and it's quadratic approximation at (1,2)
- ( ) = ' 2 3
2 - F Y/j X -["y
Nyl "Me Cusp
ot (0,0,0)
Zooming in
AR AT AR SRR
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