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Roadmap for today

1 Introductions to Deep GPs
Limitations of standard GPs
Function Composition and Deep Learning

2 The Deep GP Model
Combining Layers of GPs
Deep GP Covariance
The Deep GP Posterior

3 Inference in Deep GPs
Stochastic Variational Inference
Alternative Approaches
Performance and Issues
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Limitations of Standard GPs

Discontinuities / jumps

A stationary GP fails to capture the sharp jump, and the
variance is too large everywhere.
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Limitations of Standard GPs

Discontinuities / jumps

Outliers

The outlier has a very low probability under the model.

To account for this, the model learns a likelihood variance
that is too high for all other data points.
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Limitations of Standard GPs

Discontinuities / jumps

Outliers

Removing the outlier vastly improves the result. But we’d
rather avoid such a manual intervention.
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Limitations of Standard GPs

Discontinuities / jumps

Outliers

Non-stationarity

The previous two problems can be seen as issues arising due to a
stationary model being applied to non-stationary data.

Many real-world data sets do not have constant smoothness
across the entire input space.
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Limitations of Standard GPs

Discontinuities / jumps

Outliers

Non-stationarity

Misalignment
Multiple misaligned data streams cannot be modelling with a
standard (multi-output) GP.

The data must be aligned via a pre-processing step.

Ideally this step should be incorporated into the probabilistic
model, so that its uncertainty can be incorporated.
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Function Composition

Function composition is at the heart of modern-day machine learning. Deep neural networks are
made up of compositions of neural networks.

Deep Gaussian processes work in an analogous way, whilst incorporating uncertainty and prior
knowledge.
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Function Composition

Function composition is at the heart of modern-day machine learning. Deep neural networks are
made up of compositions of neural networks.

Deep Gaussian processes work in an analogous way, whilst incorporating uncertainty and prior
knowledge.

Single GPs can model simple, stationary functions. The composition of multiple GPs,

f3(f2(f1(·)))

can model more complex, nonstationary functions.
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Function Composition

Function composition is at the heart of modern-day machine learning. Deep neural networks are
made up of compositions of neural networks.

Deep Gaussian processes work in an analogous way, whilst incorporating uncertainty and prior
knowledge.

Single GPs can model simple, stationary functions. The composition of multiple GPs,

f3(f2(f1(·)))

can model more complex, nonstationary functions.

We can view each “layer” as a warping of the inputs before feeding to the next layer.

Function composition can be used to incorporate multiple layers of prior knowledge.
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Deep GP Intuition

Before writing down the model, let’s gain some intuition about hierarchies of Gaussian processes.
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Deep GP Intuition

Before writing down the model, let’s gain some intuition about hierarchies of Gaussian processes.

Take inputs x , and evaluate a GP, f1(.) ∼ GP(µ1(.), κ1(., .)):

f1(x) ∼ N (µ1(x), κ1(x , x))

Draw a sample, ỹ1, from this multivariate Gaussian:
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Deep GP Intuition

Before writing down the model, let’s gain some intuition about hierarchies of Gaussian processes.

Take inputs x , and evaluate a GP, f1(.) ∼ GP(µ1(.), κ1(., .)):

f1(x) ∼ N (µ1(x), κ1(x , x))

Draw a sample, ỹ1, from this multivariate Gaussian:

Treat this sample as the input to another GP,
f2(.) ∼ GP(µ2(.), κ2(., .)):

f2(ỹ1) ∼ N (µ2(ỹ1), κ2(ỹ1, ỹ1))

and draw a sample, ỹ2.
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Deep GP Intuition

Before writing down the model, let’s gain some intuition about hierarchies of Gaussian processes.

Take inputs x , and evaluate a GP, f1(.) ∼ GP(µ1(.), κ1(., .)):

f1(x) ∼ N (µ1(x), κ1(x , x))

Draw a sample, ỹ1, from this multivariate Gaussian:

Treat this sample as the input to another GP,
f2(.) ∼ GP(µ2(.), κ2(., .)):

f2(ỹ1) ∼ N (µ2(ỹ1), κ2(ỹ1, ỹ1))

and draw a sample, ỹ2.

Repeat a third time for f3(.) ∼ GP(µ3(.), κ3(., .)):

f3(ỹ2) ∼ N (µ3(ỹ2), κ3(ỹ2, ỹ2))
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Deep GP Intuition

These are samples from a 3-layer deep GP.
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Deep GP Intuition

These are samples from a 3-layer deep GP.

sharp jumps / discontinuities.

highly nonstationary smoothness.
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Deep GP Covariance

As well as sampling, we can also plot the covariance matrix in each layer.
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The Deep GP Model

Now let’s write down the deep GP model and look at its properties. Inference will come later.

fi (·) ∼ GP (µi (·), κi (·, ·)) , i = 1, . . . , L

p(ỹi | fi , ỹi−1) =
∏
n

N (ỹi,n | fi (ỹi−1,n), σ2
i ) , ỹ1 = x

p(y | fL, ỹL−1) =
∏
n

p(yn | fL(ỹL−1,n))
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The Deep GP Model

Now let’s write down the deep GP model and look at its properties. Inference will come later.

fi (·) ∼ GP (µi (·), κi (·, ·)) , i = 1, . . . , L

p(ỹi | fi , ỹi−1) =
∏
n

N (ỹi,n | fi (ỹi−1,n), σ2
i ) , ỹ1 = x

p(y | fL, ỹL−1) =
∏
n

p(yn | fL(ỹL−1,n))

L layers of Gaussian process priors.

ỹi are latent variables - treated as input to layer i + 1.

Typically include Gaussian noise between layers.
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The Deep GP Model

Now let’s write down the deep GP model and look at its properties. Inference will come later.

fi (·) ∼ GP (µi (·), κi (·, ·)) , i = 1, . . . , L

p(ỹi | fi , ỹi−1) =
∏
n

N (ỹi,n | fi (ỹi−1,n), σ2
i ) , ỹ1 = x

p(y | fL, ỹL−1) =
∏
n

p(yn | fL(ỹL−1,n))

L layers of Gaussian process priors.

ỹi are latent variables - treated as input to layer i + 1.

Typically include Gaussian noise between layers.

For notational convenience, we can drop the explicit Gaussian noise between layers by moving the
noise into the kernel, κi (·, ·).
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The Deep GP Model

Now let’s write down the deep GP model and look at its properties. Inference will come later.

p(fi | fi−1) = GP(·, ·) , i = 1, . . . , L

p(y | fL) =
∏
n

p(yn | fL,n)

where f0 = x and fL,n = fL(fL−1(. . . (xn))).
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The Deep GP Model

Now let’s write down the deep GP model and look at its properties. Inference will come later.

p(fi | fi−1) = GP(·, ·) , i = 1, . . . , L

p(y | fL) =
∏
n

p(yn | fL,n)

where f0 = x and fL,n = fL(fL−1(. . . (xn))).

Using notation fi = f (fi−1), the full process has joint density

p(y , {fi}Li=1) =
N∏

n=1

p(yn | fL,n)︸ ︷︷ ︸
Likelihood

L∏
i=1

p(fi | fi−1)︸ ︷︷ ︸
Deep GP Prior
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The Deep GP Posterior

A Gaussian propagated through a nonlinearity is no longer Gaussian:

x ∼ N (x | ·, ·) f (·) f (x) ∼ ???
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The Deep GP Posterior

Similarly, a Gaussian process propagated through a nonlinearity (e.g., another GP) is no longer a
Gaussian process (in the original inputs x).

f1(·) ∼ GP (µ1(·), κ1(·, ·))

f2(·) ∼ GP (µ2(·), κ2(·, ·))

f1(x) ∼ GP(·, ·) f2(f1(x)) ∼ ???
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Inference in Deep GPs

Since the posterior is not Gaussian, it is clear that we must resort to approximate inference.

Various schemes have been proposed: Variational Inference, Expectation Propagation,
Hamiltonian Monte Carlo.

We will focus on sparse, stochastic variational inference.
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Inference in Deep GPs

Since the posterior is not Gaussian, it is clear that we must resort to approximate inference.

Various schemes have been proposed: Variational Inference, Expectation Propagation,
Hamiltonian Monte Carlo.

We will focus on sparse, stochastic variational inference.

Recall our (joint) model:

p(y , {fi}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1)

where f0 = x .
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Inference in Deep GPs

Since the posterior is not Gaussian, it is clear that we must resort to approximate inference.

Various schemes have been proposed: Variational Inference, Expectation Propagation,
Hamiltonian Monte Carlo.

We will focus on sparse, stochastic variational inference.

Recall our (joint) model:

p(y , {fi}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1)

where f0 = x .

We introduce inducing points zi in each layer:

p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

where ui = fi (zi ). p(fi | fi−1, ui ) is a standard Gaussian conditional.
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Stochastic VI for Sparse Deep GPs

p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )
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Stochastic VI for Sparse Deep GPs

p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

To construct a variational lower bound for the deep GP, we must first define an approximate
posterior:

q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

where q(ui ) = N (ui | mi , Si ) are free-form Gaussians whose parameters are to be optimised.
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Stochastic VI for Sparse Deep GPs

Recall the sparse variational bound for a single GP derived in previous lectures:

ln p(y) ≥ L3 ≡
N∑

n=1

∫
q(fn) ln p(yn|fn) dfn − D [q(u)||p(u)]

= Eq(f ,u) [ln p(y |f )] + Eq(f ,u) [ln p(f ,u)]− Eq(f ,u) [ln q(f ,u)]

= Eq(f ,u)

[
ln

p(y , f ,u)

q(f ,u)

]
We will now derive a similar bound for the deep GP.

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]

=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

joint: p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

approx. posterior: q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]

=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

joint: p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

approx. posterior: q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]

=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

joint: p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

approx. posterior: q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]
=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

joint: p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

approx. posterior: q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]
=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

joint: p(y , {fi , ui}Li=1) =
N∏

n=1

p(yn | fL,n)
L∏

i=1

p(fi | fi−1, ui )p(ui )

approx. posterior: q({fi , ui}Li=1) =
L∏

i=1

p(fi | fi−1, ui )q(ui )

The variational bound is

ln p(y) ≥ LDGP = Eq({fi , ui}Li=1)

[
ln

p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

]
=

∫ ∫
q({fi , ui}Li=1) ln

(
p(y , {fi , ui}Li=1)

q({fi , ui}Li=1)

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(fi | fi−1, ui )p(ui )∏L

i=1 p(fi | fi−1, ui )q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

William Wilkinson GP Course: Session #4 04/02/21 12 / 22



Stochastic VI for Sparse Deep GPs

Simplifying further:

LDGP =

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(
N∏

n=1

p(yn | fL,n)

)
d{fi ,ui}Li=1

+

∫ ∫
q({fi , ui}Li=1) ln

(∏L
i=1 p(ui )∏L
i=1 q(ui )

)
d{fi ,ui}Li=1

The likelihood (first term) only depends on fL, and the second term does not depend on fi . So
finally, the bound reduces to:
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Stochastic VI for Sparse Deep GPs

Simplifying further:

LDGP =

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(
N∏

n=1

p(yn | fL,n)

)
d{fi ,ui}Li=1

+

∫ ∫
q({fi , ui}Li=1) ln

(∏L
i=1 p(ui )∏L
i=1 q(ui )

)
d{fi ,ui}Li=1

The likelihood (first term) only depends on fL, and the second term does not depend on fi . So
finally, the bound reduces to:

LDGP =

∫
q(fL) ln

(
N∏

n=1

p(yn | fL,n)

)
dfL +

∫
q({ui}Li=1) ln

(∏L
i=1 p(ui )∏L
i=1 q(ui )

)
d{ui}Li=1
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Stochastic VI for Sparse Deep GPs

Simplifying further:

LDGP =

∫ ∫
q({fi , ui}Li=1) ln

(∏N
n=1 p(yn | fL,n)

∏L
i=1 p(ui )∏L

i=1 q(ui )

)
d{fi ,ui}Li=1

=

∫ ∫
q({fi , ui}Li=1) ln

(
N∏

n=1

p(yn | fL,n)

)
d{fi ,ui}Li=1

+

∫ ∫
q({fi , ui}Li=1) ln

(∏L
i=1 p(ui )∏L
i=1 q(ui )

)
d{fi ,ui}Li=1

The likelihood (first term) only depends on fL, and the second term does not depend on fi . So
finally, the bound reduces to:

LDGP =

∫
q(fL) ln

(
N∏

n=1

p(yn | fL,n)

)
dfL −

L∑
i=1

D [q(ui )||p(ui )]

William Wilkinson GP Course: Session #4 04/02/21 13 / 22



Stochastic VI for Sparse Deep GPs

The single GP bound:

ln p(y) ≥ L3 =
N∑

n=1

∫
q(fn) ln p(yn|fn)dfn − D [q(u)||p(u)]

The deep GP bound:

ln p(y) ≥ LDGP =
N∑

n=1

∫
q(fL,n) ln p(yn|fL,n) dfL,n −

L∑
i=1

D [q(ui )||p(ui )]
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Stochastic VI for Sparse Deep GPs

The single GP bound:

ln p(y) ≥ L3 =
N∑

n=1

∫
q(fn) ln p(yn|fn)dfn − D [q(u)||p(u)]

The deep GP bound:

ln p(y) ≥ LDGP =
N∑

n=1

∫
q(fL,n) ln p(yn|fL,n) dfL,n −

L∑
i=1

D [q(ui )||p(ui )]

Notice that the first term still decomposes across the data points, and only depends on the
posterior marginal at the last layer. Therefore this bound is also amenable to stochastic
optimisation (i.e., mini-batching).
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Stochastic VI for Sparse Deep GPs

The single GP bound:

ln p(y) ≥ L3 =
N∑

n=1

∫
q(fn) ln p(yn|fn)dfn − D [q(u)||p(u)]

The deep GP bound:

ln p(y) ≥ LDGP =
N∑

n=1

∫
q(fL,n) ln p(yn|fL,n) dfL,n −

L∑
i=1

D [q(ui )||p(ui )]

Notice that the first term still decomposes across the data points, and only depends on the
posterior marginal at the last layer. Therefore this bound is also amenable to stochastic
optimisation (i.e., mini-batching).

However, computing the marginal q(fL,n) is hard.
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Computing the Deep GP Marginal

Computing the marginal q(fL,n) is the final step in performing inference.

Fortunately, our model choices make sampling from this marginal efficient.

To see this, consider the marginal distribution for a single layer, i . We obtain the marginal for a
single point by integrating out the inducing variables from the approximate posterior:

q(fi,n) =

∫
q(fi,n | ui )q(ui ) dui = N (fi | ·, ·)

It follows that, given q(ui ), computing q(fi,n) only requires knowledge of the marginal inputs
fi−1,n.

This mean that sampling from q(fi,n) is cheap, and does not involve sampling from the full GP at
each layer (in fact, it only requires sampling from univariate Gaussians).
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Optimising the Deep GP Bound

ln p(y) ≥ LDGP =
N∑

n=1

∫
q(fL,n) ln p(yn|fL,n) dfL,n −

L∑
i=1

D [q(ui )||p(ui )]

Inference amounts to evaluating the above bound (and applying gradient ascent), as follows:
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Inference amounts to evaluating the above bound (and applying gradient ascent), as follows:

Recursively draw S samples, f̃i,n,s , from each layer, treating samples from the previous layer as
deterministic inputs. Do this for all n = 1, . . . ,N∗ in the mini-batch.
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At the final layer, predict the GP mean, mL,n,s , and covariance, CL,n,s , using f̃L−1,n,s as inputs.

Approximate the first term in the ELBO by averaging across the samples, i.e.,:
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∫
q(fL,n) ln p(yn|fL,n) dfL,n ≈
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S
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S∑
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deterministic inputs. Do this for all n = 1, . . . ,N∗ in the mini-batch.
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Approximate the first term in the ELBO by averaging across the samples, i.e.,:
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∫
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1
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For the second term, compute the KL divergence between q(ui ) and p(ui ) in each layer separately
(this is available in closed form since both terms are Gaussian).
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Inference amounts to evaluating the above bound (and applying gradient ascent), as follows:

Recursively draw S samples, f̃i,n,s , from each layer, treating samples from the previous layer as
deterministic inputs. Do this for all n = 1, . . . ,N∗ in the mini-batch.

At the final layer, predict the GP mean, mL,n,s , and covariance, CL,n,s , using f̃L−1,n,s as inputs.

Approximate the first term in the ELBO by averaging across the samples, i.e.,:

N∑
n=1

∫
q(fL,n) ln p(yn|fL,n) dfL,n ≈

1

S

N

N∗

S∑
s=1

N∗∑
n=1

∫
N (fL,n | mL,n,s , CL,n,s) ln p(yn|fL,n) dfL,n

For the second term, compute the KL divergence between q(ui ) and p(ui ) in each layer separately
(this is available in closed form since both terms are Gaussian).

This inference technique is called doubly stochastic VI, due to the two sources of stochasticity.
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Alternative Approaches

Other approaches to deep GP inference exist, but we won’t go over them here:

Deep GP Expectation Propagation - similar to the above, but using EP for inference, and
replacing the sampling procedure with Gaussian projections to approximate the marginals.

Importance-weighted VI with latent variables - introduces additional latent variables which
allow the model to represent non-Gaussian posteriors.

Hamiltonian Monte Carlo - uses a sophisticated sampling approach to represent non-Gaussian
posteriors.
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Deep GP Performance

Discontinuities / jumps:
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Deep GP Performance

Discontinuities / jumps:

The deep GP captures the jump,
whilst the variance elsewhere
remains low.

However, we would prefer that
the variances increases in the
region of the discontinuity.

In the exercises, you will examine
what happens in each layer.
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Deep GP Performance

Outliers:
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Deep GP Performance

Outliers:

The deep GP seems to overfit the
outlier.
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Deep GP Performance

Outliers:

The deep GP seems to overfit the
outlier.

Whereas the originally proposed
deep GP methods claim to solve
these tasks well.

But doubly stochastic VI reports
superior performance on many
machine learning tasks,
potentially because it scales to
large data.
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Deep GP Performance
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Issues with Deep GPs

As with many deep learning approaches, things become less stable as the depth is increased:

Deep GPs are much more sensitive to initialisation than standard GPs (in both the
hyperparameters and the inducing point locations).

Training can be slow: we trade off the number of samples with accuracy.

Training is more prone to getting stuck in local minima since there are many more
parameters to optimise.

Current approaches to VI tend to “turn off” layers, or reduce their variance to near-zero
(such that they behave like deterministic mappings).
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Deep GP Performance

Deep GPs have been shown to have excellent performance on many medium-large machine
learning tasks.
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Deep GP Performance

Deep GPs have been shown to have excellent performance on many medium-large machine
learning tasks.

They have been combined with convolutional kernels (as presented in the previous lecture) to
produce state-of-the-art results on image classification.

Performance matches e.g., deep CNNs, but improves uncertainty quantification in predictions, i.e.,
the model is more aware when it is wrong.
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Deep GP Performance

Deep GPs have been shown to have excellent performance on many medium-large machine
learning tasks.

They have been combined with convolutional kernels (as presented in the previous lecture) to
produce state-of-the-art results on image classification.

Performance matches e.g., deep CNNs, but improves uncertainty quantification in predictions, i.e.,
the model is more aware when it is wrong.

So deep GPs have great potential. But, as we have seen, there is still much work to be done.
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End of Today’s Lecture

Next time: Aki Vehtari will give a lecture about model selection

Now time for questions. Next week’s assignment (#5) will include sampling from and
training a deep GP.
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