Computational Algebraic Geometry The Algebra-Geometry Dictionary

Kaie Kubjas

kaie.kubjas@aalto.fi

February 3, 2021

Kaie Kubjas The Algebra-Geometry Dictionary

ヘロト 人間 ト ヘヨト ヘヨト

ъ

The Algebra-Geometry Dictionary

- We explore the correspondence between ideals and varieties.
- The Nullstellensatz characterizes which ideals correspond to varieties.
- This allows to build the algebra and geometry dictionary, where every statement about varieties translates into a statement about ideals (and vice versa).

伺き くきき くきき

The Algebra-Geometry Dictionary

- We explore the correspondence between ideals and varieties.
- The Nullstellensatz characterizes which ideals correspond to varieties.
- This allows to build the algebra and geometry dictionary, where every statement about varieties translates into a statement about ideals (and vice versa).

Topics:

- Hilbert's Nullstellensatz
- 2 Radical ideals and the ideal-variety correspondence
- Sums, products and intersections of ideals
- Zariski closure and quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

Hilbert's Nullstellensatz

Kaie Kubjas The Algebra-Geometry Dictionary

• a variety $V \subseteq k^n$ can be studied by passing to the ideal

$$\mathbb{I}(V) = \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in V \}$$

hence we have a map from affine varieties to ideals

A E > A E >

ъ

$$\begin{array}{ccc} \text{Ideals} & & & \\ \text{I} & & & \\ \end{array} \xrightarrow{} & V(\text{I}) \end{array}$$

• conversely, an ideal $I \subseteq k[x_1, \ldots, x_n]$ defines the set

$$\mathbb{V}(I) = \{x \in k^n : f(x) = 0 \text{ for all } f \in I\}$$

• the Hilbert Basis Theorem assures that $\mathbb{V}(I)$ is an affine variety, i.e. there exist finitely many polynomials $f_1, \ldots, f_s \in I$ such that $I = \langle f_1, \ldots, f_s \rangle$

•
$$\mathbb{V}(f_1,\ldots,f_n) = \mathbb{V}(I)$$

hence we also have a map from ideals to affine varieties

通 と く ヨ と く ヨ と

- the correspondence is not one-to-one
- $\langle x \rangle, \langle x^2 \rangle \in k[x]$ give the same variety $\mathbb{V}(x) = \mathbb{V}(x^2) = \{0\}$

御下 不是下 不是下 一度

- the correspondence is not one-to-one
- $\langle x \rangle, \langle x^2 \rangle \in k[x]$ give the same variety $\mathbb{V}(x) = \mathbb{V}(x^2) = \{0\}$
- more serious problems when k is not algebraically closed: the varieties corresponding to

$$I_1 = \langle 1 \rangle = \mathbb{R}[x], I_2 = \langle 1 + x^2 \rangle, I_3 = \langle 1 + x^2 + x^4 \rangle,$$

are all empty in $\ensuremath{\mathbb{R}}$

個 とく ヨ とく ヨ とう

- the correspondence is not one-to-one
- $\langle x \rangle, \langle x^2 \rangle \in k[x]$ give the same variety $\mathbb{V}(x) = \mathbb{V}(x^2) = \{0\}$
- more serious problems when k is not algebraically closed: the varieties corresponding to

$$I_1 = \langle 1 \rangle = \mathbb{R}[x], I_2 = \langle 1 + x^2 \rangle, I_3 = \langle 1 + x^2 + x^4 \rangle,$$

are all empty in $\ensuremath{\mathbb{R}}$

 does this problem of having different ideals represent the empty variety go away if the field k is algebraically closed?

・ 同 ト ・ ヨ ト ・ ヨ ト

One variable and k is algebraically closed: k[x] is the only ideal representing the empty variety:

- Every ideal *I* in k[x] has the form $\langle f \rangle$
- $\mathbb{V}(I)$ is the set of roots of f
- Every nonconstant polynomial $f \in k[x]$ has a root
- If *f* is a nonzero constant, then $\langle f \rangle = k[x]$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

One variable and k is algebraically closed: k[x] is the only ideal representing the empty variety:

- Every ideal *I* in k[x] has the form $\langle f \rangle$
- $\mathbb{V}(I)$ is the set of roots of f
- Every nonconstant polynomial $f \in k[x]$ has a root
- If *f* is a nonzero constant, then $\langle f \rangle = k[x]$

This observation generalizes to more variables:

Theorem (The Weak Nullstellensatz)

Let k be an algebraically closed field and let $I \subseteq k[x_1, ..., x_n]$ be an ideal satisfying $\mathbb{V}(I) = \emptyset$. Then $I = k[x_1, ..., x_n]$.

"Fundamental Theorem of Algebra for multivariate polynomials"

イロン 不良 とくほう 不良 とうほ

Proof: Let I be s.t. $V(\underline{t}) = \emptyset$. We und to show that $1 \in \mathbb{T}$.

We will use induction on the member of variables. Base case: (su above) Induction step: Assume that the result is true for n-1 variables, net $I = \langle f_1, \dots, f_s \rangle \leq L[x_{n_1, \dots, x_n}], het$ N=dig(f1)>1 (if N=0, then f1 is a constant and we are done). Gusider the liner change of variables: X=X $X_2 = X_2 + a_2 X_1$ $X_{n} = X_{n} + a_{n} X_{n},$ where aj are to be determined coustants in k.

Then $f(x_{1}, x_{n}) = f_{1}(x_{1}, x_{2} + a_{2}x_{1}, \dots, x_{y} + a_{n}x_{1}) =$ $= c(a_{2}, \dots, a_{n}) x_{1}^{N} + terms in which x_{1} hes$ deque LN.

 $-c(a_{2},...,a_{n})$ is a nonzero plynomial $-a_{n}$ alg. and field is infinite $-w_{n}$ an chosen $a_{21},...,a_{n}$ s.t. $c(a_{21},...,a_{n})\neq 0$ With this change of variables, using $f \in k [x_1, ..., x_n]$ goes to a plynamial $f \in k [x_1, ..., x_n]$. $-\frac{N}{I}=4\tilde{f}: f \in I$ is an ideal $-W(\tilde{I})=0$ $-if \Lambda \in I, then \Lambda \in I (unaffected)$ We will show that lEI wine the axtension Theorem. Let I = Inh[x_1...,x_n]. then partial solutions in let always extend, i.e $\mathbb{V}(\tilde{\mathbb{I}}_{\eta}) = \pi_{\eta}(\mathbb{V}(\tilde{\mathbb{I}}))$, because $q_1 = c(a_{21-1}, a_n)$ is a nouser ous tant. Hence $V(I_1) = T_1(V(I)) = T_1(\emptyset) = \emptyset$. By the induction hypothesis, $I_1 = h[X_{2}, ..., X_h]$. Hence $I \in I_1 \subset I$ and $I \in I$, which completes the proof.

$$f_1 = 0, \\ f_2 = 0, \\ \vdots \\ f_s = 0$$

of polynomial equations has a common solution in \mathbb{C}^n ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

$$f_1 = 0, \\ f_2 = 0, \\ \vdots \\ f_s = 0$$

of polynomial equations has a common solution in \mathbb{C}^n ?

• fail to have a common solution if and only if $\mathbb{V}(f_1, \ldots, f_s) = \emptyset$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$$f_1 = 0, \\ f_2 = 0, \\ \vdots \\ f_s = 0$$

of polynomial equations has a common solution in \mathbb{C}^n ?

- fail to have a common solution if and only if $\mathbb{V}(f_1, \ldots, f_s) = \emptyset$
- the latter holds if and only if $1 \in \langle f_1, \ldots, f_s \rangle$

(日本) (日本) (日本)

 $f_1 = 0,$ $f_2 = 0,$ \vdots $f_s = 0$

of polynomial equations has a common solution in \mathbb{C}^n ?

- fail to have a common solution if and only if

 V(*f*₁,...,*f*_s) = ∅
- the latter holds if and only if $1 \in \langle f_1, \ldots, f_s \rangle$
- $\{1\}$ is the only reduced Groebner basis for the ideal $\langle 1 \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト

In general, there is no one-to-one correspondence between ideals and varieties: $\mathbb{V}(x^2) = \mathbb{V}(x) = \{0\}$ works over any field

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field. If $f, f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$ are such that $f \in \mathbb{I}(\mathbb{V}(f_1, \ldots, f_s))$, then there exists an integer $m \ge 1$ such that

 $f^m \in \langle f_1, \ldots, f_s \rangle$

(and conversely).

く 同 ト く ヨ ト く ヨ ト

Proof: Given f that vanishes at
uny common 200 of friend is, we
want to show that there exists mill
s.t.
$$f^{m} = \sum_{i=1}^{S} fifi, when Ajek[x_{1}, x_{i}],$$

(ander $I = \langle f_{n_{i}-1}, f_{S_{i}}, \Lambda - y_{f} \rangle \in k[x_{n_{i}-1}, x_{n_{i}}, y].$
CLAIM: $V(I) = \emptyset$.
Proof: het $(a_{n_{1}-1}, a_{n_{1}}) \in h^{n+1}$. Either
 $D(a_{n_{1}-1}, a_{n}) \in V(f_{n_{1}-1}, f_{S})$ or
 $2)(a_{n_{1}-1}, a_{n}) \notin V(f_{n_{1}-1}, f_{S}).$
In the first case $\Lambda - y_{i}f(a_{n_{i}-1}a_{n}) = 1$, hence
 $(a_{n_{1}-1}, a_{n+1}) \notin V(I).$

· In the should care, there is some first. fr(ann, an) 70, hence (ann ann) & W(I).

By the Weak Nullstellensatz:

$$A = \sum_{i=1}^{s} p_i (x_{n_{i-1}} x_{n_{i}} y) \cdot f_i + q(x_{n_{i-1}} x_{n_{i}} y) \cdot (1 \cdot y)$$
for $p_{i_{1}} q \in h[x_{n_{i-1}} x_{n_{i}} y]$.

Sut $g = \frac{1}{f(x_{n_{i-1}} x_{n_{i}})} \cdot Then$

$$4 = \sum_{i=1}^{s} p_{i_{1}} (x_{n_{i-1}} x_{n_{i}} \frac{1}{f}) \cdot f_{i_{1}}.$$

Hultiply both sides of this equation by

a large moves power of f. This gives
$$f^{w} = \sum_{i=1}^{s} A_{i_{1}} \cdot f_{i_{1}}, \quad A_{i_{1}} \in h[x_{n_{1}-1} x_{n_{i}}].$$

Radical ideals and the ideal-variety correspondence

Kaie Kubjas The Algebra-Geometry Dictionary

ъ

Lemma

Let V be a variety. If $f^m \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof: but f be s.t. $f^{m} \in I(V)$. but as V. Thun $(f(a))^{m} = 0$. This implies that f(a) = 0.

Lemma

Let V be a variety. If $f^m \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal *I* is radical if $f^m \in I$ for some integer $m \ge 1$ implies that $f \in I$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma

Let V be a variety. If $f^m \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal *I* is radical if $f^m \in I$ for some integer $m \ge 1$ implies that $f \in I$.

Corollary

 $\mathbb{I}(V)$ is a radical ideal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lemma

Let V be a variety. If $f^m \in \mathbb{I}(V)$, then $f \in \mathbb{I}(V)$.

Definition

An ideal *I* is radical if $f^m \in I$ for some integer $m \ge 1$ implies that $f \in I$.

Corollary

 $\mathbb{I}(V)$ is a radical ideal.

Definition

Let $I \subseteq k[x_1, ..., x_n]$ be an ideal. The radical of *I*, denoted \sqrt{I} , is the

 $\{f: f^m \in I \text{ for some integer } m \geq 1\}$

イロト イポト イヨト イヨト

э

Example

Let $J = \langle x^2, y^3 \rangle \subseteq k[x, y]$. Then $x, y \in \sqrt{J}$. Show that $xy, x + y \in \sqrt{J}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Example

Let
$$J = \langle x^2, y^3 \rangle \subseteq k[x, y]$$
. Then $x, y \in \sqrt{J}$. Show that $xy, x + y \in \sqrt{J}$.

Lemma

If I is an ideal in $k[x_1, ..., x_n]$, then \sqrt{I} is an ideal in $k[x_1, ..., x_n]$ containing I. Furthermore, \sqrt{I} is a radical ideal.

ヘロト 人間 とくほとく ほとう

3

Proof: 1) We have $T \in VI'$, because fEI is the same as fIEI, and hence LETI.

2) II is an ideal: * het f.geII. This mans that Im, l>1 such that f^m, g^l eI. In the expansion of (f+g)^{m+l-1}, every term is of the form (^{m+l-1}) fⁱg^{m+l-1-i}. Either i>m or j>e and hence eveny such term is in I. Hence (f+g)^{m+k-1} EI and f+geII.

* het felt and hek[x_{1,-1}x_n]. Then f^meI for some m?l. Hence h^mf^meI and h·feI.

3) IT is a radical ideal : Assume i^m e TI for some mod. By the definition of TI, Ilor s.t. (i^m)^e eI. Using the definition again, since i^{m.e} eI, then if eTI. Hence TI is a radical ideal.

Example

Let
$$J = \langle x^2, y^3 \rangle \subseteq k[x, y]$$
. Then $x, y \in \sqrt{J}$. Show that $xy, x + y \in \sqrt{J}$.

Lemma

If I is an ideal in $k[x_1, ..., x_n]$, then \sqrt{I} is an ideal in $k[x_1, ..., x_n]$ containing I. Furthermore, \sqrt{I} is a radical ideal.

Theorem (The Strong Nullstellensatz)

Let *k* be an algebraically closed field. If *I* is an ideal in $k[x_1, \ldots, x_n]$, then

 $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}.$

The Nullstellensatz refers to the Strong Nullstellensatz.

・ロト ・ 理 ト ・ ヨ ト ・

Proof: " \leq " but $f \in I(V(I))$. Then by the tubbert's Nullstelleusatz, $\exists un \forall l \quad s.t.$ $f^{m} \in I$. Hence $I(V(I)) \subseteq I \subseteq \overline{II}$.

">" \mathbb{Z} hut $f \in \mathbb{N}$. Then $f^{\mathsf{M}} \in \mathbb{I}$ for some $\mathfrak{U} \gg \mathfrak{l}$. Hence f^{M} vanishes on $\mathbb{V}(\mathbb{I})$ and hence f vanishes on $\mathbb{V}(\mathbb{I})$. Hence $f \in \mathbb{I}(\mathbb{V}(\mathbb{I}))$.

The Ideal-Variety Correspondence

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The Ideal-Variety Correspondence

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Proof: 1) Inclusion-mensing : EXERCISE * V(I(V)) = V. Let $V = V(f_1, \dots, f_s)$. Let at V. Then f(a)=0 for all $f \in I(V)$. Hence $V \in \mathcal{V}(\tilde{\mathcal{I}}(V))$

(onversely, $I(V) \ge \langle f_{1}, f_{s} \rangle$. Using inclusion recersion, we get $V(I(V)) \subseteq V(f_{1}, f_{s})$

2) I(V(I)) = I. By Nullstellensatz I(V(I)) = TI. Since I is radial, then $TI = I \cdot T$ The Nullstellensatz motivates the study of radical ideals:

- (Radical generators) Given an ideal *I*, is there an algorithm that computes a basis $\{g_1, \ldots, g_m\}$ of \sqrt{I} ? [We will answer it for principal ideals.]
- (Radical ideal) Is there an algorithm for checking whether I is radical? [Out of scope of this course.]
- ◎ (Radical membership) Given $f \in k[x_1, ..., x_n]$, is there an algorithm to determine whether $f \in \sqrt{I}$? [We will answer it completely using the Hilbert's Nullstellensatz.]

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Proposition

Let k be an arbitrary field and let $I = \langle f_1, \ldots, f_s \rangle \subseteq k[x_1, \ldots, x_n]$ be an ideal. Then $f \in \sqrt{I}$ if and only if the constant polynomial 1 belongs to the ideal $\tilde{I} = \langle f_1, \ldots, f_s, 1 - yf \rangle \subseteq k[x_1, \ldots, x_n, y]$.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三日

Proof: As in the pool of the Hilbert's Nullstellensatz, 1 e I implies that fre I fr some m≥1.

Conversile, assume that $f \in T \subset T$. Then $f \in T \subset T$ for some $m \ge 1$. But also $1 - y f \in T$. Thus $\Lambda = y^m f^m + (1 - y^m f^m) =$ $= y^{m}f^{m} + (1 - yf) \cdot (1 + yf + ... + y^{m-1}f^{m-1}) \in \mathbb{I}.$

Proposition

Let k be an arbitrary field and let $I = \langle f_1, \ldots, f_s \rangle \subseteq k[x_1, \ldots, x_n]$ be an ideal. Then $f \in \sqrt{I}$ if and only if the constant polynomial 1 belongs to the ideal $\tilde{I} = \langle f_1, \ldots, f_s, 1 - yf \rangle \subseteq k[x_1, \ldots, x_n, y]$.

Example (Radical Membership Algorithm)

Consider $I = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1 \rangle \subseteq k[x, y]$. We want to test if $f = y - x^2 + 1$ lies in \sqrt{I} . Using lex order on k[x, y, z], one checks that the ideal

$$\tilde{l} = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1, 1 - z(y - x^2 + 1) \rangle \subseteq k[x, y, z]$$

has reduced Groebner basis {1}. It follows that $y - x^2 + 1 \in \sqrt{l}$.

<ロ> (四) (四) (三) (三) (三)

Let *k* be a field. A polynomial $f \in k[x_1, ..., x_n]$ is irreducible over *k* if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k[x_1, ..., x_n]$.

イロト イポト イヨト イヨト 三日

Let *k* be a field. A polynomial $f \in k[x_1, ..., x_n]$ is irreducible over *k* if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k[x_1, ..., x_n]$.

Quiz: Is $x^2 + 1$ irreducible over \mathbb{R} ? Over \mathbb{C} ?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let *k* be a field. A polynomial $f \in k[x_1, ..., x_n]$ is irreducible over *k* if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k[x_1, ..., x_n]$.

Quiz: Is $x^2 + 1$ irreducible over \mathbb{R} ? Over \mathbb{C} ? Answer: It is irreducible over \mathbb{R} but it factors as (x - i)(x + i) over \mathbb{C} .

<ロ> (四) (四) (三) (三) (三) (三)

Let *k* be a field. A polynomial $f \in k[x_1, ..., x_n]$ is irreducible over *k* if and only if it is nonconstant and it is not the product of two nonconstant polynomials in $k[x_1, ..., x_n]$.

Quiz: Is $x^2 + 1$ irreducible over \mathbb{R} ? Over \mathbb{C} ? Answer: It is irreducible over \mathbb{R} but it factors as (x - i)(x + i) over \mathbb{C} .

Proposition

Every nonconstant polynomial $f \in k[x_1, ..., x_n]$ can be written as a product of polynomials which are irreducible over k.

イロン 不良 とくほう 不良 とうほ

Theorem

Every nonconstant polynomial $f \in k[x_1, ..., x_n]$ can be written as a product $f = f_1 \cdot f_2 \cdots f_r$ of irreducible polynomials over *I*. Further, if $f = g_1 \cdot g_2 \cdots g_s$ is another factorization into irreducible polynomials over *I*, then r = s and the g_i 's can be permuted so that each f_i is a constant multiple of g_i .

イロト イポト イヨト イヨト 三日

Principal ideals

Proposition

Let $f \in k[x_1, ..., x_n]$ and $I = \langle f \rangle$ be the principal ideal generated by f. If $f = cf_1^{a_1} \cdots f_r^{a_r}$ is the factorization of f into a product of distinct irreducible polynomials, then

 $\sqrt{I}=\langle f_1f_2\cdots f_r\rangle.$

イロト イポト イヨト イヨト 三日

Principal ideals

Proposition

Let $f \in k[x_1, ..., x_n]$ and $I = \langle f \rangle$ be the principal ideal generated by f. If $f = cf_1^{a_1} \cdots f_r^{a_r}$ is the factorization of f into a product of distinct irreducible polynomials, then

 $\sqrt{I}=\langle f_1f_2\cdots f_r\rangle.$

Definition

If $f \in k[x_1, ..., x_n]$ is a polynomial, we define reduction of f, denoted f_{red} , to be the polynomial such that $\langle f_{red} \rangle = \sqrt{\langle f \rangle}$. A polynomial is said to be reduced (or square-free) if $f = f_{red}$.

イロト 不得 とくほと くほとう

Principal ideals

Proposition

Let $f \in k[x_1, ..., x_n]$ and $I = \langle f \rangle$ be the principal ideal generated by f. If $f = cf_1^{a_1} \cdots f_r^{a_r}$ is the factorization of f into a product of distinct irreducible polynomials, then

 $\sqrt{I}=\langle f_1f_2\cdots f_r\rangle.$

Definition

If $f \in k[x_1, ..., x_n]$ is a polynomial, we define reduction of f, denoted f_{red} , to be the polynomial such that $\langle f_{red} \rangle = \sqrt{\langle f \rangle}$. A polynomial is said to be reduced (or square-free) if $f = f_{red}$.

Example

What is the reduction of $f = (x + y^2)^3(x - y)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction

Definition

Let $f, g \in k[x_1, ..., x_n]$. Then $h \in k[x_1, ..., x_n]$ is called a greatest common divisor of f and g, and denoted h = GCD(f, g), if

- h divides f and g.
- If p is any polynomial which divides both f and g, then p divides h.

ヘロン 人間 とくほ とくほ とう

3

Reduction

Definition

Let $f, g \in k[x_1, ..., x_n]$. Then $h \in k[x_1, ..., x_n]$ is called a greatest common divisor of f and g, and denoted h = GCD(f, g), if

- h divides f and g.
- If p is any polynomial which divides both f and g, then p divides h.
 - GCD exists and is unique up to multiplication by a nonzero constant k
 - the Euclidean algorithm does not work in the case of several variables: GCD(xy, xz) = x, but remainder is either xy or xz depending in which order we divide the monomials
 - we will talk about an algorithm for computing GCD in the next lectures

Proposition

Suppose that k is a field containing the rational numbers \mathbb{Q} and let $I = \langle f \rangle$ be a principal ideal in $k[x_1, \ldots, x_n]$. Then $\sqrt{I} = \langle f_{red} \rangle$, where

$$f_{red} = \frac{I}{GCD(f, \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n})}.$$

Kaie Kubjas The Algebra-Geometry Dictionary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Today:

- Hilbert's Nullstellensatz
- Radical ideals
- Ideal-variety correspondence

Next time:

- Sums, products and intersections of ideals
- Zariski closure and quotients of ideals

★ E ► ★ E ►

3