Computational Algebraic Geometry

The Algebra-Geometry Dictionary

Kaie Kubjas
kaie.kubjas@aalto.fi

February 3, 2021

The Algebra-Geometry Dictionary

- We explore the correspondence between ideals and varieties.
- The Nullstellensatz characterizes which ideals correspond to varieties.
- This allows to build the algebra and geometry dictionary, where every statement about varieties translates into a statement about ideals (and vice versa).

The Algebra-Geometry Dictionary

- We explore the correspondence between ideals and varieties.
- The Nullstellensatz characterizes which ideals correspond to varieties.
- This allows to build the algebra and geometry dictionary, where every statement about varieties translates into a statement about ideals (and vice versa).

Topics:
(1) Hilbert's Nullstellensatz
(2) Radical ideals and the ideal-variety correspondence
(3) Sums, products and intersections of ideals
(4) Zariski closure and quotients of ideals
(5) Irreducible varieties and prime ideals
(6) Decomposition of a variety into irreducibles

Hilbert's Nullstellensatz

Correspondence between ideals and varieties

- a variety $V \subseteq k^{n}$ can be studied by passing to the ideal

$$
\mathbb{I}(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(x)=0 \text { for all } x \in V\right\}
$$

- hence we have a map from affine varieties to ideals

Correspondence between ideals and varieties

Ideals
I

- conversely, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ defines the set

$$
\mathbb{V}(I)=\left\{x \in k^{n}: f(x)=0 \text { for all } f \in I\right\}
$$

- the Hilbert Basis Theorem assures that $\mathbb{V}(I)$ is an affine variety, i.e. there exist finitely many polynomials $f_{1}, \ldots, f_{s} \in I$ such that $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$
- $\mathbb{V}\left(f_{1}, \ldots, f_{n}\right)=\mathbb{V}(I)$
- hence we also have a map from ideals to affine varieties

Correspondence between ideals and varieties

- the correspondence is not one-to-one
- $\langle x\rangle,\left\langle x^{2}\right\rangle \in k[x]$ give the same variety $\mathbb{V}(x)=\mathbb{V}\left(x^{2}\right)=\{0\}$

Correspondence between ideals and varieties

- the correspondence is not one-to-one
- $\langle x\rangle,\left\langle x^{2}\right\rangle \in k[x]$ give the same variety $\mathbb{V}(x)=\mathbb{V}\left(x^{2}\right)=\{0\}$
- more serious problems when k is not algebraically closed: the varieties corresponding to

$$
I_{1}=\langle 1\rangle=\mathbb{R}[x], I_{2}=\left\langle 1+x^{2}\right\rangle, I_{3}=\left\langle 1+x^{2}+x^{4}\right\rangle
$$

are all empty in \mathbb{R}

Correspondence between ideals and varieties

- the correspondence is not one-to-one
- $\langle x\rangle,\left\langle x^{2}\right\rangle \in k[x]$ give the same variety $\mathbb{V}(x)=\mathbb{V}\left(x^{2}\right)=\{0\}$
- more serious problems when k is not algebraically closed: the varieties corresponding to

$$
I_{1}=\langle 1\rangle=\mathbb{R}[x], I_{2}=\left\langle 1+x^{2}\right\rangle, I_{3}=\left\langle 1+x^{2}+x^{4}\right\rangle
$$

are all empty in \mathbb{R}

- does this problem of having different ideals represent the empty variety go away if the field k is algebraically closed?

The Weak Nullstellensatz

One variable and k is algebraically closed: $k[x]$ is the only ideal representing the empty variety:

- Every ideal I in $k[x]$ has the form $\langle f\rangle$
- $\mathbb{V}(I)$ is the set of roots of f
- Every nonconstant polynomial $f \in k[x]$ has a root
- If f is a nonzero constant, then $\langle f\rangle=k[x]$

The Weak Nullstellensatz

One variable and k is algebraically closed: $k[x]$ is the only ideal representing the empty variety:

- Every ideal I in $k[x]$ has the form $\langle f\rangle$
- $\mathbb{V}(I)$ is the set of roots of f
- Every nonconstant polynomial $f \in k[x]$ has a root
- If f is a nonzero constant, then $\langle f\rangle=k[x]$

This observation generalizes to more variables:
Theorem (The Weak Nullstellensatz)
Let k be an algebraically closed field and let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal satisfying $\mathbb{V}(I)=\emptyset$. Then $I=k\left[x_{1}, \ldots, x_{n}\right]$.
"Fundamental Theorem of Algebra for multivariate polynomials"

Proof: Let I be sit. $\mathbb{V}(I)=\varnothing$. We nd to show that $1 \in I$.

We will us induction on the member of variables
Base car: (sue above)
Induction step: Assume that the unit is true fo $n-1$ variables. net $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \leq\left\lfloor\left[x_{n}, \ldots, x_{n}\right]\right.$. Let $N:=\operatorname{deg}\left(f_{1}\right) \geqslant 1$ (if $N=0$, then f_{1} is a constant and we are dome).

Gusiden the limen change of variables:

$$
\begin{aligned}
& x_{1}=\tilde{x}_{1} \\
& x_{2}=\tilde{x}_{2}+a_{2} \tilde{x}_{1} \\
& \vdots \\
& x_{n}=\tilde{x}_{n}+a_{n} \tilde{x}_{1}
\end{aligned}
$$

where a_{i} are to be determined constants ink.
Then

$$
\begin{aligned}
& \text { Then } \\
& f\left(x_{11}, x_{n}\right)=f_{1}\left(\tilde{x}_{1}, \tilde{x}_{2}+a_{2} \tilde{x}_{1}, \ldots, \tilde{x}_{4}+a_{n} \tilde{x}_{1}\right)= \\
& =c\left(a_{21} \ldots, a_{n}\right) \tilde{x}_{1}^{N}+\text { terms in which } \tilde{x}_{1} \text { hes } \\
& \text { digue }<N .
\end{aligned}
$$

- $C\left(a_{2}, \ldots, a_{n}\right)$ is a nowzere plynomial
- an alg. lond field is lusiume
- we lan choose $a_{21,}, a_{n}$ st. $\left(a_{21}, a_{n}\right) \neq 0$

With this changer of variables, any $f \in k\left[x_{n}, \cdots, x_{n}\right]$ goes to a plynanial $\hat{f} \in l\left[\tilde{x}_{1}, \ldots \tilde{x}_{n}\right]$.
$-\frac{N}{I}=\{\tilde{f}: f \in I\}$ is an ideal
$-\bar{V}(\tilde{I})=\phi$

- if $\Lambda \in I$, then $l \in I$ (contents are) $\begin{gathered}\text { unaffected) }\end{gathered}$

We will glow that $l \in \tilde{I}$ wing the Extension Theorem. Let $\frac{I_{1}}{I_{1}}=\frac{5}{I} \cap k\left[\tilde{x}_{2} \ldots \tilde{x}_{n}\right]$. then partial solutions in l^{n-1} always extend, ie $V\left(\tilde{I}_{1}\right)=\pi_{1}(\mathbb{V}(\tilde{I}))$, because $g_{1}=c\left(a_{2 \ldots}, a_{n}\right)$ is a nouses constant.
Hence $V\left(\tilde{I}_{1}\right)=\pi_{1}(V(\tilde{I}))=\pi_{1}(\phi)=\varnothing$.
By the induction hypothesis, $\frac{I_{1}}{I_{1}}=h\left[\tilde{x}_{2}, \cdots x_{n}\right]$. Hence $1 \in I_{1} \subset I$ and $1 \in I_{1}$ which completes the prof.

Consistency problem

The Weak Nullstellensatz allows us to solve the consistency problem: Does a system

$$
\begin{aligned}
& f_{1}=0 \\
& f_{2}=0 \\
& \vdots \\
& f_{s}=0
\end{aligned}
$$

of polynomial equations has a common solution in \mathbb{C}^{n} ?

Consistency problem

The Weak Nullstellensatz allows us to solve the consistency problem: Does a system

$$
\begin{aligned}
& f_{1}=0 \\
& f_{2}=0 \\
& \vdots \\
& f_{s}=0
\end{aligned}
$$

of polynomial equations has a common solution in \mathbb{C}^{n} ?

- fail to have a common solution if and only if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\emptyset$

Consistency problem

The Weak Nullstellensatz allows us to solve the consistency problem: Does a system

$$
\begin{aligned}
& f_{1}=0 \\
& f_{2}=0 \\
& \vdots \\
& f_{s}=0
\end{aligned}
$$

of polynomial equations has a common solution in \mathbb{C}^{n} ?

- fail to have a common solution if and only if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\emptyset$
- the latter holds if and only if $1 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$

Consistency problem

The Weak Nullstellensatz allows us to solve the consistency problem: Does a system

$$
\begin{aligned}
& f_{1}=0 \\
& f_{2}=0 \\
& \vdots \\
& f_{s}=0
\end{aligned}
$$

of polynomial equations has a common solution in \mathbb{C}^{n} ?

- fail to have a common solution if and only if $\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=\emptyset$
- the latter holds if and only if $1 \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$
- $\{1\}$ is the only reduced Groebner basis for the ideal $\langle 1\rangle$

In general, there is no one-to-one correspondence between ideals and varieties: $\mathbb{V}\left(x^{2}\right)=\mathbb{V}(x)=\{0\}$ works over any field

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field. If
$f, f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ are such that $f \in \mathbb{I}\left(\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)\right)$, then there exists an integer $m \geq 1$ such that

$$
f^{m} \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

(and conversely).

Proof: Given of that vanishes at many common zero of fl, ... ifs, we wont b shew that then exists $m \geqslant 1$ st.

$$
f^{m}=\sum_{i=1}^{s} A_{i} f_{i} \text {, when } A_{i} \in k\left[x_{1}, x_{n}\right] \text {. }
$$

consider $\tilde{I}=\left\langle f_{11},-f_{s}, 1-y f\right\rangle \leqslant k\left[x_{1},-, x_{n}, y\right]$.
CLAIM: $\mathbb{V}(\tilde{I})=\varnothing$.
Proof: hat $\left(a_{n}, \ldots, a_{n+1}\right) \in h^{n+1}$. Either $1)\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{V}\left(f_{1}, \ldots f_{s}\right)$ or
2) $\left(a_{n}, \ldots, a_{n}\right) \notin \mathbb{V}\left(f_{n}, \ldots, f_{s}\right)$.

- In the first can $1-y \cdot f \cdot f_{0}^{\left(a_{n}-1, a_{n}\right)}=1$, hence $\left(a_{1}, \ldots, a_{n+1}\right) \notin \mathbb{V}\left(\frac{\infty}{I}\right)$.
- In the siond ore, there is same di sot. $f_{1}\left(a_{1}, \ldots, a_{n}\right) \neq 0$, hence $\left(a_{1}, \ldots, a_{n+1}\right) \notin Y(I)$

By the Weak Nullstellensatz:

$$
1=\sum_{i=1}^{s} p_{i}\left(x_{1}, \ldots, x_{n}, y\right) \cdot f_{i}+q\left(x_{1}, \ldots, x_{n}, y\right) \cdot\left(1-y-f_{-}\right)
$$

for $p_{i}, q \in K\left[x_{1},-, x_{x}, y\right]$.
St $y=\frac{1}{f\left(x_{1}, \ldots, x_{n}\right)}$. Then

$$
1=\sum_{i=1}^{S} p_{i}\left(x_{1, \ldots, 1} x_{n}, \frac{1}{f}\right) \cdot f_{i}
$$

Multiply both sides of this equation by a large waugh power of f. This gives

$$
f^{m}=\sum_{i=1}^{s} A_{j} \cdot f_{i}, \quad A_{i} \in k\left[x_{1},-x_{n}\right] .
$$

Radical ideals and the ideal-variety correspondence

Lemma

Let V be a variety. If $f^{m} \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Proof: Let f be sit. $f^{m} \in I(V)$. Let $a \in V$. Then $(f(a))^{m}=0$. This implies that $f(a)=0$.

Radical ideals

Lemma

Let V be a variety. If $f^{m} \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal l is radical if $f^{m} \in I$ for some integer $m \geq 1$ implies that $f \in I$.

Radical ideals

Lemma

Let V be a variety. If $f^{m} \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal l is radical if $f^{m} \in I$ for some integer $m \geq 1$ implies that $f \in I$.

Corollary

$\mathbb{I}(V)$ is a radical ideal.

Radical ideals

Lemma

Let V be a variety. If $f^{m} \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal I is radical if $f^{m} \in I$ for some integer $m \geq 1$ implies that $f \in I$.

Corollary

$\mathbb{I}(V)$ is a radical ideal.

Definition

Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. The radical of I, denoted \sqrt{I}, is the

$$
\left\{f: f^{m} \in I \text { for some integer } m \geq 1\right\}
$$

Example

Let $J=\left\langle x^{2}, y^{3}\right\rangle \subseteq k[x, y]$. Then $x, y \in \sqrt{J}$. Show that $x y, x+y \in \sqrt{J}$.

Radical ideals

Example

Let $J=\left\langle x^{2}, y^{3}\right\rangle \subseteq k[x, y]$. Then $x, y \in \sqrt{J}$. Show that $x y, x+y \in \sqrt{J}$.

Lemma

If I is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then \sqrt{I} is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ containing I. Furthermore, \sqrt{I} is a radical ideal.

Proof: 1) We have $I \subseteq \sqrt{I}$, be cause $f \in I$ is the same as $f^{1} \in I$, and hence $f \in V I$.
2) \sqrt{I} is an ideal:

* Let $f, g \in \sqrt{I}$. This mans that $\exists m_{1} l \geqslant l$ such that $f^{m}, g^{l} \in I$. In the expansion of $(f+g)^{m+l-1}$ every term is of the form $\binom{m+l-1}{i} f^{\prime} g^{m+l-1-i}$. Either $i \geqslant m$ on $j \geqslant l$ and hence ene such term is in I. Hence $(f+g)^{m+e} \in \in I$ and $f+g \in \sqrt{I}$.
* Let $f \in \overparen{I}$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f^{m} \in I$ for same $m \geqslant l$. Hence $h^{m} \cdot f^{m} \in I$ and $h \cdot f \in I$.

3) II is a radical ideal: Assume $f^{m} \in \mathbb{I}$ for some $m \geqslant 1$. By the definition of $\sqrt{I}, \exists l \geqslant 1$ s.f. $\left(f^{m}\right)^{e} \in I$. Vang the definition again, since $f^{m \cdot l} \in I$, thea $f \in \mathbb{I}_{I}$. Hence F_{I} is a radical ideal.

Radical ideals

Example

Let $J=\left\langle x^{2}, y^{3}\right\rangle \subseteq k[x, y]$. Then $x, y \in \sqrt{J}$. Show that $x y, x+y \in \sqrt{J}$.

Lemma

If I is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then \sqrt{I} is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ containing I. Furthermore, \sqrt{I} is a radical ideal.

Theorem (The Strong Nullstellensatz)

Let k be an algebraically closed field. If I is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\mathbb{I}(\mathbb{V}(I))=\sqrt{I}
$$

The Nullstellensatz refers to the Strong Nullstellensatz.

Proof: " \subseteq " hit $f \in I(Y(I))$. Then by the Hilbert's Nullstelleusatz, $\exists m \geqslant 1$ s.t. $f^{m} \in I$. Hence $I(V(I)) \subseteq I \subseteq \sqrt{I}$.
" 2 " hut $t \in \sqrt{I}$. Then $f^{m} \in I$ for som $m \geqslant l$. Hence $f^{\prime \prime \prime}$ vanishes on $V(I)$ and hence f vanishes on $\mathbb{V}(I)$. Hence $f \in I(\mathbb{V}(I))$.

The Ideal-Variety Correspondence

Theorem

Let k be an arbitrary field.
(1) The maps
affine varieties \rightarrow ideals
and
ideals \rightarrow affine varieties
are inclusion-reversing. Furthermore, for any variety V, we have

$$
\mathbb{V}(\mathbb{I}(V))=V
$$

so that I is always one-to-one.

The Ideal-Variety Correspondence

Theorem

Let k be an arbitrary field.
(1) The maps

$$
\text { affine varieties } \rightarrow \text { ideals }
$$

and

$$
\text { ideals } \rightarrow \text { affine varieties }
$$

are inclusion-reversing. Furthermore, for any variety V, we have

$$
\mathbb{V}(\mathbb{I}(V))=V,
$$

so that I is always one-to-one.
2. If k is algebraically closed, and if we restrict to radical ideals, then the maps
affine varieties \rightarrow radical ideals
and
radical ideals \rightarrow affine varieties
are inclusion-reversing bijections which are inverses of each-other.

Proof: 1) Inchurian-wensing : ExERCISE

- $V(I(V))=V$. Let $V=V\left(f_{1} \ldots f_{s}\right)$. Let $a \in V$. Twee $f(a)=0$ for all $f \in I(V)$. Hence $V \subseteq \mathbb{V}(I(V))$.

Cowessily, $I(V) \supseteq\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Using inclusion reversion, we get $Y\left(I(V) \subseteq V\left(\begin{array}{c}\left.f_{1} \ldots, f_{s}\right) \\ V V .\end{array}\right.\right.$
2) $I(V(I))=I$. By Nullstellensatz $I(V(I))=\sqrt{I}$. Since I is radical, then $I=I$.

The Nullstellensatz motivates the study of radical ideals:
(1) (Radical generators) Given an ideal I, is there an algorithm that computes a basis $\left\{g_{1}, \ldots, g_{m}\right\}$ of $\sqrt{ }$? [We will answer it for principal ideals.]
(2) (Radical ideal) Is there an algorithm for checking whether I is radical? [Out of scope of this course.]
(3) (Radical membership) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$, is there an algorithm to determine whether $f \in \sqrt{I}$? [We will answer it completely using the Hilbert's Nullstellensatz.]

Radical Membership

Proposition

Let k be an arbitrary field and let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Then $f \in \sqrt{I}$ if and only if the constant polynomial 1 belongs to the ideal $\tilde{l}=\left\langle f_{1}, \ldots, f_{s}, 1-y f\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}, y\right]$.

Proof: As in the jog of the Hilbert's Nullstellensatz, $1 \in I$ implies that $f^{m} \in I$ br same $m \geqslant 1$.

Conversely, assume that $f \in \sqrt{I}$. Then $f^{m} \in I \subset \tilde{I}$ for same $m \geqslant 1$. But also $1-y f \in \stackrel{\cup}{I}$. Thee

$$
\begin{aligned}
1= & y^{m} f^{m}+\left(1-y^{m} f^{m}\right)= \\
& =y^{m} f^{m}+(1-y f) \cdot\left(1+y f+\ldots+y^{m-1} f^{m-1}\right) \in \tilde{I}
\end{aligned}
$$

Radical Membership

Proposition

Let k be an arbitrary field and let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Then $f \in \sqrt{I}$ if and only if the constant polynomial 1 belongs to the ideal $\tilde{l}=\left\langle f_{1}, \ldots, f_{s}, 1-y f\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}, y\right]$.

Example (Radical Membership Algorithm)

Consider $I=\left\langle x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1\right\rangle \subseteq k[x, y]$. We want to test if $f=y-x^{2}+1$ lies in \sqrt{I}. Using lex order on $k[x, y, z]$, one checks that the ideal

$$
\tilde{I}=\left\langle x y^{2}+2 y^{2}, x^{4}-2 x^{2}+1,1-z\left(y-x^{2}+1\right)\right\rangle \subseteq k[x, y, z]
$$

has reduced Groebner basis $\{1\}$. It follows that $y-x^{2}+1 \in \sqrt{I}$.

Irreducible polynomials

Definition

Let k be a field. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is irreducible over k if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

Irreducible polynomials

Definition

Let k be a field. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is irreducible over k if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

Quiz: Is $x^{2}+1$ irreducible over \mathbb{R} ? Over \mathbb{C} ?

Irreducible polynomials

Definition

Let k be a field. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is irreducible over k if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

Quiz: Is $x^{2}+1$ irreducible over \mathbb{R} ? Over \mathbb{C} ? Answer: It is irreducible over \mathbb{R} but it factors as $(x-i)(x+i)$ over \mathbb{C}.

Irreducible polynomials

Definition

Let k be a field. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is irreducible over k if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

Quiz: Is $x^{2}+1$ irreducible over \mathbb{R} ? Over \mathbb{C} ?
Answer: It is irreducible over \mathbb{R} but it factors as $(x-i)(x+i)$ over \mathbb{C}.

Proposition

Every nonconstant polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as a product of polynomials which are irreducible over k.

Unique factorization

Theorem

Every nonconstant polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as a product $f=f_{1} \cdot f_{2} \cdots f_{r}$ of irreducible polynomials over l. Further, if $f=g_{1} \cdot g_{2} \cdots g_{s}$ is another factorization into irreducible polynomials over I, then $r=s$ and the g_{i} 's can be permuted so that each f_{i} is a constant multiple of g_{i}.

Principal ideals

Proposition

Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $I=\langle f\rangle$ be the principal ideal generated by f. If $f=c f_{1}^{a_{1}} \ldots f_{r}^{a_{r}}$ is the factorization of f into a product of distinct irreducible polynomials, then

$$
\sqrt{I}=\left\langle f_{1} f_{2} \cdots f_{r}\right\rangle
$$

Principal ideals

Proposition

Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $I=\langle f\rangle$ be the principal ideal generated by f. If $f=c f_{1}^{a_{1}} \cdots f_{r}^{a_{r}}$ is the factorization of f into a product of distinct irreducible polynomials, then

$$
\sqrt{I}=\left\langle f_{1} f_{2} \cdots f_{r}\right\rangle
$$

Definition

If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial, we define reduction of f, denoted $f_{\text {red }}$, to be the polynomial such that $\left\langle f_{\text {red }}\right\rangle=\sqrt{\langle f\rangle}$. A polynomial is said to be reduced (or square-free) if $f=f_{\text {red }}$.

Principal ideals

Proposition

Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $I=\langle f\rangle$ be the principal ideal generated by f. If $f=c f_{1}^{a_{1}} \cdots f_{r}^{a_{r}}$ is the factorization of f into a product of distinct irreducible polynomials, then

$$
\sqrt{I}=\left\langle f_{1} f_{2} \cdots f_{r}\right\rangle
$$

Definition

If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial, we define reduction of f, denoted $f_{\text {red }}$, to be the polynomial such that $\left\langle f_{\text {red }}\right\rangle=\sqrt{\langle f\rangle}$. A polynomial is said to be reduced (or square-free) if $f=f_{\text {red }}$.

Example

What is the reduction of $f=\left(x+y^{2}\right)^{3}(x-y)$?

Reduction

Definition

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a greatest common divisor of f and g, and denoted $h=\operatorname{GCD}(f, g)$, if
(1) h divides f and g.
(2) If p is any polynomial which divides both f and g, then p divides h.

Reduction

Definition

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a greatest common divisor of f and g, and denoted $h=\operatorname{GCD}(f, g)$, if
(1) h divides f and g.
(2) If p is any polynomial which divides both f and g, then p divides h.

- GCD exists and is unique up to multiplication by a nonzero constant k
- the Euclidean algorithm does not work in the case of several variables: $\operatorname{GCD}(x y, x z)=x$, but remainder is either $x y$ or $x z$ depending in which order we divide the monomials
- we will talk about an algorithm for computing GCD in the next lectures

Reduction

Proposition

Suppose that k is a field containing the rational numbers \mathbb{Q} and let $I=\langle f\rangle$ be a principal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then $\sqrt{I}=\left\langle f_{r e d}\right\rangle$, where

$$
f_{r e d}=\frac{f}{G C D\left(f, \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)} .
$$

Today:

- Hilbert's Nullstellensatz
- Radical ideals
- Ideal-variety correspondence

Next time:

- Sums, products and intersections of ideals
- Zariski closure and quotients of ideals

