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The Algebra-Geometry Dictionary

@ We explore the correspondence between ideals and
varieties.

@ The Nullstellensatz characterizes which ideals correspond
to varieties.

@ This allows to build the algebra and geometry dictionary,
where every statement about varieties translates into a
statement about ideals (and vice versa).
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The Algebra-Geometry Dictionary

@ We explore the correspondence between ideals and
varieties.

@ The Nullstellensatz characterizes which ideals correspond
to varieties.

@ This allows to build the algebra and geometry dictionary,
where every statement about varieties translates into a
statement about ideals (and vice versa).

Topics:
@ Hilbert’s Nullstellensatz
@ Radical ideals and the ideal-variety correspondence
© Sums, products and intersections of ideals
© Zariski closure and quotients of ideals
@ Irreducible varieties and prime ideals
© Decomposition of a variety into irreducibles
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Hilbert’s Nullstellensatz
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Correspondence between ideals and varieties

Varieties \ Ideals
% 1(V)

@ avariety V C k" can be studied by passing to the ideal
I(V)={fe€k[xq,...,xn] : f(x) =0forall x € V}

@ hence we have a map from affine varieties to ideals
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Correspondence between ideals and varieties

Ideal ) Varieties
elaIS V(l)

@ conversely, an ideal | C k[xq,. .., Xn] defines the set
V() ={xeK": f(x)=0forall f e I}

@ the Hilbert Basis Theorem assures that V(/) is an affine
variety, i.e. there exist finitely many polynomials
fi,...,fs€lsuchthat I = (f;,... fs)

o V(fy,...,fn) =V(I)
@ hence we also have a map from ideals to affine varieties
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Correspondence between ideals and varieties

@ the correspondence is not one-to-one
@ (x), (x?) € Kk[x] give the same variety V(x) = V(x?) = {0}
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Correspondence between ideals and varieties

@ the correspondence is not one-to-one

@ (x), (x?) € Kk[x] give the same variety V(x) = V(x?) = {0}

@ more serious problems when k is not algebraically closed:
the varieties corresponding to

h=(1)=Rx, b= (1+x%),k=(1+x"+x%,

are all empty in R
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Correspondence between ideals and varieties

@ the correspondence is not one-to-one

@ (x), (x?) € Kk[x] give the same variety V(x) = V(x?) = {0}

@ more serious problems when k is not algebraically closed:
the varieties corresponding to

h=(1)=Rx, b= (1+x%),k=(1+x"+x%,

are all empty in R

@ does this problem of having different ideals represent the
empty variety go away if the field k is algebraically closed?
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The Weak Nullstellensatz

One variable and k is algebraically closed: k[x] is the only ideal
representing the empty variety:

@ Every ideal /in k[x] has the form (f)

@ V(/) is the set of roots of f

@ Every nonconstant polynomial f € k[x] has a root
@ If f is a nonzero constant, then (f) = k[x]
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The Weak Nullstellensatz

One variable and k is algebraically closed: k[x] is the only ideal
representing the empty variety:

@ Every ideal /in k[x] has the form (f)

@ V(/) is the set of roots of f

@ Every nonconstant polynomial f € k[x] has a root
@ If f is a nonzero constant, then (f) = k[x]

This observation generalizes to more variables:

Theorem (The Weak Nullstellensatz)

Let k be an algebraically closed field and let | C k[xq, ..., Xn] be
an ideal satisfying V(I) = (). Then | = k[xq, ..., Xn].

“Fundamental Theorem of Algebra for multivariate polynomials”
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Consistency problem

The Weak Nullstellensatz allows us to solve the consistency
problem: Does a system

fi =0,
f =0,
fS:O

of polynomial equations has a common solution in C"?
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Consistency problem

The Weak Nullstellensatz allows us to solve the consistency
problem: Does a system

fi =0,
=0,
fS:O

of polynomial equations has a common solution in C"?

@ fail to have a common solution if and only if
V(fi,...,fs)=10
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Consistency problem

The Weak Nullstellensatz allows us to solve the consistency
problem: Does a system

fi =0,
=0,
fS:O

of polynomial equations has a common solution in C"?

@ fail to have a common solution if and only if
V(f*],...,fs) :w
@ the latter holds ifand only if 1 € (fi,...,fs)
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Consistency problem

The Weak Nullstellensatz allows us to solve the consistency
problem: Does a system

fi =0,
f =0,
fS:O

of polynomial equations has a common solution in C"?
@ fail to have a common solution if and only if
V(fi,....fs) =0
@ the latter holds ifand only if 1 € (fi,...,fs)
@ {1} is the only reduced Groebner basis for the ideal (1)
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Hilbert’'s Nullstellensatz

In general, there is no one-to-one correspondence between
ideals and varieties: V(x?) = V(x) = {0} works over any field

Theorem (Hilbert’s Nullstellensatz)

Let k be an algebraically closed field. If
f.fi,....fs € K[x1,...,Xn] are such that f € I(V(fy,...,fs)), then
there exists an integer m > 1 such that

FENCR

(and conversely).
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Radical ideals and the
Ideal-variety

correspondence
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Radical ideals

Let V be a variety. If f™ € I(V), then f € I( V).
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Radical ideals

Let V be a variety. If f™ € I(V), then f € I( V).

Definition

An ideal / is radical if f™ € | for some integer m > 1 implies that
fel
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Radical ideals

Let V be a variety. If f™ € I(V), then f € I( V).

Definition

An ideal / is radical if f™ € | for some integer m > 1 implies that
fel

I(V) is a radical ideal.
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Radical ideals

Let V be a variety. If f™ € I(V), then f € I( V).

Definition

An ideal / is radical if f™ € | for some integer m > 1 implies that
fel

I(V) is a radical ideal.

Definition

Let | C k[x1,..., X, be an ideal. The radical of /, denoted v/, is
the

{f: f™ € | for some integer m > 1}
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Radical ideals

Let J = (x2,y®) C Kk[x,y]. Then x, y € +/J. Show that
Xy, X +y eVJ.
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Radical ideals

Let J = (x2,y®) C Kk[x,y]. Then x, y € +/J. Show that
Xy, X +y eVJ.

Lemma

If I is an ideal in k[xy, ..., Xn], then V1 is an ideal in K[X1, ..., Xn]
containing I. Furthermore, /1 is a radical ideal.

v
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Radical ideals

Let J = (x2,y®) C Kk[x,y]. Then x, y € +/J. Show that
Xy, X +y eVJ.

Lemma

If I is an ideal in k[xy, ..., Xn], then V1 is an ideal in K[X1, ..., Xn]
containing I. Furthermore, /1 is a radical ideal.

Theorem (The Strong Nullstellensatz)

Let k be an algebraically closed field. If | is an ideal in
k[x1,...,Xn], then

(V) = V1.

A\

The Nullstellensatz refers to the Strong Nullstellensatz.
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The Ideal-Variety Correspondence

Let k be an arbitrary field.

0 The maps

and

affine varieties — ideals

ideals — affine varieties

are inclusion-reversing. Furthermore, for any variety V, we have
v(wvy) =v,

so that | is always one-to-one.

ie Kubjas The Algebra-Geometry Dictio



The Ideal-Variety Correspondence

Let k be an arbitrary field.

0 The maps

and

affine varieties — ideals

ideals — affine varieties

are inclusion-reversing. Furthermore, for any variety V, we have
v(wvy) =v,

so that | is always one-to-one.
@ i1k is algebraically closed, and if we restrict to radical ideals, then the maps

affine varieties — radical ideals

and
radical ideals — affine varieties

are inclusion-reversing bijections which are inverses of each-other.

aie Kubjas The Algebra-Geometry Dictionary



?moé i \) \udu iom- (\AUU\%N.?) : INERLQE
« VT2V . W V=V WD) WS

aeN. Tuw &(2)=0 & ot LeT(V).
W Ve V(TW))

(owo TO)2<4,. .1 W

QMUV:M%'(\&UU\MM | WL Qa"’\ \y(-\\-(\])c—‘w%(x'\\\‘\&%>
\ .

DTOE) T, By Wllsllbusade

IVD) =TT . Jw T wdicd, fea
dE =" L. 7




Radical Ideals

The Nullstellensatz motivates the study of radical ideals:

@ (Radical generators) Given an ideal /, is there an algorithm
that computes a basis {g1, ..., gm} of VI? [We will answer
it for principal ideals.]

© (Radical ideal) Is there an algorithm for checking whether /
is radical? [Out of scope of this course.]

© (Radical membership) Given f € k[xy, ..., X5], is there an
algorithm to determine whether f € v/I? [We will answer it
completely using the Hilbert’s Nullstellensatz.]
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Radical Membership

Proposition

Let k be an arbitrary field and let | = (fy,...,fs) C k[xq, ..., Xn]
be an ideal. Then f € V1 if and only if the constant polynomial 1
belongs to the ideal | = (fy, ..., fs,1 — yf) C Kk[xq,...,Xn, Y].
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Radical Membership

Let k be an arbitrary field and let | = (fy,...,fs) C k[xq, ..., Xn]
be an ideal. Then f € /1 if and only if the constant polynomial 1

belongs to the ideal T = (f;, ..., fs,1 — yf) C k[X1,..., Xn, ¥].

Example (Radical Membership Algorithm)

Consider / = (xy? + 2y? x* — 2x® +1) C k[x, y]. We want to
testif f = y — x2 + 1 lies in /1. Using lex order on k[x, y, z],
one checks that the ideal

T=(xy? +2y% x* —2x2 + 1,1 — z(y — x2 + 1)) C k[x, y, Z]

has reduced Groebner basis {1}. It follows that y — x®+1 € V/I.
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Irreducible polynomials

Definition

Let k be a field. A polynomial f € k[x1, ..., Xs] is irreducible
over k if and only if it is nonconstant and it is not the product of
two nonconstant polynomials in k[x, ..., Xs].

Kaie Kubjas The Algebra-Geometry Dictionary



Irreducible polynomials

Definition

Let k be a field. A polynomial f € k[x1, ..., Xs] is irreducible
over k if and only if it is nonconstant and it is not the product of
two nonconstant polynomials in k[x, ..., Xs].

Quiz: Is x2 + 1 irreducible over R? Over C?
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Irreducible polynomials

Definition

Let k be a field. A polynomial f € k[x1, ..., Xs] is irreducible
over k if and only if it is nonconstant and it is not the product of
two nonconstant polynomials in k[x, ..., Xs].

Quiz: Is x2 + 1 irreducible over R? Over C?
Answer: It is irreducible over R but it factors as (x — i)(x + /)
over C.
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Irreducible polynomials

Definition

Let k be a field. A polynomial f € k[x1, ..., Xs] is irreducible
over k if and only if it is nonconstant and it is not the product of
two nonconstant polynomials in k[x, ..., Xs].

Quiz: Is x2 + 1 irreducible over R? Over C?
Answer: It is irreducible over R but it factors as (x — i)(x + /)
over C.

Proposition

Every nonconstant polynomial f € K[x1, ..., Xn] can be written
as a product of polynomials which are irreducible over k.
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Unique factorization

Every nonconstant polynomial f € K[x1, ..., Xs] can be written
as aproduct f = f; - f> - - - f- of irreducible polynomials over |.
Further, if f = g4 - go - - - gs IS @another factorization into
irreducible polynomials over |, then r = s and the g;’s can be
permuted so that each f; is a constant multiple of g;.
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Principal ideals

Proposition

Letf € k[xy,...,xn) and | = (f) be the principal ideal generated
by f. Iff = cf{"“ .- 2" is the factorization of f into a product of
distinct irreducible polynomials, then

Vi=(fify---f).
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Principal ideals

Letf € k[xy,...,xn) and | = (f) be the principal ideal generated
by f. Iff = cf{"“ .- 2" is the factorization of f into a product of

distinct irreducible polynomials, then

Vi=(fify---f).

If f € k[xq,...,Xn] is a polynomial, we define reduction of f,
denoted f,q, to be the polynomial such that (feq) = 1/(f). A

polynomial is said to be reduced (or square-free) if f = f,o4.

Kaie Kubjas The Algebra-Geometry Dictionary



Principal ideals

Proposition

Letf € k[xy,...,xn) and | = (f) be the principal ideal generated
by f. Iff = cf{"’1 .- 2" is the factorization of f into a product of
distinct irreducible polynomials, then

Vi=(fify---1).

Definition

If f € k[xq,...,Xn] is a polynomial, we define reduction of f,
denoted f,q, to be the polynomial such that (feq) = 1/(f). A
polynomial is said to be reduced (or square-free) if f = f,o4.

What is the reduction of f = (x 4 y2)3(x — y)?
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Reduction

Definition
Let f,g € K[x1,...,Xn]. Then h € K[xq, ..., Xy] is called a
greatest common divisor of f and g, and denoted
h = GCD(f, g), if
@ hdivides f and g.
@ If pis any polynomial which divides both f and g, then p
divides h.
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Reduction

Definition
Let f,g € K[x1,...,Xn]. Then h € K[xq, ..., Xy] is called a
greatest common divisor of f and g, and denoted
h = GCD(f, g), if
@ hdivides f and g.

@ If pis any polynomial which divides both f and g, then p
divides h.

@ GCD exists and is unique up to multiplication by a nonzero
constant k

@ the Euclidean algorithm does not work in the case of
several variables: GCD(xy, xz) = x, but remainder is either
xy or xz depending in which order we divide the monomials

@ we will talk about an algorithm for computing GCD in the
next lectures
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Reduction

Proposition

Suppose that k is a field containing the rational numbers Q and
let | = (f) be a principal ideal in K[x1, ..., xn]. Then VI = (feq),

where y
fred = g
GCD(f, %, . ,337’”
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Conclusion

Today:
@ Hilbert’s Nullstellensatz
@ Radical ideals
@ |deal-variety correspondence
Next time:
@ Sums, products and intersections of ideals
@ Zariski closure and quotients of ideals
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